
TRINITY COLLEGE DUBLIN
COLÁISTE NA TRÍONÓIDE, BAILE ÁTHA CLIATH

First-Order Reasoning for Higher-Order
Concurrency

Vasileios Koutavas Matthew Hennessy

Computer Science Department Technical Report TCS-CS-YYYY-NN
Foundations and Methods Research Group July 23, 2009

First-Order Reasoning for Higher-Order Concurrency∗

Vasileios Koutavas Matthew Hennessy
{Vasileios.Koutavas, Matthew.Hennessy}@cs.tcd.ie

Trinity College Dublin
July 23, 2009

Abstract
By combining and simplifying two of the most prominent theories for HOπ of San-

giorgi et al. and Jeffrey and Rathke [15, 4], we present an effective first-order theory for a
higher-order picalculus.

There are two significant aspects to our theory. The first is that higher-order inputs
are treated in a first-order manner, hence eliminating the need to reason about arbitrarily
complicated higher-order contexts, or to use up-to context techniques, when establishing
equivalences between processes. The second is that we use augmented processes to record
directly the knowledge of the observer. This has the benefit of making ordinary first-
order weak bisimulation fully abstract w.r.t. contextual equivalence. It also simplifies the
handling of names, giving rise to a truly propositional Hennessy-Milner characterisation
of higher-order contextual equivalence.

Furthermore, we illustrate the simplicity of our approach in proving several interesting
equivalences by exhibiting first-order witness weak bisimulations, and inequivalences by
using the propositional Hennessy-Milner Logic. Finally we show that contextual equiva-
lence in a higher-order setting is a conservative extension of the first-order picalculus.

Contents
1 Introduction 3

2 The Language 5
2.1 Syntax . 5
2.2 Reduction semantics . 7
2.3 A behavioural equivalence . 8

3 The Labelled Transition System 9

4 Bisimulations 15
4.1 Strong Bisimulations . 15
4.2 Weak Bisimulations . 15
4.3 Logical Characterisation . 17

5 Soundness of Weak Bisimilarity 20
5.1 Reductions versus τ-steps . 20
5.2 Reduction-closure and preservation of barbs 21
5.3 Parallel Contexts . 22
∗The financial support of SFI is gratefully acknowledged

1

6 Completeness of Weak Bisimilarity 31
6.1 Concretion of Configurations . 31
6.2 Completeness . 33

7 Full Contextual Equivalence 36

8 Examples 39
8.1 Implementation of Replication . 40
8.2 A Trigger-Installing Ping Service . 42
8.3 A Trigger-Promoting Ping Service . 43
8.4 Composition of Triggers with Replication 44
8.5 The Processes in Figure 1 . 46

9 First-Order Processes 49

10 Conclusions 50

2

c?(X,Y).νt.
(

c!〈(app X ⊕ appY) | app X〉.0 ⊕ c!〈t!.app Y〉.0) | ∗(t?.(app X ⊕ appY))
?≈ c?(X,Y).νt.

(
c!〈(app X ⊕ appY) | app Y〉.0 ⊕ c!〈t!.app X〉.0) | ∗(t?.(app X ⊕ appY))

(†)

c?(X,Y).νt.
(

c!〈(app X | appY) ⊕ app X〉.0 ⊕ c!〈t!.app Y〉.0) | ∗(t?.(app X | appY))
?≈ c?(X,Y).νt.

(
c!〈(app X | appY) ⊕ app Y〉.0 ⊕ c!〈t!.app X〉.0) | ∗(t?.(app X | appY))

(‡)

Figure 1: An Equivalence and an inequivalence in higher-order concurrency

1 Introduction

Developing effective reasoning techniques for languages with higher-order constructs is a
challenging problem, made even more challenging with the presence of concurrency and mo-
bility. The difficulties involved are exemplified by the search for reasonable proof techniques
for establishing behavioural equivalences between processes written in higher-order versions
of the picalculus, [11, 12, 13, 15, 16]. The picalculus is an abstract process description
language in which first-order values are exchanged between sub-processes using communi-
cation channels. Much of its power derives from the fact that these values include the set of
communication channels, which can be generated dynamically and shared privately among
sub-processes. Higher-order versions also allow processes, or some form of abstractions over
processes, to be communicated; that is the values communicated may be higher-order.

Intuitively two processes are deemed to be behaviourally equivalent if no user in any
context can distinguish between them [10]; this has been formalised for a wide range of
languages, including the higher-order picalculus, called HOπ, and is often referred to as con-
textual equivalence [3, 4, 5]; a slight variation is called barbed congruence [16, 12, 11]. The
challenge is to develop useful reasoning techniques for this contextual equivalence, in partic-
ular techniques which do not involve reasoning about all possible programming contexts.

To illustrate the challenges of reasoning in higher-order concurrent languages let us con-
sider the pairs of higher-order processes shown in Figure 1, where ⊕ is an internal choice
operator and app causes the execution of a suspended process. The differences within each
pair of processes is highlighted. All processes initially receive two suspended processes X
and Y on channel c and dynamically create a local channel t. Then, each one combines
the X and Y in a slightly different way into two possible replies on channel c, chosen non-
deterministically. After a reply is sent, all it is left of the processes is the same replication
(denoted by the ∗-operator) guarded by the private channel t. Up to this point the behaviour
of the processes is indistinguishable by a potential interrogator. But from this point on the
interrogator may use the values previously emitted from the processes to make further obser-
vations. These include replication and execution of the values, as well as their embedding in
more complex values fed into other instances of the same processes.

Our aim is to develop a practical and effective reasoning methodology for such processes.
Our methodology will only employ first-order reasoning and we will see that the examples in
Figure 1 can be handled in a straightforward manner.

The theory of bisimulations [9, 14] has proved to be a powerful operational technique
for establishing contextual equivalences in a variety of settings. Briefly the bisimulation-
based proof technique involves interrogating processes in a game-theoretic manner [17] using
actions which represent the different ways in which a user can interact with a process. For

3

the picalculus and related languages the relevant actions take the form

output: P
(νn) c!V
−→ P′ input : P

(νn) c?V
−→ P′ (1)

Here P is the process under investigation, P′ the result of the investigation, c a communi-
cation channel, V an acceptable value which may be higher-order, and n represents the new
information extruded by the process under investigation to the interrogator. These actions are
defined using a Labelled Transition System (LTS), and then roughly speaking P and Q are
deemed equivalent whenever they can support the same possible interrogations.

A number of different formulations of bisimulations have been developed for HOπ includ-
ing normal bisimulation [11, 12], and its abstract version in [4], and environmental bisimula-
tions [15]. All have been shown to coincide with contextual bisimulation [13] (often referred
to as being fully-abstract) but we believe that none have provided a satisfactory applicable
proof technique for program equivalence; as evidence we can cite the near complete lack of
examples in the research literature. The aim of the current paper is to design an elementary
bisimulation theory which is not only fully-abstract with respect to contextual equivalence
but also supports a reasonable proof methodology, one in which program equivalence can
be readily exhibited. By a careful selection of ideas from [4] and [15], together with the
combination and simplification of their formalisms, we will end up with a purely first-order
theory of bisimulations in which actions take a particularly simple form, and in which wit-
ness bisimulations underlying equivalences between higher-order processes are very easy to
describe.

Sangiorgi et al. [15], motivated by work in sequential languages [19, 18, 7, 6, 8], use an
LTS with the actions in (1) above and annotate bisimulations with an environment (relation)
containing the knowledge currently known to the interrogator; this allows the interrogating
actions to be meaningfully based on the interrogator’s current knowledge. Their method
simplifies the metatheory (e.g. showing that bisimilarity is a congruence), but leads to a
definition for bisimulations with many and arguably complex conditions. As an example, for
higher-order inputs of related processes one has to consider all possible related, and not just
identical, input values.

Let us briefly explain this point. Knowledge about two potentially bisimilar processes is
accumulated by the interrogator by storing all (higher-order) values output by the processes in
the knowledge environment. This knowledge can subsequently be used to construct arbitrarily
complicated new values with which to further interrogate the processes. It is this generation of
arbitrary new values, using knowledge previously gleaned from the process, which accounts
for the requirement to quantify over all related contexts. This strong proof obligation is
sometimes mitigated by the use of up-to context techniques.

Jeffrey and Rathke [4] use a more restrictive approach of formal triggers. A higher-order
output of a process is transformed to a special trigger service holding the actual value and
only a pointer for invoking the service is passed to the interrogator. Similarly, a higher-order
input is fed with a trigger with which the process can intuitively run the actual value—but
actually only an observable action is recorded in the LTS.

We believe that both methods have useful intuitions and that their combination has greater
value than the sum of its parts. Hence our theory combines and simplifies their insights. We
use knowledge environments in the LTS that record the values exposed to the context, and test
related processes with symbolic higher-order inputs. In this way we recover a representation
of triggers similar to [4], together with an explicit record of the names that are known to the
context.

We also take this one step further by including an explicit representation of the infor-
mation known only to the process. Thus here configurations take the form νa 〈∆, P〉 which
consists of

4

• the (higher-order) process under interrogation P,

• a representation ∆ of the knowledge currently known to the interrogator about this
process,

• the information a known to the process but currently unknown to the interrogator.

This extension allows us to simplify considerably the actions on which our bisimulations are
based; in particular it eliminates the need for explicitly extruding new information. Thus
the actions in (1) above, now applying to configurations, are labelled simply c!v and c?v
respectively, thereby relieving us of the need to manage the complications inherent in the use
of extrusion. A significant consequence is that bisimulation in our theory is characterised by a
propositional Hennessy-Milner Logic (HML) [2], that would not be possible by using Jeffrey
and Rathke’s LTS.

The main contributions of the paper can be summarised as follows:

(i) We define a first-order, fully-abstract, theory of standard weak bisimulation equivalence
for a higher-order picalculus, called pp-π, that unifies two distinct techniques. The the-
ory is compositional in the sense that the equivalence is preserved by arbitrary process
contexts.

(ii) The associated coinductive reasoning technique for pp-π processes is effective; because
the theory is first-order it is straightforward to demonstrate equivalences between pro-
cesses by exhibiting witness bisimulations. In support of this we provide a series of
compelling example process equivalences, which the literature of higher-order concur-
rency currently lacks.

(iii) We give the first propositional HML characterisation of weak bisimulation for a higher-
order picalculus; this result easily transfers to the first-order picalculus. We use this to
give simple proofs of inequivalence between higher-order processes, which is difficult
to achieve with existing theories.

(iv) We prove that contextual equivalence in a higher-order setting is a conservative exten-
sion of the first-order picalculus, thus confirming that results and reasoning methods
from first-order picalculus transfer to a higher-order setting.

The remainder of the paper is organised as follows: the next section defines the language
pp-π, giving the syntax, a reduction semantics and a simple type system for ensuring that com-
municated values are appropriately typed. Section 3 details our first-order LTS for pp-π, and
Section 4 defines strong and weak bisimulations and a characterisation of the latter in terms
of a propositional Hennessy-Milner Logic. Sections 5 and 6 contain the proofs of soundness
and completeness of our theory with respect to contextual equivalence that preserves only
parallel contexts, and Section 7 proves that our theory is fully abstract with respect to the full
contextual equivalence. Section 8 is devoted to proving several interesting equivalences by
using weak bisimulations, and an inequivalence by providing a discriminating HML formula.
Section 9 proves the conservativity theorem; the paper closes in Section 10 with conclusions
and a discussion of related work.

2 The Language
2.1 Syntax
We study the language pp-π (process-passing-π), a higher-order version of the picalculus
whose syntax is given in Figure 2. This is an extension of the picalculus which allows pro-
cesses to be communicated and is roughly equivalent to the language studied in [13]. We

5

t ::= Nm | Pr Type
x, y, z Variable

a, b, c, n Name
u, v ∈ Variable ∪ Name Identifier

P,Q ::= 0 | u!〈V:t〉.P | u?(x:t).P | P | P | νn. P Process
| appV | ∗(P) | if u= u then P else P

U,V,W ::= x | λP | n Value

Γ + V : t

Γ + n : Nm

Γ + P : OK

Γ + λP : Pr

x : t ∈ Γ
Γ + x : t

Γ + P : OK

Γ + 0 : OK

Γ + u : Nm Γ + V : t Γ + P : OK

Γ + u!〈V:t〉.P : OK

Γ + u : Nm Γ, x : t + P : OK

Γ + u?(x:t).P : OK

Γ + P : OK Γ + Q : OK

Γ + P | Q : OK

Γ, n : Nm + P : OK

Γ + νn. P : OK

Γ + V : Pr

Γ + appV : OK

Γ + P : OK

Γ + ∗(P) : OK

Γ + u : Nm Γ + v : Nm Γ + P : OK Γ + Q : OK

Γ + if u= v then P elseQ : OK

Figure 2: Syntax and typing of pp-π

assume a set of channel names Name, ranged over by a, b, . . . and a separate set of vari-
ables Variable, ranged over by x, y, . . ., and use u, v, . . . to denote identifiers, from (Variable∪
Name).

The basic constructs in pp-π are the input and output of typed values along channels,
u?(x:t).P and u!〈V:t〉.P. In the former a value of type t is received on channel u and bound
to the variable x in P, while in the latter the value V of type t is output on channel u and
the process continues with the execution of the code P. In addition we have the standard
constructs of the picalculus: replication ∗(P), parallel execution (P | Q), the generation of
new names νn. P, and the testing of these names if u= v then P elseQ.

In the picalculus the only values which can be transmitted along channels are names, but
in pp-π thunked or suspended processes, of the form λP, are also allowed; when such a value
is received by a process it can be executed, via the new construct appV .

We employ the usual abbreviations and notations from the picalculus. We identify alpha-
equivalent processes and we write P | . . . | P (n parallel processes P) as

∏
n P. Moreover,

fv(P) denotes the set of variables occurring free in P, while fn(P) denotes its set of free names.
We are primarily interested in closed process terms, those satisfying fv(P) = ∅; these we refer
to as processes. The standard notions of substitution are employed, denoted by P{a/b} and
P{V/x}; the latter may give rise to ill-formed terms but this is avoided by the use of types.
We write a?.P instead of a?(x:Nm).P , when x ! fv(P), and a!.P instead of a!〈a:Nm〉.P .
Moreover, we omit type annotations on input and output when they are uniquely determined
by the context.

6

P→ Q
C-R

a!〈V:t〉.P | a?(x:t).Q→ P | Q{V/x}

A-R

app λP→ P

P-R
P1 → P2

P1 | Q→ P2 | Q

N-R
P1 → P2

νa. P1 → νa. P2

C-R
P′1 → P′2

P1 ≡ P′1 P2 ≡ P′2
P1 → P2

C-T-R

if a= a then P elseQ→ P

C-F-R
a " b

if a= b then P elseQ→ Q

Figure 3: Reduction semantics for pp-π

Typing: We have a very-lightweight notion of type whose purpose is simply to ensure, dy-
namically, that at any point in time when a value is received at a certain type it is subsequently
only used at that type. Values can be one of two types, Nm for names and Pr for (suspended)
processes. Type inference is with respect to type environments, consisting of finite sets of
variable-type associations x : t. Then the typing judgements take the form

• Γ + V : t, indicating that relative to Γ the value V has types t

• Γ + P : OK, indicating that the process term P is well-typed relative to Γ.

The rules for inferring the judgements are also given in Figure 2.

Example: Consider the following process, which describes a service at s:

∗(s?(x:Nm).s?(y:Pr).ν f . νr. x!〈 f 〉.x!〈r〉.
∗(f ?(z:Nm).z!〈y:Pr〉.0) |
∗(r?.app y))

It first receives as input a reply channel name, bound to x, and then a (suspended) process
bound to y. It generates two new names f and r which it returns on the reply channel, and
then sets up two new servers at those names. The first, at f , receives a name and forwards the
suspended process there; the second, at r, runs the suspended process on request.

Notice that we do not assume any static typing for channel names. At different points
in time they may be used to communicate values of different type. So, for example, a client
using this service at s will be expected to follow an implicit protocol, whereby first a name is
sent on s and then a process.

2.2 Reduction semantics
This is expressed as a relation

P→ Q

where P and Q are assumed to be well-typed processes, that is process terms satisfying ∅ +
P : OK and ∅ + Q : OK. The rules for inferring these judgements are given in Figure 3, and are
relatively standard. The main rule is for communication,

a!〈V:t〉.P | a?(x:t).Q→ P | Q{V/x}

7

Note that this communication along a can only happen if the partners agree on the type of the
value being transmitted. The other significant rule is for the initiation of a suspended process,

app λP→ P

The remaining rules are standard, borrowed from the picalculus; in particular reductions are
relative to a structural equivalence P ≡ Q which we now define.

Definition 2.1 (Structural equivalences). Limited structural equivalence (=̂) is defined to be
the least equivalence relation on processes satisfying the axioms

P = 0 | P P | Q = Q | P (P1 | P2) | P3 = P1 | (P2 | P3)

and closed under the two operators − |− and νa.−.
Structural equivalence (≡) is obtained by adding the further axioms

νa. νb. P = νb. νa. P ∗(P) = P | ∗(P)
νa. 0 = 0 νa. (P | Q) = (νa. P) | Q (a ! fn(Q))

As we have already stated, structural equivalence (≡) is used in the reduction semantics,
but the more restrictive limited equivalence (=̂) will be useful in proofs of equivalence.

Lemma 2.2 (Substitution). If Γ, x : t + P : OK and +V : t then Γ + P{V/x} : OK.

Proof. By rule induction. !

Lemma 2.3. If Γ, x : t + P : OK and x ! fn(P) then Γ + P : OK.

Proof. By rule induction. !

Lemma 2.4. If P ≡ Q and Γ + P : OK then Γ + Q : OK.

Proof. By case analysis on Definition 2.1, using Lemma 2.3. !

Proposition 2.5 (Preservation). If +P : OK and P→ Q then +Q : OK.

Proof. By rule induction on P→ Q, using Lemmas 2.2 and 2.4. !

2.3 A behavioural equivalence
We focus on reasoning about contextual equivalence [4, 5, 16, 12, 11] of closed, well-typed
processes, but in this section we content ourselves with a simplified version of it. We write
P R P′ when R is a binary relation on closed, well-typed processes and (P, P′) ∈ R.

We consider the basic observable of a process to be the ability to output on a given chan-
nel, called a barb.

Definition 2.6 (Barbs). We write P ↓b if and only if there exist c,V, t, P1, P2, with b ! {c}, such
that P ≡ νc. (b!〈V:t〉.P1 | P2).

We write P ⇓b if and only if there exists Q such that P→∗ Q and Q ↓b.

Definition 2.7 (Parallel Contextual Equivalence (#pcxt)). (#pcxt) is the largest relation on
closed processes that preserves barbs, is reduction closed, and is preserved by parallel con-
texts; i.e. P #pcxt P′ if and only if

(i) Barb preserving: for all b, P ⇓b iff P′ ⇓b,

8

(ii) Reduction closed: for all P1 with P → P1 there exists P′1 such that P′ →∗ P′1 and
P1 #pcxt P′1, and vice-versa, and

(iii) Preserves parallel constructs: for all well-typed processes Q, P | Q #pcxt P′ | Q.

It is straightforward to show that #pcxt is an equivalence relation. On the other hand to give
a direct proof that two processes are related is very difficult, especially in the higher-order π-
calculus. In the following sections we define a labelled transition system (LTS) and show that
(#pcxt) coincides with weak bisimulation in the LTS. We also demonstrate the usefulness of
bisimulation as a proof technique of equivalence via several examples. Finally we show that
the equivalence remains unchanged if we extend the third requirement (3) to demand that the
relation be preserved by all contexts.

3 The Labelled Transition System
The idea behind an LTS-based semantics for a process language is to describe the interactions
which an observer can have with processes; indeed semantic equivalences such as bisimula-
tion equivalence can be expressed in terms of games, and strategies for such games, over
these interactions [17].

We first give an informal account of the kinds of interactions we envision for pp-π and
then consider their formalisation. For the standard (first-order) picalculus observers interact
with processes via inputs and outputs on channels. But these interactions are constrained by
the knowledge which the observer has of the process being interrogated. For example if an
observer has no knowledge of channel b then it can not distinguish between the two processes

a!.0 | b!.0 a!.0

as the only possible known source of interaction is the channel a.
In general the observer’s knowledge is accumulated by receiving values from the process

under interrogation. In pp-π the observer also accumulates knowledge about higher-order
values, and may use these to further interrogate the process. This further interrogation can
either take the form of transmitting these values along communication channels or executing
them. For example consider the two processes

P
def
= νa. c!〈λa!.0〉.a?.0 Q

def
= νa. c!〈λa!.0〉.a?.c!.0

and an observer which only knows of the channel c. By inputting on c it gains knowledge
of the (suspended) process a!.0 although it does not gain any knowledge of the existence of
the private channel a. Nevertheless by running this suspended process a difference can be
detected between P and Q; in one case output can be detected on channel c after the execution
of the suspended process.

However, even in the first-order case, it is necessary for the observer to independently
generate new values with which to interrogate the process. For example consider a situation
in which the observer is only aware of the channel name a. Then the only way for the observer
to distinguish between the two processes

a?(x).0 a?(x).if x= a then 0 else a!.0

is to generate an new channel name, say b, and send this as input along the known channel a.
In pp-π it is also necessary for the observer to generate new higher-order values with

which to interrogate the process, by sending them as inputs. However in our LTS these new

9

νa1 〈∆1, P1〉
η−→ νa2 〈∆2, P2〉

N-I-T
c ∈ names(∆)

νa 〈∆, c?(x:Nm).P〉 c?n−→ νa 〈∆[n], P{n/x}〉

P-I-T
c ∈ names(∆) α ! avars(∆)

νa 〈∆, c?(x:Pr).P〉 c?α−→ νa 〈∆[α], P{α/x}〉
N-O-T

c ∈ names(∆) {b} = {a}\{n}

νa 〈∆, c!〈n:Nm〉.P〉 c!n−→ νb 〈∆[n], P〉

P-O-T
c ∈ names(∆) κ ! cvars(∆)

νa 〈∆, c!〈V:Pr〉.P〉 c!κ−→ νa 〈∆[κ 0→V], P〉
C-N-T

〈∆[a],P1〉
c!n−→ 〈∆′,P2〉

〈∆[a],Q1〉
c?n−→ 〈∆′′,Q2〉

νa 〈∆, P1 | Q1〉
τ−→ νa 〈∆, P2 | Q2〉

C-P-T

〈∆[a],P1〉
c!κ−→ 〈∆′[κ 0→V],P2〉

〈∆[a],Q1〉
c?α−→ 〈∆′′,Q2〉

νa 〈∆, P1 | Q1〉
τ−→ νa 〈∆, P2 | Q2{V/α}〉

A-A-T

νa 〈∆, appα〉 appα−→ νa 〈∆, 0〉

C-A-T
∆(κ) = V

νa 〈∆, P〉 app κ−→ νa 〈∆, P | appV〉

Figure 4: The LTS: main rules (omitting symmetric rules)

higher-order values are simply abstract variables, ranged over by α, taken from a count-
able set AVariables, which is assumed to be disjoint from the ordinary program variables
Variables. On receiving such an abstract higher-order value α the processes under interroga-
tion has very little it can do with it; α can only be transmitted as a value along other channels.
However, as we will see, our LTS will also allow the process to apply α in a trivial manner.
To accommodate these abstract values we need to extend the syntax in Figure 2 to allow them
to be used as values. We let P and V range over the extended syntax of abstract processes,
AProcess, and abstract values, AValue, respectively; fav(P) denotes the set of abstract vari-
ables occurring in P. Furthermore we extend the typing rules to apply to abstract processes
and values by adding the following typing judgement for abstract variables:

Γ + α : Pr

In order to formalise these kinds of interactions our LTS needs to take into account both
the process being interrogated and the current knowledge of the observer, or context. As we
have indicated this knowledge is accumulated via interactions with the process, and consists
either of (first-order) channel names or higher-order values. To tabulate the latter we use
a countable set of concrete variables CVariable, disjoint from other kinds of variables, and
ranged over by κ.

Definition 3.1 (Knowledge environments). A knowledge environment ∆ is a finite set of the
kind

Name ∪ AVariable ∪ (CVariable→fin AValue)

with the property that it maps concrete variables to abstract values of type Pr:

∆(κ) = V implies + V : Pr

10

νa1 〈∆1, P1〉
η−→ νa2 〈∆2, P2〉

C-T-T
n1 = n2

νa 〈∆, if n1 = n2 thenP elseQ〉
τ−→ νa 〈∆, P〉

R-T

νa 〈∆, ∗(P)〉 τ−→ νa 〈∆, P | ∗(P)〉
C-F-T

n1 " n2

νa 〈∆, if n1 = n2 thenP elseQ〉
τ−→ νa 〈∆, Q〉

N-T
b ! {a}

νa 〈∆, νb.P〉 τ−→ νa, b 〈∆, P〉
P-F-T
νa 〈∆1, P1〉

η−→ νb 〈∆2, P2〉

νa 〈∆1, P1 | Q〉
η−→ νb 〈∆2, P2 | Q〉

A-T

νa 〈∆, app λP〉 τ−→ νa 〈∆, P〉

Figure 5: The LTS: more rules (omitting symmetric rules)

We write ∆[e] for ∆∪{e}, and ∆(κ) = V for (κ,V) ∈ ∆; we also write names(∆), avars(∆),
and cvars(∆) for the name component, the abstract variable component, and the domain of
the functional component of ∆, respectively.

Our LTS will be defined between configurations of the form νa 〈∆, P〉, where a are names
the scope of which extends to P and the processes indexed in ∆, P is an abstract process and
∆ is a knowledge environment. Configurations are identified up to alpha-equivalence, are
ranged over by C, and are subject to the following well-formedness constraints:

Definition 3.2 (Well-Formed Configuration). A well-formed configuration is any configura-
tion νa 〈∆, P〉 with the properties:

(i) a are distinct bound names

(ii) {a} ∩ names(∆) = ∅

(iii) +P : OK and fn(P) ⊆ {a} ∪ names(∆) and fav(P) ⊆ avars(∆)

(iv) +V:Pr and fn(V) ⊆ {a}∪names(∆) and fav(V) ⊆ avars(∆) for everyV in the codomain
of ∆.

In a configuration νa 〈∆, P〉 the environment ∆ represents the knowledge of the observer.
The names a are those known to the process under investigation P, which are not known
to the observer, motivating condition (i); note however that these private names are shared
between the process and the abstract values indexed in ∆, values sent to the observer from the
process. The remaining conditions guarantee that all processes and values must be well-typed
and only use names which are in a or are known to the environment, and abstract variables in
∆.

The judgements for the LTS take the form

νa 〈∆, P〉 η−→ νb 〈∆′, Q〉

and the rules for generating them are given in Figure 4 and Figure 5. The label η can take one
of the following forms:

11

(i) Internal action, τ: these are the unobservable actions of the process (e.g. internal com-
munication). They weakly correspond to the reduction semantics of Figure 3.

(ii) First-order input, c?n: input by the process along the channel c, known to the observer,
of the name n; n might already be known to the observer or is freshly generated—in
both cases n is in the knowledge of the observer after the transition.

(iii) Higher-order input, c?α: input by the process of an abstract higher-order name α. For
these actions, α is always taken to be fresh; that is a new abstract name, implicitly
freshly generated by the observer.

(iv) First-order output, c!n: output by the process along the channel c of the name n. Here
the channel c must be known to the observer, but the name n may be a private to the
process or known to the observer. In both cases, n is known to the observer after the
transition.

(v) Higher-order output, c!κ: output by the process of some value along the channel c. The
channel c must be known to the observer, but κ is fresh. Here the actual value output
by the process is not represented directly in the label. Instead it is stored in the the
knowledge environment ∆ under the fresh key κ.

(vi) Abstract value application, appα: the execution by the process of the abstract higher-
order value α supplied by the observer. But since this is an abstract value, this execution
is effectively a noop.

(vii) Concrete value application, app κ: the execution of the higher-order value associated
with κ in the knowledge environment. This value was originally supplied by the process.

Rules N-I-T and P-I-T in Figure 4 capture first-order and higher-order
input of the process, respectively. In the former the observer provides to the process a known
or fresh name over a known channel. In the latter the observer provides a new abstract vari-
able, representing an arbitrary higher-order value, over a known channel.

Similarly, N-I-T and P-I-T capture first-order and higher-order output
of the process. In the latter, the higher-order value is not sent to the observer. Instead, it is
indexed by a new concrete variable, and that variable is sent to the observer.

Rules P-I-T and P-O-T include a freshness condition for the involved
abstract and concrete variable, respectively, to ensure that abstract variables from distinct
input transitions and concrete variables from distinct output transitions are not confused.

Internal communication is captured by C-N-T, for first-order values, and
C-P-T for higher-order values. Such communication can take place over chan-
nels that are local to the process, hence the temporary addition of the local channels in ∆ in
the premises. Note that in C-P-T, the concrete variable κ used to store the value
being communicated is not included in the environment ∆ in the conclusion.

Application of higher-order values is encoded in the rules C-A-T and A-A-
T. The former says that for the observer to run a value originally supplied by the process,
it simply executes it in parallel with the process currently under observation. In contrast,
rule A-A-T says that the effect of the process executing an abstract value originally
supplied by the observer is simply a signal to the observer (via the label of the transition) and
the generation of the empty process 0.

The rest of the rules in Figure 5 are mostly house-keeping in nature.
The LTS preserves well-formedness of configurations.

Proposition 3.3. Suppose νa 〈∆1, P〉 is well-formed and νa 〈∆1, P〉
η−→ νb 〈∆2, Q〉. Then

12

(i) ∆1 ⊆ ∆2

(ii) νb 〈∆2, Q〉 is well-formed.

Proof. By induction on the transition νa 〈∆1, P〉
η−→ νb 〈∆2, Q〉. !

For the remainder of this paper we consider only well-formed configurations.
For the rest of this subsection we analyse in considerable detail the structure of the actions

in the LTS. First we give an exhaustive analysis of the structure of configurations which are
produced by these actions.

Proposition 3.4. The following properties are true.

(i) If νa 〈∆1, P〉
c!n−→ νb 〈∆2, Q〉 then for some P1 and P2

P =̂ c!〈n〉.P1 | P2 Q =̂ P1 | P2 ∆2 = ∆1[n] {b} = {a}\{n}

(ii) If νa 〈∆1, P〉
c!κ−→ νb 〈∆2, Q〉 then for some P1 and P2

P =̂ c!〈V〉.P1 | P2 Q =̂ P1 | P2 ∆2 = ∆1[κ 0→V] {b} = {a}

(iii) If νa 〈∆1, P〉
c?n−→ νb 〈∆2, Q〉 then for some P1 and P2

P =̂ c?(x:Nm).P1 | P2 Q =̂ P1{n/x} | P2 ∆2 = ∆1[n] {b} = {a}

(iv) If νa 〈∆1, P〉
c?α−→ νb 〈∆2, Q〉 then for some P1 and P2

P =̂ c?(x:Pr).P1 | P2 Q =̂ P1{α/x} | P2 ∆2 = ∆1[α] {b} = {a}

(v) If νa 〈∆1, P〉
appα−→ νb 〈∆2, Q〉 then for some P1

P =̂ appα | P1 Q =̂ P1 ∆1 = ∆2 {b} = {a}

(vi) If νa 〈∆1, P〉
app κ−→ νb 〈∆2, Q〉 then for someV = ∆1(κ)

Q =̂ appV | P ∆1 = ∆2 {b} = {a}

(vii) If νa 〈∆1, P〉
τ−→ νb 〈∆2, Q〉 then ∆1 = ∆2 and {a} ⊆{ b}.

Proof. All properties are shown by induction on the rules of the LTS. !

In a configuration νa 〈∆, P〉 there are two sources of knowledge, the environments knowl-
edge in ∆ and the internal knowledge of the process in a. The next result shows that changes
to this knowledge has no effect on many actions.

Proposition 3.5.

(i) Knowledge extension: If νa 〈∆1, P〉
η−→ νb 〈∆2, Q〉 and νa, c 〈∆0 3 ∆1, P〉 is well-

formed, and names(η) ∩ names(∆0) = avars(η) ∩ avars(∆0) = cvars(η) ∩ cvars(∆0) = ∅
then

νa, c 〈∆0 3 ∆1, P〉
η−→ νb, c 〈∆0 3 ∆2, Q〉

13

(ii) Knowledge restriction: If νa, c 〈∆0 3 ∆1, P〉
η−→ νb 〈∆0 3 ∆2, Q〉 and νa 〈∆1, P〉 is

well-formed, and η ! {app κ | κ ∈ ∆0} ∪{ c?n | n ∈ ∆0} then

νa 〈∆1, P〉
η−→ νb′ 〈∆2, Q〉

where {b′} = {b}\{c}.
Proof. In both cases we use rule induction on the inference of the actions. !

Information in νa 〈∆, P〉 can also be shifted between the observers knowledge ∆ and the
processes knowledge a without affecting actions, provided of course that information is not
used in the actions.

Proposition 3.6 (Unused Information).

(i) Hiding: Suppose νa 〈∆1[b], P〉 η−→ νd 〈∆2[b], Q〉 and b does not occur in η. Then

νb, a 〈∆1, P〉
η−→ νb, d 〈∆2, Q〉

(ii) Revealing: Conversely, suppose νb, a 〈∆1, P〉
η−→ νb, d 〈∆2, Q〉 where again b does not

occur in η. Then

νa 〈∆1[b], P〉 η−→ νd 〈∆2[b], Q〉

Proof. Again by rule induction. !

With reference to this proposition there are actually very limited ways in which an action
η from the configuration νb, a 〈∆1, P〉 can use the name b. Indeed the only possibility is an

output action, which by Proposition 3.4 must have the form νb, a 〈∆, P〉 c!b−→ νd 〈∆[b], Q〉;
and this action can still be performed when the observer knows of the existence of b:

Proposition 3.7 (Extrusion). Provided c is different than b,

νb, a 〈∆, P〉 c!b−→ νd 〈∆[b], Q〉 iff νa 〈∆[b], P〉 c!b−→ νd 〈∆[b], Q〉
Proof. By rule induction, in both directions. !

Abstract variables are significant only in application and communication actions that men-
tion them—substituting a value for an abstract variable leaves all other actions unaffected.
Similarly, values are significant only in application steps—abstracting away values leaves
other actions unaffected.

Proposition 3.8.

(i) Substitution: Suppose νa 〈∆1, P〉
η−→ νb 〈∆2, Q〉 and νa 〈∆1{V/α}, P{V/α}〉 is well-

formed and α does not occur in η. Then

νa 〈∆1{V/α}, P{V/α}〉
η−→ νb 〈∆2{V/α}, Q{V/α}〉

(ii) Abstraction: Let νa 〈∆1{V/α}, P{V/α}〉
η−→ νb 〈∆2{V/α}, Q{V/α}〉 is well-formed

and η is not a τ action involving the rule A-T or an appα action. Then

νa 〈∆1, P〉
η−→ νb 〈∆2, Q〉

Proof. Both properties are shown by rule induction. !

14

4 Bisimulations
In this section we give the definitions for strong and weak bisimulations. We prove that the
limited structural equivalence (=̂) is a strong bisimulation and the full structural equivalence
(≡) is a weak bisimulation over configurations. We also prove several useful weak bisimula-
tions that encode properties of local and global names. Finally we give a characterisation of
weak bisimilarity in terms of a propositional Hennessy-Milner Logic.

4.1 Strong Bisimulations
We start with the definition of strong bisimulation, a rather strict equivalence on configura-
tions which will be useful later for deriving technical results.

We write binary relations on well-formed configurations as R, X, etc.

Definition 4.1 (Strong Bisimulation). R is a strong bisimulation if and only if for all C R C′:

(i) If C η−→ C1 then there exists C′1 such that

C′ η−→ C′1 C1 R C′1

(ii) The converse of (i)

Strong bisimulations are closed under unions. Thus the union of all strong bisimulations
is the largest strong bisimulation; it is also easy to see that it is an equivalence relation.

Definition 4.2 (Strong Bisimilarity (∼)). (∼) is the largest strong bisimulation.

The limited structural equivalence from Definition 2.1 can be extended to configurations
in the obvious manner. First it is extended to abstract processes by applying the axioms and
rules in Definition 2.1. Then we let νa 〈∆, P〉 =̂ νa′ 〈∆′, P′〉 whenever P =̂ P′, a = a′ and
∆ =∆ ′.

Proposition 4.3. (=̂) is a strong bisimulation over configurations.

Proof. By using induction on the rules of (=̂); i.e. the rules shown in Definition 2.1 and the
standard rules for an equivalence, we can show that all moves from related configurations can
be appropriately matched. !

4.2 Weak Bisimulations
Our theory of behavioural equivalence is based on weak bisimulations, which use so-called
weak actions from the LTS of the previous section. We write

η
=⇒ to mean the reflexive,

transitive closure of
τ−→, when η = τ, and

τ
=⇒ η−→ τ

=⇒, otherwise.

Definition 4.4 (Weak Bisimulation). R is a bisimulation if and only if for all C R C′:

(i) If C η−→ C1 then there exists C′1 such that

C′ η
=⇒ C′1 C1 R C′1

(ii) The converse of (i)

15

The collection of weak bisimulations is closed under unions, and thus the union of all
weak bisimulations is the largest weak bisimulation; again it is straightforward to show that
this is also an equivalence relation.

Definition 4.5 (Weak Bisimilarity (≈)). (≈) is the largest weak bisimulation.

Lemma 4.6. If νa 〈∆, P〉 ≈ νa′ 〈∆′, P′〉 then cvars(∆) = cvars(∆′).

Proof (by contradiction). Let κ ∈ cvars(∆) and κ ! cvars(∆′); then νa 〈∆, P〉 has an app κ-
transition to another configuration but νa′ 〈∆′, P′〉 does not, which contradicts the premise.

!

We extend weak bisimilarity to closed processes by the following definition.

Definition 4.7. We write P 6 P′ if and only if there exist b such that

〈{b}, P〉 ≈ 〈{b}, P′〉

Note that since (≈) is only defined between well-formed configurations the names b in the
above definition include the free names of P and P′.

As with (=̂), we extend the structural equivalence (≡) to abstract processes in the usual
way, and to LTS configurations as follows; note that this is extension is slightly more general
than that used for the limited structural equivalence (=̂).

Definition 4.8 ((≡) on LTS configurations). We write νa 〈∆, P〉 ≡ νa′ 〈∆′, P′〉 if and only if

νa.P ≡ νa′.P′ ∆ =∆ ′

Proposition 4.9. (≡) is a weak bisimulation over configurations.

Proof (sketch). Suppose

νa 〈∆1, P〉
η−→ νb 〈∆2, Q〉 and νa 〈∆1, P〉 ≡ νa′ 〈∆′1, P′〉

We show that

νa′ 〈∆′1, P′〉
η
=⇒ νb′ 〈∆′2, Q′〉

for some νb′ 〈∆′2, Q′〉 ≡ νb 〈∆2, Q〉.
We proceed by induction on the proof that νa.P ≡ νa′.P′. There are three cases;

(i) The vector a′ is empty, so that νa.P ≡P ′ Here we proceed by induction on the size of
the vector a, with this base case being when it is empty and thus we have P ≡P ′.We
continue here by induction on the proof of this equivalence.
With this inner induction the base case is provided by the axioms for (≡) in Figure 3,
with as usual the extrusion axiom νa. (P | Q) ≡ (νa. P) | Q whenever (a ! fn(Q)), being
somewhat complex. There are two inductive cases within this inner induction, when
the structural equivalent terms are composed parallel operator | and νa.− respectively
are used. The former makes extensive use of Proposition 3.6 and is non-trivial. The
latter is straightforward since the only moves from the configuration 〈∆, νa.P〉 are those
generated by the rule Nu-Trans.
Having finished the base case for the outer induction, we have one inductive case, when
a has the form dc, the process P′ has the form νd.P′1 and by induction we know νc.P ≡
P′1. Here the proof proceeds by case analysis on η; if it involves d then Proposition 3.7
is used and otherwise Proposition 3.6 is employed.

16

(ii) P ≡ νa′.P′ This case is similar to (i) and omitted.

(iii) νda.P ≡ νda′.P′ because, by induction νa.P ≡ νa′.P′ Here the proof is similar to the
outer inductive step of (i), with a case analysis on whether or not η uses the name d.

!

Corollary 4.10. (≡) ⊆ (6).

Extending bisimilar configurations with identical names produces bisimilar configura-
tions.

Lemma 4.11. If νa 〈∆, P〉 ≈ νa′ 〈∆′, P′〉 and n ! {a, a′} then

νa 〈∆[n], P〉 ≈ νa′ 〈∆′[n], P′〉

Proof. Let

X = {(νa 〈∆[n], P〉, νa′ 〈∆′[n], P′〉) | νa 〈∆, P〉 ≈ νa′ 〈∆′, P′〉
{n} ∩{ a, a′} = ∅}

It is easy to show that X is a weak bisimulation using Proposition 3.5. !

Lemma 4.12. If νa 〈∆ 3 {n}, P〉 ≈ νa′ 〈∆′ 3 {n}, P′〉 then

νa, n 〈∆, P〉 ≈ νa′, n 〈∆′, P′〉

Proof. Similar to the above proof. !

Lemma 4.13. νa, b 〈∆, P〉 ≈ νb 〈∆, νa.P〉

Proof. Trivial. !

Lemma 4.14.

νa, b 〈∆, P〉 ≈ νa′, b′ 〈∆′, P′〉 iff νb 〈∆, νa.P〉 ≈ νb′ 〈∆′, νa′.P′〉

Proof. By Lemmas 4.13 and transitivity of (≈). !

4.3 Logical Characterisation
Weak bisimilarity is characterised by a propositional Hennessy-Milner Logic with the fol-
lowing syntax.

F ::= ¬F | ∧i∈I Fi | 〈η〉 F

where I is a (possibly infinite) indexing set.
These formulas define a set of basic properties satisfied by configurations of our LTS. The

construct ¬F encodes negation and
∧

i∈I Fi encodes (possibly infinite) propositional conjuc-
tion. The modal construct 〈η〉 F encodes the property that there is a weak η-transition to a
configuration that satisfies F.

The semantics of this logic is given by a satisfaction relation C |= F between a configura-
tion C and a formula F.

17

Definition 4.15 (Satisfaction Relation (C |= F)).

C |= ¬F iff C 7|= F
C |= ∧i∈I Fi iff ∀i ∈ I. C |= Fi

C |= 〈η〉 F iff ∃C′. C η
=⇒ C′ and C′ |= F

As usual, more predicates are derivable; e.g.:

C |= tt def
= C |= ∧i∈∅ Fi

C |= ff def
= C |= ¬tt

C |= ∨i∈I Fi
def
= C |= ¬∧i∈I ¬Fi

C |= F1 ∧ F2
def
= C |= ∧i∈{1,2} Fi

C |= F1 ∨ F2
def
= C |= ∨i∈{1,2} Fi

As the transition labels η in our LTS contain actual (not extruded) names, the above logic
is similar to that of the CCS ([9], Chapter 10). Hence we avoid the complications of extrusion
and generation of fresh names in the logic.

The main theorem in this section is the characterisation of weak bisimilarity by the logic.

Theorem 4.16. C ≈C ′ if and only if for all F

C |= F iff C′ |= F

Proof. For the forward direction we first define the ordinal size of HML formulas:

size(¬F) def
= 1 + size(F)

size(
∧

i∈I Fi)
def
= 1 + Σi∈Isize(Fi)

size(〈η〉 F) def
= 1 + size(F)

We proceed by ordinal induction, using the induction hypothesis

IH(k) = ∀C,C′, F. (C ≈C ′ ∧ size(F) ≤ k) implies (C |= F iff C′ |= F)

Case k = 0: vacuously true because all formulas have size greater than 0.

Case k > 0: we assume that IH(k − 1) holds, and consider C,C′, and F with C ≈C ′ and
size(F) = k. We will show that

C |= F iff C′ |= F

We proceed by cases on F:
" F = ¬F′: it must be that size(F′) = k − 1. By IH(k − 1),

C |= F′ iff C′ |= F′

and by Definition 4.15 we get

C |= F iff C′ |= F

" F =
∧

i∈I Fi: We proceed by cases on I:
• I = ∅: trivially, by Definition 4.15, C |= F and C′ |= F.

18

• I = I′ 3 { j}: by Definition 4.15,

C |=
∧

i∈I
Fi iff (C |= F j ∧ C |=

∧

i∈I′
Fi)

C′ |=
∧

i∈I
Fi iff (C′ |= F j ∧ C′ |=

∧

i∈I′
Fi)

By the definition of size, it must be that for all i ∈ I, 0 < size(Fi) < k, and therefore
size(F j) ≤ k − 1 and size(

∧
i∈I′ Fi) ≤ k − 1. Thus, by IH(k − 1), we get

C |= F j iff C′ |= F j

C |=
∧

i∈I′
Fi iff C′ |=

∧

i∈I′
Fi

and by easy propositional reasoning C |= F iff C′ |= F.
" F = 〈η〉 F′: it must be that size(F′) = k − 1.
If C |= 〈η〉 F′ then, by Definition 4.15, there exists C1 such that

C η
=⇒ C1 C1 |= F′

Because C ≈C ′, there exists C′1 such that

C′ η
=⇒ C′1 C1 ≈ C′1

By IH(k − 1) it must be that C′1 |= F′, and by Definition 4.15 C′ |= 〈η〉 F′. Similarly if
C′ |= 〈η〉 F′.

For the converse direction of the theorem we define the following relation.

R = {(C,C′) | ∀F. C |= F iff C′ |= F}

We show by contradiction that R is a weak bisimulation:
We assume that R is not a bisimulation. Because R is obviously symmetric, w.l.o.g., this

means that for some (C,C′) ∈ R there exists C1 such that

C η−→ C1 ∀C′i ∈ S . (C1,C′i) ! R

where S = {C′i | C′
η
=⇒ C′i}. By the definition of R, for every C′i ∈ S there exists Fi such that

C1 |= Fi C′i 7|= Fi

or vice-versa, but in this case we consider ¬Fi. Hence, if I contains the indices of exactly
these formulas,

C1 |=
∧

i∈I
Fi

and therefore

C |= 〈η〉 (
∧

i∈I
Fi
) C′ 7|= 〈η〉 (

∧

i∈I
Fi
)

which contradicts the fact that (C,C′) ∈ R. !

An immediate consequence of this theorem is that the logic is particularly useful in giving
simple proofs of inequivalence. In Section 8.5 we prove such an inequivalence by providing
an HML formula that is satisfied by one of the processes and not the other.

19

5 Soundness of Weak Bisimilarity
In this section we prove that weak bisimulation equivalence (6) satisfies the defining proper-
ties of parallel contextual equivalence (#pcxt) and therefore is included in it. For convenience
it is divided into three sub-sections. The first establishes a close relationship between the
reduction semantics of Section 2 and the τ-moves in the LTS semantics of Section 3. The
second sub-section proves that (6) is reduction-closed and preserves barbs, while in the final
sub-section is devoted to the most difficult property, preservation by parallel contexts.

5.1 Reductions versus τ-steps
To prove that (6) is reduction-closed we first need to show that τ-transitions correspond to
reduction steps.

Lemma 5.1. If νa 〈{c}, P〉 τ−→ νb 〈{c}, Q〉 then νa. P→∗ νb.Q

Proof. By induction on the transition νa 〈{c}, P〉 τ−→ νb 〈{c}, Q〉. The cases C-T-
T, C-F-T, R-T, N-T, and A-T are trivial.

Case P-F-T: we have

νa 〈{c}, P1〉
τ−→ νb 〈{c}, P2〉

νa 〈{c}, P1 | Q〉
τ−→ νb 〈{c}, P2 | Q〉

and want to show that νa. P1 | Q →∗ νb. P2 | Q. By the induction hypothesis νa. P1 →∗
νb. P2, and by Proposition 3.4 (vii) {a} ⊆{ b}. Hence, by the properties of reduction, P1 →∗
νa′. P2, where b = a, a′. By P-R, P1 | Q →∗ (νa′. P2) | Q. Because νa 〈{c}, P1 | Q〉 is
well-formed, fn(Q) ⊆ {a, c} and {a′} ∩{ a, c} = ∅, and hence, by C-R and N-R,
νa. (P1 | Q)→∗ νb. (P2 | Q).

Case C-N-T: we have

〈{c, a}, P1〉
c!n−→ 〈∆′, P2〉

〈{c, a},Q1〉
c?n−→ 〈∆′′,Q2〉

νa 〈{c}, P1 | Q1〉
τ−→ νa 〈{c}, P2 | Q2〉

and want to show that νa. P1 | Q1 →∗ νa. P2 | Q2. By Proposition 3.4 (i) and (iii) we get that

P1 = c!〈n:Nm〉.P11 | P12 Q1 = c?(x:Nm).Q11 | Q12
P2 = P11 | P12 Q2 = Q12{n/x} | Q22

Thus, by C-R, C-R, P-R, and N-R we get νa. (P1 | Q1)→∗ νa. (P2 | Q2).
Similarly for the case C-P-T. The rest of the cases are vacuously true. !

Lemma 5.2. If P→ Q, and fn(P) ⊆ {c} then there exist a and Q0 such that

〈{c}, P〉 τ
=⇒ νa 〈{c}, Q0〉 νa.Q0 ≡ Q

Proof. By induction on P → Q. Cases C-R, A-R, and Cond-Red are straightfor-
ward.

20

Case P-R: we have

P1 → P2

P1 | Q→ P2 | Q

and want to show that there exist a and Q0 such that 〈{c}, P1 | Q〉
τ
=⇒ νa 〈{c}, Q0〉 and

νa.Q0 ≡ P2 | Q. By the induction hypothesis there exist a and P20 such that 〈{c}, P1〉
τ
=⇒

νa 〈{c}, P20〉 and νa. P20 ≡ P2. By P-F-T and well-formedness of configurations

〈{c}, P1 | Q〉
τ
=⇒ νa 〈{c}, P20 | Q〉 νa. (P20 | Q) ≡ (νa. P20) | Q ≡ P2 | Q

Case N-R: we have

P→ Q

νb. P→ νb.Q

and want to show that there exist a and Q0 such that 〈{c}, νb. P〉 τ
=⇒ νa 〈{c}, Q0〉 and

νa.Q0 ≡ νb.Q. By the induction hypothesis there exist a and Q1 such that 〈{c, b}, P〉 τ
=⇒

νa 〈{c, b}, Q1〉 and νa.Q1 ≡ Q. By N-T and Proposition 3.6 (Hiding) we have

〈{c}, νb. P〉 τ−→ νb 〈{c}, P〉 τ
=⇒ νa, b 〈{c}, Q1〉

νa. νb.Q1 ≡ νb. νa.Q1 ≡ νb.Q

Case C-R: we have
P′ → Q′

P ≡ P′ Q ≡ Q′

P→ Q

and want to show that there exist a and Q0 such that 〈{c}, P〉 τ
=⇒ νa 〈{c}, Q0〉 and νa.Q0 ≡ Q.

By the induction hypothesis there exist a′ and Q′0 such that 〈{c}, P′〉 τ
=⇒ νa′ 〈{c}, Q′0〉 and

νa′.Q′0 ≡ Q′. By Proposition 4.9 and because 〈{c}, P〉 ≡ 〈{c}, P′〉 there exist a and Q0 such
that

〈{c}, P〉 τ
=⇒ νa 〈{c}, Q0〉 νa 〈{c}, Q0〉 ≡ νa′ 〈{c}, Q′0〉

and by Definition 2.1 νa.Q0 ≡ νa′.Q′0 ≡ Q′ ≡ Q. !

5.2 Reduction-closure and preservation of barbs
We can now prove that (6) is reduction-closed.

Proposition 5.3 (Reduction Closure of (6)). If P 6 P′ and P → Q then there exists Q′such
that:

P′ →∗ Q′ Q 6 Q′

and vice-versa.

Proof. We prove only the forward direction, the converse is symmetric. By the first premise
and Definition 4.7, there exist b (with fn(P, P′) ⊆ {b}) such that

〈{b}, P〉 ≈ 〈{b}, P′〉 (1)

21

By the second premise and Lemma 5.2 there exist a and Q0 such that

〈{b}, P〉 τ
=⇒ νa 〈{b}, Q0〉 νa.Q0 ≡ Q

Thus, by Definition 4.4 and (1), there exist a′, ∆′, and Q′0 such that

〈{b}, P′〉 τ
=⇒ νa′ 〈∆′, Q′0〉 (2)

νa 〈{b}, Q0〉 ≈ νa′ 〈∆′, Q′0〉 (3)

and by Proposition 3.4 (vii) ∆′ = {b}.
By (2) and Lemma 5.1, P′ →∗ νa′.Q′0.
By (3) and Lemma 4.14 〈{b}, νa.Q0〉 ≈ 〈{b}, νa′.Q′0〉 and therefore νa.Q0 6 νa′.Q′0.

Hence Q ≡6 νa′.Q′0, and by transitivity of (6) and Corollary 4.10 we get Q 6 νa′.Q′0. !

Proposition 5.4 (Preservation of Barbs of (6)). If P 6 P′ then P ⇓n iff P′ ⇓n.

Proof. We prove only the forward direction, the converse is symmetric. By the second
premise and Definition 2.6 we get that there exists Q such that P→∗ Q, Q ≡ νa. n!〈V:t〉.Q1 | Q2,
and n ! {a}. By Proposition 5.3 there exists Q′ such that P′ →∗ Q′ and Q 6 Q′.

By the first premise, transitivity of (6), and Corollary 4.10 we get that νa. n!〈V:t〉.Q1 | Q2 6
Q′. Thus, by Definition 4.7, there exist b such that

〈{b, n}, νa. n!〈V:t〉.Q1 | Q2〉 ≈ 〈{b, n},Q′〉 (1)

and by the transition rules of the LTS we get

〈{b, n}, νa. n!〈V:t〉.Q1 | Q2〉
n!V
=⇒ νa 〈{b, n} ∪{ V}, Q1 | Q2〉

if t = Nm or
〈{b, n}, νa. n!〈V:t〉.Q1 | Q2〉

n!κ
=⇒ νa 〈{b, n, κ 0→V}, Q1 | Q2〉

if t = Pr. By Definition 4.4 and (1), there exist a′, ∆′, and Q′1 such that one of the following
is true:

〈{b, n},Q′〉 n!V
=⇒ νa′ 〈∆′, Q′1〉

or
〈{b, n},Q′〉 n!κ

=⇒ νa′ 〈∆′, Q′1〉
Therefore, by Proposition 3.4 (i) or (ii), and (vii), there exist Q′1 and Q′2 such that

〈{b, n},Q′〉 τ
=⇒ νa′ 〈{b, n}, n!〈V ′:t〉.Q′1 | Q′2〉

and by Lemma 5.1 Q′ →∗ νa′. n!〈V ′:t〉.Q′1 | Q′2 with n ! {a′}. Hence P′ ⇓n. !

5.3 Parallel Contexts
Here our intention is to show that

P 6 P′ implies P | Q 6 P′ | Q (*)

for any Q. That is (6) satisfies property (iii) of Definition 2.7. However, the proof requires a
generalisation of (*) to configurations.

22

C-R
νa 〈∆, P〉 R νa′ 〈∆′, P′〉

avars(∆) = avars(∆′)
names(∆) = names(∆′)

νa 〈∆, P〉 Rcxt νa′ 〈∆′, P′〉
C-P

νa 〈∆1, P1〉 Rcxt νa′ 〈∆′1, P′1〉
νb 〈∆2, P2〉 Rcxt νb′ 〈∆′2, P′2〉

νa, b 〈∆1 ∪ ∆2, P1 | P2〉 Rcxt νa′, b′ 〈∆′1 ∪ ∆′2, P′1 | P′2〉
C-H
νa 〈∆ 3 {n}, P〉 Rcxt νa′ 〈∆′ 3 {n}, P′〉
νa, n 〈∆, P〉 Rcxt νa′, n 〈∆′, P′〉

C-S
νa 〈∆ 3 {α, k 0→V}, P〉 Rcxt νa′ 〈∆′ 3 {α, k 0→V′}, P′〉

α ! fav(V,V′)
νa 〈∆{V/α}, P{V/α}〉 Rcxt νa′ 〈∆′{V′/α}, P′{V′/α}〉

Figure 6: Parallel Context Closure.

Definition 5.5 (Parallel Context Closure of a Relation). If R is a relation on well-formed
configurations of the LTS then Rcxt is the smallest relation on well-formed configurations
satisfying the rules of Figure 6.

Here C-P is the most significant closure property. We aim to show that (≈)cxt is
contained in (≈), from which (*) will follow.

Lemma 5.6. If νa 〈∆, P〉 Rcxt νa′ 〈∆′, P′〉 then

avars(∆) = avars(∆′) names(∆) = names(∆′)

Proof. By a straightforward induction on the rules of Figure 6. !

Theorem 5.7 (Parallel Context Closure of (≈)). (≈)cxt ⊆ (≈).

Proof. By induction on the rules of Fig. 6.

Case C-R: immediate.

Case C-P: the induction hypothesis gives

νa 〈∆1, P1〉 ≈ νa′ 〈∆′1, P′1〉 (1)

νb 〈∆2, P2〉 ≈ νb′ 〈∆′2, P′2〉 (2)

Therefore, by Lemmas 4.6 and 5.6 avars(∆1 ∪ ∆2) = avars(∆′1 ∪ ∆′2), cvars(∆1 ∪ ∆2) =
cvars(∆′1 ∪ ∆′2), and names(∆1 ∪ ∆2) = names(∆′1 ∪ ∆′2). Moreover, by well-formedness of
νa, b 〈∆1 ∪ ∆2, P1 | P2〉 and νa′, b′ 〈∆′1 ∪ ∆′2, P′1 | P′2〉, there exist ∆10 ⊆ ∆1, ∆20 ⊆ ∆2, ∆′10 ⊆
∆′1, and ∆′20 ⊆ ∆′2 such that ∆1∪∆2 = ∆13∆20 = ∆103∆2 and ∆′1∪∆′2 = ∆′13∆′20 = ∆

′
103∆′2.

23

Here ∆10 and ∆20 encode the knowledge not in ∆2 and ∆1 respectively. It remains to show
that if

νa, b 〈∆1 ∪ ∆2, P1 | P2〉
η−→ νc 〈∆3, Q〉

then there exist c′, ∆′3, Q′ such that

νa′, b′ 〈∆′1 ∪ ∆′2, P′1 | P′2〉
η
=⇒ νc′ 〈∆′3, Q′〉 νc 〈∆3, Q〉 ≈ νc′ 〈∆′3, Q′〉

and the symmetric.
Let νa, b 〈∆1 ∪ ∆2, P1 | P2〉

η−→ νc 〈∆3, Q〉. We consider the cases of this transition.
" C-A-T: we have

(∆1 ∪ ∆2)(κ) = V

νa, b 〈∆1 ∪ ∆2, P1 | P2〉
app κ−→ νa, b 〈∆1 ∪ ∆2, P1 | P2 | appV〉

W.l.o.g. let κ ∈ cvars(∆1) and, thus, κ ∈ cvars(∆′1). Then

νa 〈∆1, P1〉
app κ−→ νa 〈∆1, P1 | appV〉

and by (1), Definition 4.4, and Proposition 3.4 (vii), there exist c′ and Q′1 such that

νa′ 〈∆′1, P′1〉
app κ
=⇒ νc′ 〈∆′1, Q′1〉 νa 〈∆1, P1 | appV〉 ≈ νc′ 〈∆′1, Q′1〉

Thus, by Proposition 3.5 (i), and rule P-F-T

νa′, b′ 〈∆′1 ∪ ∆′2, P′1 | P′2〉
app κ
=⇒ νc′, b′ 〈∆′1 ∪ ∆′2, Q′1 | P′2〉

and by (2), rules C-R and C-P, and because (=̂≈) ⊆ (∼≈) ⊆ (≈)

νa, b 〈∆1 ∪ ∆2, P1 | P2 | appV〉 (≈)cxt νc′, b′ 〈∆′1 ∪ ∆′2, Q′1 | P′2〉

" P-F-T: using Proposition 3.3 we have

νa, b 〈∆1 ∪ ∆2, P1〉
η−→ νc 〈∆3 ∪ ∆2, Q1〉

νa, b 〈∆1 ∪ ∆2, P1 | P2〉
η−→ νc 〈∆3 ∪ ∆2, Q1 | P2〉

We distinguish three cases for η:
• η = app κ with κ ∈ cvars(∆20): for some V, ∆20(κ) = V, ∆3 = ∆1, Q1 = P1 | appV,

and c = a, b. Moreover,

νb 〈∆2, P2〉
app κ−→ νb 〈∆2, P2 | appV〉

By (2), Definition 4.4, and Proposition 3.4 (vii) there exist c′ and Q′2 such that

νb′ 〈∆′2, P′2〉
app κ
=⇒ νc′ 〈∆′2, Q′2〉 νb 〈∆2, P2 | appV〉 ≈ νc′ 〈∆′2, Q′2〉

Thus, by Proposition 3.5 (i), and rule P-F-T

νa′, b′ 〈∆′1 ∪ ∆′2, P′1 | P′2〉
app κ
=⇒ νc′ 〈∆′1 ∪ ∆′2, P′1 | Q′2〉

24

and by (1), rules C-R and C-P, and because (=̂≈) ⊆ (∼≈) ⊆ (≈)

νa, b 〈∆1 ∪ ∆2, P1 | appV | P2〉 (≈)cxt νa′, c′ 〈∆′1 ∪ ∆′2, P′1 | Q′2〉

• η = c?n and n ∈ names(∆20): by Proposition 3.4 (iii) we have ∆3 ∪ ∆2 = ∆1[n] 3
(∆20\{n}) = ∆1 ∪ ∆2, {c} = {a, b}. By well-formedness of νa 〈∆1, P1〉 we get c ∈ names(∆1)
and, using Proposition 3.5 (ii),

νa 〈∆1[n], P1〉
c?n−→ νa 〈∆1[n], Q1〉

By (1) and Lemma 4.11

νa 〈∆1[n], P1〉 ≈ νa′ 〈∆′1[n], P′1〉

Thus, by Definition 4.4 and Proposition 3.4 (iii) there exist c′ and Q′1 such that

νa′ 〈∆′1[n], P′1〉
c?n
=⇒ νc′ 〈∆′1[n], Q′1〉 νa 〈∆1[n], Q1〉 ≈ νc′ 〈∆′1[n], Q′1〉

By Lemma 5.6, ∆′1[n] 3 (∆′20\{n}) = ∆′1 ∪ ∆′2. Thus, by Proposition 3.5 (i) and rule P-F-
T,

νa′, b′ 〈∆′1 ∪ ∆′2, P′1 | P′2〉
c?n
=⇒ νc′, b′ 〈∆′1 ∪ ∆′2, Q′1 | P′2〉

and by (2), rules C-R and C-P, and because (=̂≈) ⊆ (∼≈) ⊆ (≈)

νa, b 〈∆1 ∪ ∆2, Q1 | P2〉 (≈)cxt νc′, b′ 〈∆′1 ∪ ∆′2, Q′1 | P′2〉

• η ! {app κ | κ ∈ cvars(∆20)} ∪ {c?n | n ∈ names(∆20)}: In this case, using the well-
formedness of νa 〈∆1, P1〉 and Proposition 3.4 on the transition νa, b 〈∆1 ∪ ∆2, P1〉

η−→
νc 〈∆3 ∪ ∆2, Q1〉, we have

names(η) ∩ names(∆20) = avars(η) ∩ avars(∆20) = cvars(η) ∩ cvars(∆20) = ∅

and by Lemmas 4.6 and 5.6

names(η) ∩ names(∆′20) = avars(η) ∩ avars(∆′20) = cvars(η) ∩ cvars(∆′20) = ∅

Furthermore, by Proposition 3.5 (ii), for {c0} = {c}\{b},

νa 〈∆1, P1〉
η−→ νc0 〈∆3, Q1〉

By (1) and Definition 4.4 there exist c′, Q′1 such that

νa′ 〈∆′1, P′1〉
η
=⇒ νc′ 〈∆′3, Q′1〉 νc0 〈∆3, Q1〉 ≈ νc′ 〈∆′3, Q′1〉

Thus, by Proposition 3.5 (i) and rule P-F-T

νa′, b′ 〈∆′1 ∪ ∆′2, P′1 | P′2〉
η
=⇒ νc′, b′ 〈∆′3 ∪ ∆′2, Q′1 | P′2〉

and by (2) and rules C-R and C-P

νc 〈∆3 ∪ ∆2, Q1 | P2〉 (≈)cxt νc′, b′ 〈∆′3 ∪ ∆2, Q′1 | P′2〉

25

" Comm-Name-Trans: using Proposition 3.4 (i) and (iii) we have

〈∆1[a] ∪ ∆2[b],P1〉
c!n−→ 〈∆1[a] ∪ ∆2[b],Q1〉

〈∆1[a] ∪ ∆2[b],P2〉
c?n−→ 〈∆1[a] ∪ ∆2[b],Q2〉

νa, b 〈∆1 ∪ ∆2, P1 | P2〉
τ−→ νa, b 〈∆1 ∪ ∆2, Q1 | Q2〉

By well-formedness of νa 〈∆1, P1〉 and νb 〈∆2, P2〉, and Lemma 5.6, it must be that c ∈
names(∆1) ∩ names(∆2) = names(∆′1) ∩ names(∆′2) and n ∈ names(∆1) = names(∆′1), and,
using Proposition 3.5 (ii),

〈∆1[a],P1〉
c!n−→ 〈∆1[a],Q1〉 〈∆2[b, n],P2〉

c?n−→ 〈∆2[b, n],Q2〉

and by Proposition 3.6 (i)

νa 〈∆1, P1〉
c!n−→ νc 〈∆1[n], Q1〉 νb 〈∆2[n], P2〉

c?n−→ νb 〈∆2[n], Q2〉

for {c} = {a}\{n}. Therefore, by (1), (2), and Lemma 4.11, there exist c′1, c′2, Q′1, and Q′2 such
that

νa′ 〈∆′1, P′1〉
c!n
=⇒ νc′1 〈∆′1[n], Q′1〉 νc 〈∆1[n], Q1〉 ≈ νc′1 〈∆′1[n], Q′1〉

νb′ 〈∆′2[n], P′2〉
c?n
=⇒ νc′2 〈∆′2[n], Q′2〉 νb 〈∆2[n], Q2〉 ≈ νc′2 〈∆′2[n], Q′2〉

By Proposition 3.4 (i) and (iii), there exist a′1, a′2, b′1, P′3, P′4, P′5, and P′6, with {a′2} = {a′1}\{n}
such that

νa′ 〈∆′1, P′1〉
τ
=⇒ νa′1 〈∆′1, c!〈n〉.P′3 | P′4〉
c!n−→ νa′2 〈∆′1[n], P′3 | P′4〉

τ
=⇒ νc′1 〈∆′1[n], Q′1〉

νb′ 〈∆′2[n], P′2〉
τ
=⇒ νb′1 〈∆′2[n], c?(x).P′5 | P′6〉
c?n−→ νb′1 〈∆′2[n], P′5{n/x} | P′6〉

τ
=⇒ νc′2 〈∆′2[n], Q′2〉

By Propositions 3.6 and 3.5 (i), and by well-formedness of νa′, b′ 〈∆′1 ∪ ∆′2, P′1 | P′2〉, using
the rules P-F-T and its symmetric, and C-N-T, we get

νa′, b′ 〈∆′1 ∪ ∆′2, P′1 | P′2〉
τ
=⇒ νa′1, b′1 〈∆′1 ∪ ∆′2, c!〈n〉.P′3 | P′4 | c?(x).P′5 | P′6〉
τ−→ νa′1, b′1 〈∆′1 ∪ ∆′2, P′3 | P′4 | P′5{n/x} | P′6〉
τ
=⇒ νc′3, c′2 〈∆′1 ∪ ∆′2, Q′1 | Q′2〉

for some c′3 with {c′1} = {c′3}\{n}. Moreover, by rules C-R and C-P,

νc, b 〈(∆1 ∪ ∆2)[n], Q1 | Q2〉 (≈)cxt νc′1, c
′
2 〈(∆′1 ∪ ∆′2)[n], Q′1 | Q′2〉

and we consider the following two cases:
• n ∈ names(∆1) = names(∆′1): We have n ! {a} and n ! {c′3}, and thus, {c} = {a}\{n} = {a}

and {c′1} = {c′3}\{n} = {c′3}, and the above can be written as

νa, b 〈∆1 ∪ ∆2, Q1 | Q2〉 (≈)cxt νc′3, c
′
2 〈∆′1 ∪ ∆′2, Q′1 | Q′2〉

26

• n ! names(∆1) = names(∆′1): we have {a} = {c} ∪ {n} and {c′3} = {c′1} ∪ {n}. Thus, by
Lemma 4.12

νa, b 〈∆1 ∪ ∆2, Q1 | Q2〉 (≈)cxt νc′3, c
′
2 〈∆′1 ∪ ∆′2, Q′1 | Q′2〉

" C-P-T: using Proposition 3.3 we have

〈∆1[a] ∪ ∆2[b],P1〉
c!κ−→ 〈(∆1[a] ∪ ∆2[b])[κ 0→V],Q1〉

〈∆1[a] ∪ ∆2[b],P2〉
c?α−→ 〈(∆1[a] ∪ ∆2[b])[α],Q2〉

νa, b 〈∆1 ∪ ∆2, P1 | P2〉
τ−→ νa, b 〈∆1 ∪ ∆2, Q1 | Q2{V/α}〉

By well-formedness of νa 〈∆1, P1〉 and νb 〈∆2, P2〉, and Lemma 5.6, it must be that c ∈
names(∆1) ∩ names(∆2) = names(∆′1) ∩ names(∆′2). Moreover, α, κ ! ∆1 ∪ ∆2 = ∆

′
1 ∪ ∆′2.

Using Proposition 3.5 (ii),

〈∆1[a],P1〉
c!κ−→ 〈∆1[a][k 0→V],Q1〉 〈∆2[b],P2〉

c?α−→ 〈∆2[b][α],Q2〉
and by Proposition 3.6 (i)

νa 〈∆1, P1〉
c!κ−→ νa 〈∆1[κ 0→V], Q1〉 νb 〈∆2, P2〉

c?α−→ νb 〈∆2[α], Q2〉

Therefore, by (1), (2), Definition 4.4, and Proposition 3.4 there exist c′1, c′2, V′, Q′1, and Q′2
such that

νa′ 〈∆′1, P′1〉
c!κ
=⇒ νc′1 〈∆′1[κ 0→V′], Q′1〉

νa 〈∆1[κ 0→V], Q1〉 ≈ νc′1 〈∆′1[κ 0→V′], Q′1〉

νb′ 〈∆′2, P′2〉
c?α
=⇒ νc′2 〈∆′2[α], Q′2〉

νb 〈∆2[α], Q2〉 ≈ νc′2 〈∆′2[α], Q′2〉

Moreover, there exist a′1, a′2, b′1, P′3, P′4, P′5, and P′6, with {a′2} = {a′1}\{n} such that

νa′ 〈∆′1, P′1〉
τ
=⇒ νa′1 〈∆′1, c!〈V′〉.P′3 | P′4〉
c!κ−→ νa′1 〈∆′1[κ 0→V′], P′3 | P′4〉
τ
=⇒ νc′1 〈∆′1[κ 0→V′], Q′1〉

νb′ 〈∆′2, P′2〉
τ
=⇒ νb′1 〈∆′2, c?(x).P′5 | P′6〉
c?α−→ νb′1 〈∆′2[α], P′5{α/x} | P′6〉
τ
=⇒ νc′2 〈∆′2[α], Q′2〉

By Proposition 3.5 (i) and because νa′, b′ 〈∆′1 ∪ ∆′2, P′1 | P′2〉 is well-formed, using the rules
P-F-T and its symmetric,

νa′, b′ 〈∆′1 ∪ ∆′2, P′1 | P′2〉
τ
=⇒ νa′1, b′1 〈∆′1 ∪ ∆′2, c!〈V′〉.P′3 | P′4 | c?(x).P′5 | P′6〉

by rule C-P-T

τ−→ νa′1, b′1 〈∆′1 ∪ ∆′2, P′3 | P′4 | P′5{α/x}{V′/α} | P′6〉

and by applying Proposition 3.5 (i), rule P-F-T and its symmetric, Proposition 3.8
(i), and Proposition 3.5 (ii)

τ
=⇒ νc′1, c′2 〈∆′1 ∪ ∆′2, Q′1 | Q′2{V′/α}〉

27

Moreover, by rules C-R and C-P,

+ νa, b 〈(∆1 ∪ ∆2) 3 {α, κ 0→V}, Q1 | Q2〉
(≈)cxt νc′1, c

′
2 〈(∆′1 ∪ ∆′2) 3 {α, κ 0→V′}, Q′1 | Q′2〉

and because α ! ∆1 ∪ ∆2 (thus α ! avars(V,V′)), by rule C-S,

νa, b 〈∆1 ∪ ∆2, Q1 | Q2{V/α}〉 (≈)cxt νc′1, c
′
2 〈∆′1 ∪ ∆′2, Q′1 | Q′2{V′/α}〉

Case C-H: By the induction hypothesis

νa 〈∆ 3 {n}, P〉 ≈ νa′ 〈∆′ 3 {n}, P′〉

and by Lemma 4.12

νa, n 〈∆, P〉 ≈ νa′, n 〈∆′, P′〉

Case C-S: By the induction hypothesis

νa 〈∆ 3 {α, k 0→V}, P〉 ≈ νa′ 〈∆′ 3 {α, k 0→V′}, P′〉 (3)

It remains to show that if

νa 〈∆{V/α}, P{V/α}〉 η−→ νb 〈∆1{V/α}, Q{V/α}〉

then there exist b′, ∆′1, Q′ such that

νa′ 〈∆′{V′/α}, P′{V′/α}〉 η
=⇒ νb′ 〈∆′1{V′/α}, Q′{V′/α}〉

νb 〈∆1{V′/α}, Q{V′/α}〉 (≈)cxt νb′ 〈∆′1{V′/α}, Q′{V′/α}〉

Proving the symmetric is analogous.
Let

νa 〈∆{V/α}, P{V/α}〉 η−→ νb 〈∆1{V/α}, Q{V/α}〉

We distinguish three cases:
" η is a τ-action involving the rule A-T: It is easy to see that such an action is

possible by applying rule P-F-T (and its symmetric) an arbitrary number of times
and then rule A-T. Hence,

P{V/α} =̂ app λP1 | P2{V/α}

Moreover, by Proposition 3.4 (vii), ∆1 = ∆, a = b. By the properties of substitution, either
P =̂ app λP0 | P2 and P1 = P0{V/α}, or P =̂ appα | P1 andV = λP1.
• P =̂ app λP0 | P2 and P1 = P0{V/α}: We have Q = P0 | P2 and

νa 〈∆ 3 {α, κ 0→V}, P〉 τ−→ νa 〈∆ 3 {α, κ 0→V}, Q〉

By (3), Definition 4.4, and Proposition 3.4 (vii), there exist b′, Q′ such that

νa′ 〈∆′ 3 {α, κ 0→V′}, P′〉 τ
=⇒ νb′ 〈∆′ 3 {α, κ 0→V′}, Q′〉

νa 〈∆ 3 {α, k 0→V}, Q〉 ≈ νb′ 〈∆′ 3 {α, k 0→V′}, Q′〉

28

By applying Propositions 3.8 (i) and 3.5 (ii)

νa′ 〈∆′{V′/α}, P′{V′/α}〉 τ
=⇒ νb′ 〈∆′{V′/α}, Q′{V′/α}〉

and by rule C-S

νa 〈∆{V′/α}, Q{V′/α}〉 (≈)cxt νb′ 〈∆′{V′/α}, Q′{V′/α}〉

• P =̂ appα | P2 and V = λP1: We have Q =̂ P1 | P2, and for some Q1 =̂ P2 and
Q2 =̂ appV | Q

νa 〈∆ 3 {α, κ 0→V}, P〉 appα−→ νa 〈∆ 3 {α, κ 0→V}, Q1〉
app κ−→ νa 〈∆ 3 {α, κ 0→V}, Q2〉
τ−→ νa 〈∆ 3 {α, κ 0→V}, Q〉

By (3), Definition 4.4, and Proposition 3.4, there exist a′1, a′2, b′, Q′1, Q′2, Q′3, and Q′4 such that
Q′1 =̂ appα | Q′2, Q′4 =̂ appV | Q′3, and

νa′ 〈∆′ 3 {α, κ 0→V′}, P′〉 τ
=⇒ νa′1 〈∆′ 3 {α, κ 0→V′}, Q′1〉
appα−→ νa′1 〈∆′ 3 {α, κ 0→V′}, Q′2〉
τ
=⇒ νa′2 〈∆′ 3 {α, κ 0→V′}, Q′3〉
app κ−→ νa′2 〈∆′ 3 {α, κ 0→V′}, Q′4〉
τ
=⇒ νb′ 〈∆′ 3 {α, κ 0→V′}, Q′〉

νa 〈∆ 3 {α, k 0→V}, Q〉 ≈ νb′ 〈∆′ 3 {α, k 0→V′}, Q′〉

It is easy to show that there also exist a′3, Q′5, Q′6, and Q′7 such that Q′5 =̂ appα | Q′6, Q′7 =̂
appV | Q′6, and

νa′ 〈∆′ 3 {α, κ 0→V′}, P′〉 τ
=⇒ νa′3 〈∆′ 3 {α, κ 0→V′}, Q′5〉
appα−→ νa′3 〈∆′ 3 {α, κ 0→V′}, Q′6〉
app κ−→ νa′3 〈∆′ 3 {α, κ 0→V′}, Q′7〉
τ
=⇒ νb′ 〈∆′ 3 {α, κ 0→V′}, Q′〉

By applying Propositions 3.8 (i) and 3.5 (ii), and rule A-T

νa′ 〈∆′{V′/α}, P′{V′/α}〉 τ
=⇒ νa′3 〈∆′{V′/α}, Q′5{V′/α}〉
τ
=⇒ νb′ 〈∆′{V′/α}, Q′{V′/α}〉

and by rule C-S

νa 〈∆{V/α}, Q′{V′/α}〉 (≈)cxt νb′ 〈∆′{V′/α}, Q′{V′/α}〉

" η = appα1: Because α is substituted by V and V′ and α ! fav(V,V′), it must be
α1 " α; by Proposition 3.4 (v)

P{V/α} =̂ appα1 | Q{V/α}

Then either P =̂ appα1 | Q or P =̂ appα | Q andV = α1.
• P =̂ appα1 | Q: We have

νa 〈∆ 3 {α, κ 0→V}, P〉 appα1−→ νa 〈∆ 3 {α, κ 0→V}, Q〉

29

By (3), Definition 4.4, and Proposition 3.4, there exist b′ and Q′ such that

νa′ 〈∆′ 3 {α, κ 0→V′}, P′〉 appα1
=⇒ νb′ 〈∆′ 3 {α, κ 0→V′}, Q′〉

νa 〈∆ 3 {α, κ 0→V}, Q〉 ≈ νb′ 〈∆′ 3 {α, κ 0→V′}, Q′〉

By Propositions 3.8 (i) and 3.5 (ii), and by rule C-S

νa′ 〈∆′{V′/α}, P′{V′/α}〉 appα1
=⇒ νb′ 〈∆′{V′/α}, Q′{V′/α}〉

νa 〈∆{V/α}, Q{V/α}〉 (≈)cxt νb′ 〈∆′{V′/α}, Q′{V′/α}〉

• P =̂ appα | Q andV = α1: We have

νa 〈∆ 3 {α, κ 0→V}, P〉 appα−→ νa 〈∆ 3 {α, κ 0→V}, Q〉

By (3), Definition 4.4, and Proposition 3.4, there exist a′1, b′, P′1, P′2, and Q′ such that P′1 =̂
appα | P′2 and

νa′ 〈∆′ 3 {α, κ 0→V′}, P′〉 τ
=⇒ νa′1 〈∆′ 3 {α, κ 0→V′}, P′1〉
appα−→ νa′1 〈∆′ 3 {α, κ 0→V′}, P′2〉
τ
=⇒ νb′ 〈∆′ 3 {α, κ 0→V′}, Q′〉

νa 〈∆ 3 {α, κ 0→V}, Q〉 ≈ νb′ 〈∆′ 3 {α, κ 0→V′}, Q′〉

By Propositions 3.8 (i) and 3.5 (ii), and by rule A-A-T

νa′ 〈∆′{V′/α}, P′{V′/α}〉 τ
=⇒ νa′1 〈∆′{V′/α}, P′1{V′/α}〉
appα1−→ νa′1 〈∆′{V′/α}, P′2{V′/α}〉
τ
=⇒ νb′ 〈∆′{V′/α}, Q′{V′/α}〉

and by rule C-S

νa 〈∆{V/α}, Q{V/α}〉 (≈)cxt νb′ 〈∆′{V′/α}, Q′{V′/α}〉

" Otherwise: By Propositions 3.8 (ii) and 3.5 (i), and because by definition of ()cxt for
the case where η = c?α1 or η = c!κ1 it must be α1 " α or κ1 " κ, respectively,

νa 〈∆1 3 {α, κ 0→V}, P〉
η−→ νb 〈∆2 3 {α, κ 0→V}, Q〉

By (3) and Definition 4.4, there exist b′, ∆′2 Q′ such that

νa 〈∆′1 3 {α, κ 0→V′}, P′〉
η
=⇒ νb′ 〈∆′2 3 {α, κ 0→V′}, Q′〉

νb 〈∆2 3 {α, κ 0→V}, Q〉 ≈ νb′ 〈∆′2 3 {α, κ 0→V′}, Q′〉

By Propositions 3.8 (i) and 3.5 (ii), and rule C-S

νa 〈∆′1{V′/α}, P′{V′/α}〉
η
=⇒ νb′ 〈∆′2{V′/α}, Q′{V′/α}〉

νb 〈∆2{V/α}, Q{V/α}〉 (≈)cxt νb′ 〈∆′2{V′/α}, Q′{V′/α}〉 !

Corollary 5.8 (Parallel Context Closure of (6)). If P 6 P′ then for any process Q, Q | P 6
Q | P′.

30

Proof. By the premise and Definition 4.7, there exist b such that 〈{b}, P〉 ≈ 〈{b}, P′〉.
Let Q be a process with fn(Q) ⊆ {n}. By Lemma 4.11, 〈{b} ∪{ n}, P〉 ≈ 〈{b} ∪{ n}, P′〉 and

〈{b}∪{n},Q〉 ≈ 〈{b}∪{n},Q′〉. By rules C-R and C-P of Figure 7 〈{b}∪{n},Q | P〉 (≈)cxt

〈{b} ∪ {n},Q | P′〉, and by Theorem 5.7 〈{b} ∪ {n},Q | P〉 ≈ 〈{b} ∪ {n},Q | P′〉, Hence, by
Definition 4.7, Q | P 6 Q | P′. !

Theorem 5.9 (Soundness). (6) ⊆ (#pcxt).

Proof. In Propositions 5.4 and 5.3 and Corollary 5.8 we have shown that (6) preserves barbs,
is reduction-closed, and preserves parallel contexts. Thus (6) is included in the largest rela-
tion with these properties, namely (#pcxt). !

6 Completeness of Weak Bisimilarity
Here we prove that (#pcxt) is included in (6). To do this we give a translation of LTS config-
urations into concrete processes.

6.1 Concretion of Configurations
We start with the definition of the translation of LTS configurations to concrete processes.

Definition 6.1 (Concretion). Let νa 〈∆, P〉 be a well-formed configuration, and f bijection
that assigns fresh names (w.r.t. names(∆) and a) to the abstract and concrete variables in ∆.
Then the concretion of P, ∆, and a configuration are defined as follows:

P/ f def
= P{(λc?.0)/α} where f (αi) = ci, for all i

∆
/

f def
=

∏

∆(κ)=V, f (κ)=c

∗(c?.appV/ f)

νa 〈∆, P〉/ f def
= νa (∆

/
f | P/ f)

The purpose of the concretion of a configuration is to simulate the handling of higher-
order inputs and outputs in the LTS. When the abstract process applies a higher-order value
that has been provided by the context the LTS simply raises a signal to the observer. The
corresponding concrete process signals the observer via a communication on a unique global
channel. Similarly, at any point in the execution, the LTS allows the observer to run a value
that has been provided by the process (and is indexed in the environment of the configura-
tion). The corresponding concrete process allows the same behaviour by exposing a service
listening on a global channel; communication on the channel runs the value.

We now show that the reductions of translated LTS configurations are simulated by τ-
transitions of the configurations.

Lemma 6.2. If P/ f ≡ Q then there exists Q0 such that Q = Q0
/

f .

Proof. By induction on the height of the derivation tree P/ f ≡ Q. !

Lemma 6.3. If Γ, x : t + P/ f : OK and +V/ f : t then Γ + P/ f {(V/ f)/x} = P{V/x}/ f : OK.

Proof. By induction on the height of the derivation tree Γ, x : t + P/ f : OK. !

Lemma 6.4. If νa.P/ f → Q and νa 〈∆, P〉 is well-formed then exactly one of the following
is true:

31

(i) there exist b and Q0 such that

Q ≡ νb.Q0
/

f νa 〈∆, P〉 τ
=⇒ νb 〈∆, Q0〉

(ii) there exist b, Q0, and c such that

Q ≡ νb.Q0
/

f | c?.0 νa 〈∆, P〉 τ
=⇒ νb 〈∆, Q0 | appα〉 f (α) = c

Proof. By induction on the height of the derivation tree P/ f → Q, using Proposition 4.9 and
Lemma 6.3. !

Proposition 6.5. If νa 〈∆, P〉/ f → Q then exactly one of the following is true:

(i) there exist b and Q0 such that

Q ≡ νb 〈∆, Q0〉
/

f νa 〈∆, P〉 τ
=⇒ νb 〈∆, Q0〉

(ii) there exist b, Q0, and c such that

Q ≡ νb 〈∆, Q0〉
/

f | c?.0 νa 〈∆, P〉 τ
=⇒ νb 〈∆, Q0 | appα〉 f (α) = c

Proof. Because ∆
/

f can not take any steps or communicate with P/ f , it must be that for
some Q1

νa 〈∆, P〉/ f → νa. (∆/ f | Q1) ≡ Q νa.P/ f → νa.Q1

and by Lemma 6.4 there exist b and Q0 such that

νa.Q1 ≡ νb.Q0
/

f νa 〈∆, P〉 τ
=⇒ νb 〈∆, Q0〉

or there exist b, Q0, and c such that

νa.Q1 ≡ νb.Q0
/

f | c?.0 νa 〈∆, P〉 τ
=⇒ νb 〈∆, Q0 | appα〉 f (α) = c

By Proposition 3.4 (v) and (vii) we have that {a} ⊆ {b} in both cases. Hence, either

Q ≡ νb. (∆/ f | Q1) ≡ νb 〈∆, Q0〉
/

f νa 〈∆, P〉 τ
=⇒ νb 〈∆, Q0〉

or there exist b, Q0, and c such that

Q ≡ νb. (∆/ f | Q1) | c?.0 ≡ νb 〈∆, Q0〉
/

f | c?.0

νa 〈∆, P〉 τ
=⇒ νb 〈∆, Q0 | appα〉 f (α) = c !

From the above we conclude that reductions of translated configurations correspond to
τ-transitions of the original configurations, possibly accumulating several appα processes.

Corollary 6.6. If νa 〈∆, P〉/ f →∗ Q then there exist b, c, α, Q0 such that

Q ≡ νb 〈∆, Q0〉
/

f |
∏

ci∈{c}

ci?.0 νa 〈∆, P〉 τ
=⇒ νb 〈∆, Q0 |

∏

αi∈{α}

appαi〉 f (αi) = ci

32

Conversely τ-transitions of configurations correspond to (zero or one) reductions of their
corresponding translations.

Proposition 6.7. If νa 〈∆, P〉 τ−→ νb 〈∆, Q〉 then one of the following holds.

(i) νa 〈∆, P〉/ f ≡ νb 〈∆, Q〉/ f , or

(ii) νa 〈∆, P〉/ f → νb 〈∆, Q〉/ f .

Proof. By rule induction. !

In what follows we will use an eta-expansion lemma:

Lemma 6.8. P #pcxt app λP

Proof. By considering the smallest relation on configurations containing the identity and sat-
isfying the axiom P = app λP, and by showing that it is a weak bisimulation. !

6.2 Completeness
The completeness proof is based on the fact that the following relation on configurations is a
weak bisimulation.

Definition 6.9 (X).

X
def
= {(νa 〈∆, P〉, νa′ 〈∆′, P′〉) | ∃ f . νa 〈∆, P〉/ f #pcxt νa′ 〈∆′, P′〉

/
f }

First we show that X is closed under τ-transitions.

Proposition 6.10. If νa 〈∆, P〉 X νa′ 〈∆′, P′〉 and νa 〈∆, P〉 τ−→ νb 〈∆, Q〉 then there exist
b′ and Q′ such that

νa′ 〈∆′, P′〉 τ
=⇒ νb′ 〈∆′, Q′〉 νa 〈∆, Q〉 X νa′ 〈∆′, Q′〉

Proof. By the first premise and Definition 6.9 we get that there exists f such that

νa 〈∆, P〉/ f #pcxt νa′ 〈∆′, P′〉
/

f (1)

By the second premise and Proposition 6.7 we get that either νa 〈∆, P〉/ f ≡ νb 〈∆, Q〉/ f , or
νa 〈∆, P〉/ f → νb 〈∆, Q〉/ f . In the former case the proof is completed because, by Propo-
sition 4.9 and Theorem 5.9, (≡) ⊆ (6) ⊂ (#pcxt), hence νb 〈∆, Q〉/ f #pcxt νa′ 〈∆′, P′〉

/
f and

νb 〈∆, Q〉 X νa′ 〈∆′, P′〉. In the latter case, by (1) and Definition 2.7, we have that there
exists Q′ such that

νa′ 〈∆, P′〉/ f →∗ Q′ (2)

νb 〈∆, Q〉/ f #pcxt Q′ (3)

By (2) and Corollary 6.6, there exist b′, c, α, and Q′0 such that f (α) = c and

Q′ ≡ νb′ 〈∆′, Q′0〉
/

f |
∏

c∈{c}

c?.0 (4)

νa′ 〈∆′, P′〉 τ
=⇒ νb′ 〈∆′, Q′0 |

∏

α∈{α}

appα〉

33

By (3), (4), the fact that (≡) ⊆ (6) ⊂ (#pcxt), and Lemma 6.8 we have

νb 〈∆, Q〉/ f #pcxt νb′ 〈∆′, Q′0〉
/

f | ∏
c∈{c} c?.0

#pcxt νb′ 〈∆′, Q′0〉
/

f | ∏
c∈{c} app λc?.0

= νb′ 〈∆′, Q′0 |
∏
α∈{α} appα〉

/
f

thus

νb 〈∆, Q〉 X νb′ 〈∆′, Q′0 |
∏

α∈{α}

appα〉

!

Proposition 6.11. If νa 〈∆1, P〉 X νa′ 〈∆′1, P′〉 and for some η " τ, νa 〈∆1, P〉
η−→ νb 〈∆2, Q〉

then there exist b′, ∆′2, and Q′ such that

νa′ 〈∆′1, P′〉
η
=⇒ νb′ 〈∆′2, Q′〉 νb 〈∆2, Q〉 X νb′ 〈∆′2, Q′〉

Proof. We proceed by cases on η.

Case η = appα: By the second premise and Proposition 3.4 (v),

∆1 = ∆2 P =̂ Q | appα {a} = {b}

Thus by the first premise and Definition 6.9 we get that there exists f such that

νa 〈∆1, Q | appα〉
/

f #pcxt νa′ 〈∆′1, P′〉
/

f

Because (#pcxt) preserves parallel contexts we pick the context C = [·] | c!.0, where f (α) = c.
We have

νa 〈∆1, Q | appα〉
/

f | c!.0 = νa 〈∆1, Q〉
/

f | app λc?.0 | c!.0
#pcxt νa′ 〈∆′1, P′〉

/
f | c!.0

Thus, by Definition 2.7 and because

νa 〈∆1, Q〉
/

f | app λc?.0 | c!.0→∗ νa 〈∆1, Q〉
/

f νa 〈∆1, Q〉
/

f !!⇓c

there must be Q′ such that

νa′ 〈∆′1, P′〉
/

f | c!.0→∗ Q′ Q′ !!⇓c

νa 〈∆1, Q〉
/

f #pcxt Q′ (1)

Therefore, there exists Q′1 such that

νa′ 〈∆′1, P′〉
/

f →∗ Q′1 | c?.0

νa′ 〈∆′1, P′〉
/

f | c!.0→∗ Q′1 | c?.0 | c!.0→∗ Q′1 →∗ Q′ (2)

and by Corollary 6.6 there exist b′, c, α, Q′0 such that f (αi) = ci and

Q′1 | c?.0 ≡ νb′ 〈∆′1, Q′0〉
/

f | c?.0 |
∏

ci∈{c}

ci?.0 (3)

νa′ 〈∆′1, P′〉
τ
=⇒ νb′ 〈∆′1, Q′0 | appα |

∏

αi∈{α}

appαi〉 (4)

34

By (2) and (3),

νb′ 〈∆′1, Q′0〉
/

f |
∏

ci∈{c}

ci?.0→∗ Q′

and thus

νb′ 〈∆′1, Q′0 |
∏

αi∈{α}

appαi〉
/

f →∗ νb′ 〈∆′1, Q′0〉
/

f |
∏

ci∈{c}

ci?.0→∗ Q′

By Corollary 6.6 there exist d′, c′, α′, Q′2 such that f (α′i) = c′i and

Q′ ≡ νd′ 〈∆′1, Q′2〉
/

f |
∏

c′i∈{c′}

c′i?.0 (5)

νb′ 〈∆′1, Q′0 |
∏

αi∈{α}

appαi〉
τ
=⇒ νd′ 〈∆′1, Q′2 |

∏

α′i∈{α′}

appα′i〉 (6)

Hence by (4) and (6)

νa′ 〈∆′1, P′〉
τ
=⇒ νb′ 〈∆′1, Q′0 | appα |

∏
αi∈{α}

appαi〉
appα−→ νb′ 〈∆′1, Q′0 | 0 |

∏
αi∈{α}

appαi〉
τ
=⇒ νd′ 〈∆′1, Q′2 | 0 |

∏
α′i∈{α′}

appα′i〉

Furhtermore, by (1) and (5), the fact that (≡) ⊆ (6) ⊂ (#pcxt), and Lemma 6.8 we have

νa 〈∆1, Q〉
/

f #pcxt νd′ 〈∆′1, Q′2〉
/

f | ∏
c′i∈{c′}

c′i?.0

#pcxt νd′ 〈∆′1, Q′2〉
/

f | ∏
c′i∈{c′}

app λc′i?.0

= νd′ 〈∆′1, Q′2 | 0 |
∏
α′i∈{α′}

appα′i〉
/

f

Hence,

νa 〈∆1, Q〉 X νd′ 〈∆′1, Q′2 | 0 |
∏

α′i∈{α′}

appα′i〉

The rest of the cases are proved similarly using the following contexts (in which r is a
fresh channel):

• For η = c!n we use the context

c?(x).if x= n then (r!.0 | r?.0) else 0

when n ∈ names(∆1), and

c?(x).if x ∈ names(∆1) then 0 else (r!.0 | r?.0)

otherwise. Here if x ∈ names(∆1) then P elseQ is expressible in terms of
if x= ni then P elseQ because names(∆1) is a finite set of names. Moreover, r is
a barb of the context in parallel with the process. After the communication between the
process and the context on c and the communication on r it is no longer a barb—in this
way we “force” the communication on channel c.

35

• For η = c?n we use the context

c!〈n〉.(r!.0 | r?.0)

• For η = c!κ we use the context

c?(X).(∗(cfr?.app X) | r!.0 | r?.0)

where cfr is a fresh name.

• For η = c?α we use the context

c!〈λcfr?.0〉.(r!.0 | r?.0)

where cfr is a fresh name.

• For η = app κ we use the context

c!.0

and a concretion function with f (κ) = c. !

Proposition 6.12. X is a weak bisimulation.

Proof. By Propositions 6.10 and 6.11 and by symmetry, X satisfies the conditions of Defini-
tion 4.4 for a weak bisimulation. !

Theorem 6.13 (Completeness). (#pcxt) ⊆ (6).

Proof. If P #pcxt P′ then for names n ⊆ fn(P, P′) we have

P = 〈{n}, P〉/∅ #pcxt 〈{n}, P′〉
/∅ = P′

By Definition 6.9 〈{n}, P〉 X 〈{n}, P′〉 and by Proposition 6.12, 〈{n}, P〉 ≈ 〈{n}, P′〉. Thus, by
Definition 4.7, P 6 P′. !

7 Full Contextual Equivalence
In this section we study reduction-closed barbed congruence (#cxt) with arbitrary contexts.
We show that weak bisimilarity implies reduction-closed barbed congruence and therefore,
as with the first-order picalculus, parallel contextual equivalence coincides with reduction-
closed barbed congruence for pp-π.

(#cxt) ⊆ (#pcxt) = (6) ⊆ (#cxt)

First we give the definition for contexts.

Definition 7.1 (Contexts). A context C is derived from the following grammar:

C ::= [·] | 0 | Vc!〈VC:t〉.C | Vc?(x:t).C | C |C
| νn.C | appVc | ∗(C) | if Vc =Vc thenC elseC

VC ::= x | λC | n | bv

We write C[P] (resp. VC[P]) to mean the replacement of all holes in C (resp. VC) with P.

36

C-C
〈{n}, P〉 R 〈{n}, P′〉

νa 〈{n, κ 0→V[P]}, C[P]〉 Rcxt νa 〈{n, κ 0→V[P′]}, C[P′]〉

Figure 7: Context Closure.

Definition 7.2 (Reduction-Closed Barbed Congruence (#cxt)). (#cxt) is the largest congru-
ence on closed processes that preserves barbs and is reduction closed; i.e. P #cxt P′ if and
only if

(i) Barb preserving: for all b, P ⇓b iff P′ ⇓b,

(ii) Reduction closed: for all P1 with P → P1 there exists P′1 such that P′ →∗ P′1 and
P1 #cxt P′1, and vice-versa, and

(iii) Preserves contexts: for all C, C[P] #cxt C[P′].

The conditions of (#cxt) are stronger than those of (#pcxt), hence the following Proposition.

Proposition 7.3. (#cxt) ⊆ (#pcxt).

We will show that (6) ⊆ (#cxt). As we proved in Section 5.2, (6) is reduction-closed
and barb-preserving. Therefore it suffices to show that (6) preserves contexts. For this proof
we extend the definition of Parallel Context Closure (Definition 5.5) by adding the rule of
Figure 7. Bisimilarity is closed under this new ()cxt.

Theorem 7.4 (Context Closure of (≈)). (≈)cxt ⊆ (≈).

Proof. We show that (≈)cxt is a weak bisimulation up to limited structural equivalence (=̂).
The proof proceeds as the one of Theorem 5.7, by induction on the rules of (≈)cxt. The only
new proof obligation is the case C-C shown in Figure 7.

We proceed by induction on C. The cases 0, νn.C, c?(x:t).C , c!〈n:t〉.C , ∗(C), appα,
app λC, and if b= c thenC1 elseC2, are easy.

Let ∆ = {κ 0→V[P]}, ∆′ = {κ 0→V[P′]}, and 〈{n}, P〉 ≈ 〈{n}, P′〉.

Case [·]: we need to show that if νa 〈∆ 3 {n}, P〉 η−→ νb 〈∆2, Q〉 then there exist b′, ∆′2, and
Q′ such that

νa 〈∆′ 3 {n}, P′〉 η
=⇒ νb′ 〈∆′2, Q′〉 νb 〈∆2, Q〉 (≈)cxt νb′ 〈∆′2, Q′〉

By Proposition 3.3, there exist ∆1 and ∆′1 such that ∆2 = ∆ 3 ∆1 and ∆′2 = ∆
′ 3 ∆′1.

We distinguish three cases for η.
" η = app κi and κi ∈ ∆: we have

νa 〈∆ 3 {n}, P〉 η−→ νa 〈∆ 3 {n}, P | appVi[P]〉

νa 〈∆′ 3 {n}, P〉 η−→ νa 〈∆′ 3 {n}, P′ | appVi[P′]〉
νa 〈∆ 3 {n}, P | appVi[P]〉 (≈)cxt νa 〈∆′ 3 {n}, P′ | appVi[P′]〉

" η = ni?n j and n j ∈ names(∆): vacuously true since ∆ does not contain any names.

37

" Otherwise: by Proposition 3.5 (ii) there exist c such that {c} = {b}\{a} and

〈{n}, P〉 η−→ νc 〈∆1, Q〉

and because 〈{n}, P〉 ≈ 〈{n}, P′〉 there exist c′, ∆′1, and Q′ such that

〈{n}, P′〉 η
=⇒ νc′ 〈∆′1, Q′〉

νc 〈∆1, Q〉 ≈ νc′ 〈∆′1, Q′〉

By Proposition 3.5 (i)

νa 〈∆′ 3 {n}, P′〉 η
=⇒ νa, c′ 〈∆′ 3 ∆′1, Q′〉

and because νa 〈∆, 0〉 (≈)cxt νa 〈∆′, 0〉 we get

νa, c 〈∆ 3 ∆1, Q〉 =̂ (≈)cxt =̂ νa, c′ 〈∆′ 3 ∆′1, Q′〉

Case C1 | C2: by Lemma 4.11

〈{n, a}, P〉 ≈ 〈{n, a}, P′〉

By the induction hypothesis

〈∆ 3 {n, a},C1[P]〉 ≈ 〈∆′ 3 {n, a},C1[P′]〉
〈∆ 3 {n, a},C2[P]〉 ≈ 〈∆′ 3 {n, a},C2[P′]〉

and by Theorem 5.7

〈∆ 3 {n, a},C1[P] | C2[P]〉 ≈ 〈∆′ 3 {n, a},C1[P′] | C2[P′]〉

and again by the same lemma

νa 〈∆ 3 {n}, C1[P] | C2[P]〉 ≈ νa 〈∆′ 3 {n}, C1[P′] | C2[P′]〉 !

From the above lemma we conclude that (6) preserves arbitrary contexts.

Theorem 7.5 (Compositionality). If P 6 P′ then for any context C, C[P] 6 C[P′].

Theorem 7.6 (Soundness w.r.t. (#cxt)). (6) ⊆ (#cxt)

Proof. In Propositions 5.4 and 5.3 and Corollary 7.5 we have shown that (6) preserves barbs,
is reduction-closed, and preserves arbitrary contexts. Thus, (6) is included in the largest
relation with these properties, namely (#cxt). !

Theorem 7.7. (#pcxt) = (#cxt).

Proof. By the definitions of (#cxt) and (#pcxt) we have (#cxt) ⊆ (#pcxt), by Theorem 6.13 we
have (#pcxt) ⊆ (6), and by Theorem 7.6 we have (6) ⊆ (#cxt). Hence,

(#cxt) ⊆ (#pcxt) ⊆ (6) ⊆ (#cxt)

and therefore (#pcxt) = (#cxt). !

This latter result states that the observational power of arbitrary contexts can be ade-
quately captured by the very restricted class of parallel contexts. It also states that our proof
technique is both sound and complete with respect to the touchstone behavioural equivalence
(#cxt).

38

8 Examples
Here we illustrate the effectiveness of our theory by giving simple proofs of equivalence using
first-order weak bisimulation, and of inequivalence using the Hennessy-Milner Logic. Many
of our examples involve ping servers and triggers, which in our opinion get to the heart of the
challenges of reasoning about higher-order concurrent processes.

All equivalences can be proved using the standard weak bisimulation. However, to im-
prove presentation, we develop a lightweight up-to β and (=̂) technique similar to that in [1],
Chapter 6.
β-moves are τ-transitions that are confluent with all other transitions.

Definition 8.1 (β-move (
τβ−→)). A τ-transition C1

τ−→ C2 is a β-move and we write C1
τβ−→ C2

if and only if for all transitions C1
η−→ C3 one of the following is true:

(i) η = τ and C2 = C3, or

(ii) there exists C4 such that C2
η−→ C4 and C3

τ−→ C4.

Definition 8.2 (Weak Bisimulation up-to β and (=̂)). A relation R on configurations is a weak
bisimulation up-to β and (=̂) if and only if for all C R C′,

(i) if C η−→ C1 then, for some C′1,

C′ η
=⇒ C′1 C1

τβ−→∗=̂ R =̂ C′1
(ii) the converse of (i)

Proposition 8.3. The relation (
τβ−→∗=̂) is transitive.

Proof. By induction on the rules of (=̂). !

It is easy to verify that (≈) is a weak bisimulation up-to β and (=̂). Any weak bisimulation
up-to β and (=̂) is included in (≈):

Proposition 8.4. If R is a weak bisimulation up-to β and (=̂), then R ⊆ (
τβ−→∗=̂ R =̂

τβ←−∗) ⊆
(≈).

Proof. Because (
τβ−→∗) and (=̂) contain the identity, R ⊆ (

τβ−→∗=̂ R =̂
τβ←−∗). Thus, it suffices

to show that (
τβ−→∗=̂ R =̂

τβ←−∗) is a weak bisimulation.
Let

C1
τβ−→∗ C2 =̂ C3 R C′3 =̂ C′2

τβ←−∗ C′1
then

C1
η−→ C4

implies C2
η−→ C5 ∧ C4

τβ−→∗ C5 (for some C5, by definition of (
τβ−→))

implies C3
η−→ C6 ∧ C5 =̂ C6 (for some C6, because (=̂) is a

strong bisimulation)
implies C′3

η
=⇒ C′6 ∧ C6

τβ−→∗=̂ R =̂ C′6 (for some C′6, because R is a weak
bisimulation up-to β and (=̂))

implies C′2
η
=⇒ C′5 ∧ C′6 =̂ C′5 (for some C′5, because (=̂) is a

strong bisimulation)
implies C′1

η
=⇒ C′5 (because τβ-moves are τ-steps)

39

Hence, we have that for some C′5, C′1
η
=⇒ C′5 and

C4
τβ−→∗=̂

τβ−→∗=̂ R =̂ C′5

and by Proposition 8.3 and the fact that (
τβ←−∗) contains the identity we get

C4
τβ−→∗=̂ R =̂

τβ←−∗ C′5
Similarly we prove the converse condition of Definition 4.4. !

Using weak bisimulation up-to β and (=̂) we prove several interesting equivalences in the
following sections.

8.1 Implementation of Replication
For our first example we consider an encoding of replication via higher-order communication.
The following process receives a suspended process on channel p which then replicates and
runs.

Rec def
= p?(X).νa. (R | a!〈λapp X | R〉.0)

R def
= a?(X).(app X | a!〈X〉.0)

We show that this is weakly bisimilar to

Rec′ def
= p?(X).∗(app X)

Namely, we prove that Rec 6 Rec′, which by definition amounts to proving

〈{p},Rec〉 ≈ 〈{p},Rec′〉

To prove this we will provide a relationR on configurations that relates 〈{p},Rec〉 and 〈{p},Rec′〉
and show that it is a bisimulation up-to (=̂).

Let us first consider the configurations reachable from 〈{p},Rec〉 that are relevant to our
proof. These can be partitioned to the following families of configurations.

C1 =̂ 〈{p},Rec〉
C2(α) =̂ 〈{p, α}, νa. R | a!〈λ (appα | R)〉.0〉
C3(α, i) =̂ νa 〈{p, α}, R | a!〈λ (appα | R)〉.0 | ∏i appα〉
C4(α, i) =̂ νa 〈{p, α}, app λ (appα | R) | a!〈λ (appα | R)〉.0

| ∏i appα〉

Similarly, all configurations reachable from 〈{p},Rec′〉 are members of one of the two
families of configurations

C′1 =̂ 〈{p},Rec′〉
C′2(α, i) =̂ 〈{p, α}, ∗(appα) | ∏i appα〉

In this and following sections we visualise the structure of each LTS involved in a bisim-
ulation proof by a more abstract Kripke-like structure that uses families of configurations.
Each node in the structure represents a family of configurations; the parameters of each fam-
ily are quantified at each state. A labelled arrow between families of configurations exists if
there is a configuration belonging to the originating family that has an LTS transition with the
same label to a configuration in the target family. We sometimes identify transitions with the
same originating and target families using metavariables.

Here the possible-worlds structure that corresponds to Rec is

40

C1 C2(α) C3(α, i) C4(α, i)

appα appα

p?α τ
τ

τ

This picture has an arrow labelled p?α from C1 to C2 because of the LTS transition C1
p?α−→

C2(α) that inputs an abstract variable α on channel p. The τ-labelled arrow from C2 to C3 is
because of the the transition C2(α)

τ−→ C3(α, 0) that extrudes the private name a to the level
of the configuration. The τ-labelled arrow from C3 to C4 is due to the transitions C3(α, i)

τ−→
C4(α, i) that communicate the value λ (appα | R) over the channel a. The remaining τ-arrow
is a result of the application of λ (appα | R): C4(α, i)

τ−→ C3(α, i + 1) that produces one more
process appα. The self-loops on the configurations C3 and C4, labelled appα, are because
of the transitions that apply a process appα:

C3(α, i + 1)
appα−→ C3(α, i)

C4(α, i + 1)
appα−→ C4(α, i)

Similarly the LTS that corresponds to Rec′ can be abstracted by the following picture.

C′1 C′2(α, i)

τ, appα

p?α

Here we have the input p?α due to the transition C′1
p?α−→ C′2(α, 0), and the τ-labelled loop on

C′2 due to an unfolding of the replication:

C′2(α, i)
τ−→ C′2(α, i + 1)

The appα-labelled loop is because of applications of process appα:

C′2(α, i + 1)
appα−→ C′2(α, i)

We validate that the following relation is a weak bisimulation up-to (=̂).

R = { (C1,C′1),
(C2(α),C′2(α, 0)),
(C3(α, i),C′2(α, i)),
(C4(α, i),C′2(α, i)) | α, i }

Indeed, the transitionC1
p?α−→ C2(α) is matched byC′1

p?α−→ C′2(α, 0) The τ-transitionsC2(α)
τ−→

C3(α, 0) and C3(α, i)
τ−→ C4(α, i) are matched by zero τ-transitions from C′2(α, 0) and C′2(α, i),

respectively. The transition C4(α, i)
τ−→ C3(α, i + 1) is matched by C′2(α, i)

τ−→ C′2(α, i + 1).

Finally both the transitions C3(α, i+1)
appα−→ C3(α, i) and C4(α, i+1)

appα−→ C4(α, i) are matched
by C′2(α, i + 1)

appα−→ C′2(α, i). All resulting configurations of matching transitions are related
in R.

41

8.2 A Trigger-Installing Ping Service
We now consider a ping service that receives a suspended process on channel png and sends
back on the same channel a trigger. When the context applies the trigger a copy of the sus-
pended process is run.

Ping1
def
= ∗(νtr. P1(tr))

P1(tr) def
= png?(X:Pr).png!〈λ tr!.0〉.∗(tr?.app X)

We show that this service is weakly bisimilar to the trivial ping service.

Ping2
def
= ∗(png?(X:Pr).png!〈X〉.0)

Because (6) is a full congruence (Theorem 7.5), it suffices to show that for the processes
under the replication

M1
def
= νtr. P1(tr)

M2
def
= png?(X:Pr).png!〈X〉.0

it is the case that M1 6 M2 or, by definition, 〈{png},M1〉 ≈ 〈{png},M2〉. We prove this by
providing a relation R that contains M1 and M2 and show that it is a weak bisimulation up-to
β and (=̂).

We abstract over the following families of configurations reachable from 〈{png},M1〉.

C1 =̂ 〈{png},M1〉
C2 =̂ νtr 〈{png}, P1(tr)〉

C3(α) =̂ νtr 〈{png, α}, png!〈λ tr!.0〉.∗(tr?.appα)〉
C4(α, κ, i, j)

=̂ νtr 〈{png, α, κ 0→λ tr!.0},
∗(tr?.appα) | ∏i tr?.appα | ∏k appα〉

An abstraction of the LTS for M1 is the following.

C1 C2 C3(α) C4(α, κ, i, j)

τ, appα, (app κ)τβτβ

τ png?α png!κ

Transition C1
τ−→ C2 is the extrusion of the local name tr to the level of the configuration.

Transition C2
png?α−→ C3(α) is the input on channel png of an abstract variable α and transition

C3(α)
png!κ−→ C4(α, κ, 0, 0) is the subsequent output of the concrete variable κ on the same

channel. The remaining transitions are between configurations in the family C4(α, κ, i, j) that
only affect the value of the parameters:

(i) C4(α, κ, i, j)
τ−→ C4(α, κ, i + 1, j) is an unfolding of the replication.

(ii) C4(α, κ, i+1, j)
app κ−→

τβ−→
τβ−→ C4(α, κ, i, j+1) is an app κ-transition, which puts app λ tr!.0

in parallel with the current process, followed by two β-moves. The first β-move is
the application of app λ tr!.0 that produces the process tr!.0 , and the second is the
communication over the channel tr that releases one more process appα.

(iii) C4(α, κ, i, j)
appα−→ C4(α, κ, i, j− 1) is an observable application of the abstract variable α.

42

Similarly we find the families of configurations reachable from 〈{png},M2〉,

C′1 =̂ 〈{png},M2〉
C′2(α) =̂ 〈{png, α}, png!〈α〉.0〉

C′3(α, κ, j) =̂ 〈{png, α, κ 0→α},∏ j appα〉

and the corresponding abstraction of the LTS

C′1 C′2(α) C′3(α, κ, j)

app κ, appα

png?α png!κ

Here we have no τ-transitions, only the input and output on channel png and the transitions
app κ and appα, which increase and decrease, respectively, the number of appα in the pro-
cess

The following relation is a weak bisimulation up-to β and (=̂).

R = { (C1,C′1), (C2,C′1), (C3(α),C′2(α)),
(C4(α, κ, i, j),C′3(α, κ, j)) | α, κ, i, j }

The proof is straightforward. All τ-transitions on the LHS are matched by zero transitions on
the RHS; the transitions app κ and appα on the LHS are matched with the same transitions
on the RHS. Conversely, any transition on the RHS is matched with a corresponding weak
transition on the LHS. Furthermore, all configurations resulting from matching moves are
related by (

τβ−→∗=̂ R =̂).

8.3 A Trigger-Promoting Ping Service
We now consider a ping service that, instead of locally installing a trigger service for each
suspended process it receives, it wraps this trigger service in the response sent to the client.
The trigger service is installed in only one of the clients, after an application of the response.
IfV is the suspended process received by the service then the response will be

U(V, inst, tr) def
= λ (tr!.0 | inst?.∗(tr?.appV))

where inst is a private channel controlling the installation of the trigger service and tr is a
private channel that invokes it. The ping service is encoded as

Ping3
def
= ∗(νinst. νtr. P3(inst, tr))

P3(inst, tr) def
= png?(X:Pr).png!〈U(X, inst, tr)〉.inst!.0

We prove that Ping3 is weakly bisimilar to the trivial ping service Ping2, defined in the
previous section. As before we will use the property of congruence for (6) to simplify the
proof. Hence we only have to prove that

M3
def
= νinst. νtr. png?(X:Pr).png!〈U(X, inst, tr)〉.inst!.0

is weakly bisimilar to M2, also defined in the previous section. We show this by providing a
relation R that relates the two processes and showing that it is a weak bisimulation up-to β
and (=̂).

43

First, we identify the following families of configurations reachable from 〈{png},M3〉.
Here we omit subscripts to parallel products that do not affect the equivalence between con-
figurations.

C1 =̂ 〈{png},M3〉
C2 =̂ νinst, tr 〈{png}, P3(inst, tr)〉

C3(α) =̂ νinst, tr 〈{png, α}, png!〈U(α, inst, tr)〉.inst!.0〉
C4(α, κ) =̂ νinst, tr 〈{png, α, κ 0→U(α, inst, tr)}, inst!.0〉
C5(α, κ, i) =̂ νinst, tr 〈{png, α, κ 0→U(α, inst, tr)},

∗(tr?.appα) | ∏ tr?.appα |∏
i appα |

∏
inst?.∗(tr?.appα)〉

The corresponding abstraction of the LTS is:

C1 C2 C3(α) C4(α, κ) C5(α, κ, i)

τ, appα,
(app κ)τ∗β

ττβ png?α png!κ (app κ)τ∗β

The first ττβ transition extrudes the private names inst and tr. The transitions png?α and

png!κ are the input and output of the trigger, respectively. The transition C4(α, κ)
app κ−→

τβ−→∗
C5(α, κ, 1) is the application of the concrete variable κ by the context, followed by a commu-
nication on channel inst that will install the service ∗(tr?.appα), at least one unfolding of the
replication, and a communication on channel tr that will produce the process appα. C5(α, κ, i)
has a τ-loop that unfolds the replication, as well as the transitionsC5(α, κ, i)

app κ−→
τβ−→∗ C5(α, κ, i+

1) and C5(α, κ, i + 1)
appα−→ C5(α, κ, i).

The families of configurations and the abstraction of the LTS for M2 are given in the
previous section.

We can easily show that the following relation on configurations1 is a weak bisimulation
up-to β and (=̂).

R = { (C1,C′1), (C2,C′1), (C3(α),C′2(α)),
(C4(α, κ),C′3(α, κ, 0)), (C5(α, κ, i),C′3(α, κ, i)) | α, κ, i }

8.4 Composition of Triggers with Replication
In previous examples we used the fact that (6) is a congruence to factor out the common
contexts and simplify the proofs of equivalence. This is not always possible. To illustrate this
we prove the equivalence

Ping3 6 Ping4

where Ping3 is the ping service defined in Section 8.3, and

Ping4
def
= rec(M4)

M4
def
= png?(X:Pr).png!〈X〉.0

rec(P) def
= νa. (R | a!〈λP | R〉.0)

R def
= a?(X).(app X | a!〈X〉.0)

1Because of omitted indices in the definition of C6, the expression C5(n, α, κ, i) is a set of configurations. Here
we abuse notation to mean any configuration in that set.

44

Because of the use of different replication constructs, there is no common context between
Ping3 and Ping4 that we can factor out to reduce the proof obligation. Hence, we have to
provide a relation R such that 〈{png},Ping3〉 R 〈{png},Ping4〉 and show that it is a weak
bisimulation up-to β and (=̂).

We devise the following family of configurations that describes the configurations that are
reachable from 〈{png},Ping3〉 and relevant to the bisimulation proof.

C(α, κ, I, J,K, L,m)
=̂ νtr 〈 {png, α, κ 0→U(α, inst, tr)

K∪L}, ∗(M3)
| ∏i∈I P3(insti, tri)
| ∏ j∈J png!〈U(α j, instj, trj)〉.instj!.0
| ∏k∈K instk!.0
| ∏l∈L

(∗(trl?.appαl) |
∏

trl?.appαl

| ∏ml appαl |
∏

instl?.∗(trl?.appαl)
)〉

Here I, J,K, and L are finite sets of natural numbers. We also use the notation A
S

to mean that
the length of the sequence is the cardinality of the set S , and the subscripts of the metavari-
ables in A are drawn from the elements of S .

The reader may observe that C contains the parallel composition of the process ∗(M3) with
an arbitrary number of the processes in configurations C2, C3, C4, and C5 of Section 8.3. This
is because the ping service may be invoked multiple times by the context, and each invocation
will create a separate set of states C2 to C5. The sets I, J, K, L contain the indices of local
trigger channels, abstract variables, and concrete variables that correspond to the different
instances of C2 to C5, respectively. Moreover, the transitions that in Section 8.3 are between
configurations in Ci and C j now only change the parameters of C.

The abstraction of the LTS in this case has only one state.

C(α, κ, I, J,K, L,m)

ττβτβ,
png?αi, png!κi,

(app κi)τ∗β, appαi

The configurations reachable from 〈{png},Ping4〉 and relevant to this bisimulation proof
belong in the following families of configurations.

C′1 =̂ 〈{png}, rec(M4)〉
C′2(α, κ, J,K, L,m)
=̂ νa 〈 {png, α, κ 0→αK∪L}, R | a!〈λM4 | R〉.0

| ∏ M4 |
∏

j∈J png!〈α j〉.0 |
∏

l∈L
(∏

ml appαl
)〉

Notice that C′2 is similar to configuration C3 of Section 8.1. C4 is not necessary here because
of the use of the up-to β technique.

The abstract LTS is the following.

C′1 C′2(α, κ, J,K, L,m)

ττβ,
png?αi, png!κi,
app κi, appαi

ττβτβ

45

It is straightforward to verify that the following relation is a weak bisimulation up-to β
and (=̂) and 〈{png},Ping3〉 R 〈{png},Ping4〉.

R = { (C(·, ·, ∅, ∅, ∅, ∅, ·),C′1),
(C(α, κ, I, J,K, L,m),C′2(α, κ, J,K, L,m)),
| α, κ,m,∀k ∈ K. ik + jk + lk = mk,
I, J,K, L pairwise disjoint }

8.5 The Processes in Figure 1

For our last two examples we consider the two pairs of processes in Figure 1, discussed in
the introduction. We prove that the processes in (†) are indeed weakly bisimilar, while the
processes in (‡) are not.

We extend the language with internal choice by adding the following reduction and tran-
sition rules (and their symmetric ones).

P ⊕ Q→ P νa 〈∆, P ⊕ Q〉 τ−→ νa 〈∆, P〉

Adding these rules does not change our theory since internal choice can be encoded using
communication:

P ⊕ Q def
= νa. a!.0 | a?.P | a?.Q a ! fn(P,Q)

The equivalence. First we consider the equivalence (†) in Figure 1. We will show that
P 6 P′; i.e. we will show 〈{c}, P〉 ≈ 〈{c}, P′〉, where

P def
= c?(X).c?(Y).νt. (c!〈V1(X,Y)〉.0 ⊕ c!〈V2(X)〉.0)

| ∗(t?.(app X ⊕ appY))
P′ def
= c?(X).c?(Y).νt. (c!〈V1(Y, X)〉.0 ⊕ c!〈V2(Y)〉.0)

| ∗(t?.(app X ⊕ appY))
V1(X,Y) def

= λ ((app X ⊕ appY) | app X)
V2(X) def

= λ (t!.appY)

The relevant configurations reachable from 〈{c}, P〉 can be described by the following
families of configurations.

46

C1 =̂ 〈{c}, P〉
C2(α1) =̂ 〈{c, α1}, c?(Y).νt. (c!〈V1(α1, Y)〉.0 ⊕ c!〈V2(α1)〉.0)

| ∗(t?.(appα1 ⊕ appY))
| ∏ t?.(appα1 ⊕ appα2)〉

C3(α1, α2) =̂ νt 〈{c, α1, α2}, (c!〈V1(α1, α2)〉.0 ⊕ c!〈V2(α1)〉.0)
| ∗(t?.(appα1 ⊕ appα2))
| ∏ t?.(appα1 ⊕ appα2)〉

C4(α1, α2, κ, i, j, k)
=̂ νt 〈{c, α1, α2, κ 0→V1(α1, α2)},

∗(t?.(appα1 ⊕ appα2))
| ∏ t?.(appα1 ⊕ appα2)
| ∏i(appα1 ⊕ appα2) | ∏ j appα1 |

∏
k appα2〉

C5(α1, α2, κ, i, j, k)
=̂ νt 〈{c, α1, α2, κ 0→V2(α1)},

∗(t?.(appα1 ⊕ appα2))
| ∏ t?.(appα1 ⊕ appα2)
| ∏i(appα1 ⊕ appα2) | ∏ j appα1 |

∏
k appα2〉

The corresponding abstraction of the LTS is:

C1 C2(α1) C3(α1, α2)

C4(α1, α2, κ, i, j, k)

C5(α1, α2, κ, i, j, k)

τ, appαi,
app κ

τ, appαi,
(app κ)τ∗β

c?α1 c?α2τβ

τ

τ

We obtain the families C′1 to C′5 of configurations reachable from 〈{c}, P′〉 by performing
the following replacements of the boldfaced parts in C1 to C5:

(i) in C1 we replace P with P′,

(ii) in C2 we replace theV1(α1,Y) andV2(α1) withV1(Y, α1) andV2(Y), respectively,

(iii) in C3 to C5 we replaceV1(α1, α2) andV2(α1) withV1(α2, α1) andV2(α2), respectively.

The corresponding abstraction of the LTS is the same as the one shown above.
The intuition of this equivalence is that the τ-transition

C3(α1, α2)
τ−→ C4(α1, α2, κ, 0, 0, 0)

on the left-hand side is matched by the τ-transition

C′3(α1, α2)
τ−→ C′5(α1, α2, κ, 0, 0, 0)

on the right-hand side, and vice-versa. Hence, from that point onward, a transition

C4(α1, α2, κ, i, j, k)
app κ−→ C4(α1, α2, κ, i + 1, j + 1, k)

47

is matched by the transitions

C5(α1, α2, κ, i, j, k)
app κ−→

τβ−→
τβ−→ C5(α1, α2, κ, i + 1, j + 1, k)

where the first τ-step unfolds the replication once, and the second is the internal communica-
tion on channel t.

The proof of this equivalence concludes by verifying that the following relation is a weak
bisimulation up-to β and (=̂).

R = { (C1,C′1), (C2(α1),C′2(α1)),
(C3(α1, α2),C′3(α1, α2)),
(C4(α1, α2, κ, i, j, k),C′5(α1, α2, κ, i, j, k)),
(C5(α1, α2, κ, i, j, k),C′4(α1, α2, κ, i, j, k)),
| α1, α2, κ, i, j, k }

The inequivalence. We now consider the inequivalence (‡) in Figure 1, written in pp-π:

Q def
= c?(X).c?(Y).νt. (c!〈λ ((app X | appY) ⊕ app X)〉.0

⊕ c!〈λ (t!.appY)〉.0)
| ∗(t?.(app X | appY))

Q′ def
= c?(X).c?(Y).νt. (c!〈λ ((app X | appY) ⊕ appY)〉.0

⊕ c!〈λ (t!.app X)〉.0)
| ∗(t?.(app X | appY))

Let us assume that we match the output

c!〈λ ((app X | appY) ⊕ app X)〉.0

on the left-hand side with the output

c!〈λ (t!.app X)〉.0

on the right-hand side. Then, after an app κ-transition, we could eventually arrive at related
configurations where the one on the left-hand side would be able to apply the value bound
to X, but not the value bound to Y; the configuration on the right-hand side would always be
able to apply both the values bound to X and Y , therefore, these configurations would not be
weakly bisimilar (and would be distinguishable by an observer).

Of course there are more choices of relating configurations on the left- and right-hand side
that might lead to a bisimulation. The Hennessy-Milner Logic that we used to characterise
weak bisimilarity is useful in proving that none of these choices would be successful. It
suffices to find an HML formula that is satisfied by the configuration 〈{c},Q〉 but not by
〈{c},Q′〉. This formula is

F def
= 〈c?α1〉 〈c?α2〉 〈c!κ〉 〈app κ〉 (〈appα1〉 tt ∧ [appα2] ff)

It is the case that 〈{c},Q〉 |= F, because after the inputs c?α1 and c?α2 the process can pick
the output

c!〈λ ((appα1 | appα2) ⊕ appα1)〉.0

On the other hand, 〈{c},Q′〉 7|= F because none of the outputs

c!〈λ ((appα1 | appα2) ⊕ appα1)〉.0 c!〈λ (t!.appα1)〉.0

can lead to a configuration satisfying (〈appα1〉 tt ∧ [appα2] ff).

48

Our LTSpp-π fo-π Std. LTS

6#cxt

#pcxt

#fo 6fo
Thm. 7.4

Thm. 7.3

Thm 8.2 [16], Ch. 2

Figure 8: The big picture

9 First-Order Processes
The first-order picalculus, from Chapter 1 of [16], can be considered to be a sub-language
of pp-π; let us refer to this sub-language as fo-π and use p, q to range over closed processes
from fo-π. The more standard theory for this sub-language is given in terms of the standard
LTS in which the nodes are processes and the actions have labels of the form c?n – input, c!n
– free output, (νn) c!n – bound output, or τ for internal activity; note in particular the use of
extrusion in the bound outputs. For these first-order (closed) processes we have the following
equivalences:

(i) p #cxt p′ from Definition 7.2: intuitively this means that the first-order processes p and
p′ can not be distinguished by any higher-order context.

(ii) p 6 p′ from Definition 4.7: this means that processes p and p′ are weakly bisimilar
when viewed as (degenerate) configurations in the LTS described in Section 3. Notice
that the LTS generated by such first-order configurations only contains actions whose
labels take the form c?n, c!n, or τ.

(iii) p 6fo p′: meaning that p and p′ are weakly bisimilar in the standard LTS alluded to
above, as given in [3, 16].

For the purpose of analysis let us now introduce a fourth [3].

Definition 9.1 (First-order p-contextual equivalence (#fo)). (#fo) is the largest relation on
closed fo-π processes that preserves barbs, is reduction closed, and is preserved by first-order
parallel contexts.

It is known from the literature that (6fo) coincides with (#fo) ([16], Chapter 2); we show
that (6) also coincides with (#fo):

Theorem 9.2. In fo-π p 6 p if and only if p #fo p′

Proof. (Outline) A very easy adaptation of Theorems 5.9 and 6.13 !

The above theorem completes the link between contextual equivalence in pp-π and weak
bisimilarity in the standard LTS for fo-π as shown in Figure 8. We can now derive the follow-
ing interesting consequences:

Corollary 9.3. In fo-π,

(i) p 6 p′ iff p 6fo p′

(ii) p 6fo p′ iff p #cxt p′

Result (i) means that the standard bisimulation equivalence (6fo) which uses extrusion
in output actions, is captured precisely by our extrusion-free bisimulation equivalence (6).
Result (ii) on the other hand states that our higher-order contextual equivalence (#cxt) is a

49

conservative extension over the standard bisimulation equivalence (6fo) for first-order pro-
cesses. This latter result has significant implications for verification; if we prove an equiva-
lence between two first-order processes using the first-order theory, this equivalence remains
true even when these first-order processes are used in a higher-order setting.

10 Conclusions
The main achievement of this paper has been a simple and effective proof technique for
program equivalence in a higher-order setting, which reduces reasoning about higher-order
processes to checking Kripke-like structures. We have concentrated on the relatively straight-
forward higher-order language pp-π in order to emphasise the challenges of pure higher-order
concurrency but we believe it can also be adapted to HOπ and other higher-order concurrent
languages.

The proof technique, first-order in nature, has emerged not from a completely new be-
havioural theory, but from a combination and improvement of existing theories, particularly
those in [4] and [15]. Compared to [15], our method does not require an up-to context or
other techniques to effectively reason about higher-order processes. In particular, a proof of
the example in Section 8.4 using environmental bisimulations up-to context would require a
manual induction on contexts; a stronger up-to technique (e.g. up-to context and reduction)
would be required to remove the need for such an induction. It is unclear, though, if up-to
techniques can always mitigate the strong proof obligations due to the quantification over
contexts that test related inputs in [15]. Compared to [4], our use of knowledge environments
simplifies the labelled transition system by removing extrusion from its labels, thus allowing
the characterisation of (weak) bisimulation by a propositional Hennessy-Milner Logic. Using
this logic we are able to easily prove inequivalences of higher-order processes by providing a
distinguishing formula.

References
[1] M. Hennessy. A Distributed Picalculus. Cambridge University Press, 2007.

[2] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency. Jour-
nal of the ACM, 32:137–161, 1985.

[3] K. Honda and N. Yoshida. On reduction-based process semantics. Theoretical Com-
puter Science, 151(2):437 – 486, 1995.

[4] A. Jeffrey and J. Rathke. Contextual equivalence for higher-order pi-calculus revisited.
Logical Methods in Computer Science, 1(1:4), 2005.

[5] A. Jeffrey and J. Rathke. Full abstraction for polymorphic pi-calculus. In Proc. Foun-
dations of Software Science and Computation Structures (FoSSaCS), volume 3441 of
Lecture Notes in Computer Science, pages 266–281. Springer-Verlag, 2005.

[6] V. Koutavas and M. Wand. Bisimulations for untyped imperative objects. In P. Ses-
toft, editor, Proc. 15th European Symposium on Programming (ESOP), Programming
Languages and Systems, volume 3924 of Lecture Notes in Computer Science, pages
146–161. Springer-Verlag, 2006.

[7] V. Koutavas and M. Wand. Small bisimulations for reasoning about higher-order im-
perative programs. In Proc. 33rd ACM SIGPLAN-SIGACT symposium on Principles of
Programming Languages (POPL), pages 141–152. ACM Press, 2006.

50

[8] V. Koutavas and M. Wand. Reasoning about class behavior. In International Workshop
on Foundations and Developments of Object-Oriented Languages (FOOL/WOOD), Jan-
uary 2007.

[9] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[10] J. H. Morris, Jr. Lambda Calculus Models of Programming Languages. PhD thesis,
MIT, Cambridge, MA, USA, 1968.

[11] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-Order
Paradigms. PhD thesis CST–99–93, Department of Computer Science, University of
Edinburgh, 1992.

[12] D. Sangiorgi. From pi-calculus to higher-order pi-calculus – and back. In M.-C. Gaudel
and J.-P. Jouannaud, editors, Proc. International Joint Conference CAAP/FASE on The-
ory and Practice of Software Development (TAPSOFT), Lecture Notes in Computer
Science, pages 151–166. Springer-Verlag, 1993.

[13] D. Sangiorgi. Bisimulation for higher-order process calculi. Information and Computa-
tion, 131(2):141–178, 1996.

[14] D. Sangiorgi. Bisimulation: From the origins to today. In Proc. 19th IEEE Symposium
on Logic in Computer Science (LICS), pages 298–302. IEEE Computer Society, 2004.

[15] D. Sangiorgi, N. Kobayashi, and E. Sumii. Environmental bisimulations for higher-
order languages. In Proc. 22th Annual IEEE Symposium on Logic in Computer Science
(LICS), pages 293–302. IEEE Computer Society, 2007.

[16] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cambridge
University Press, 2001.

[17] Colin Stirling. Bisimulation, modal logic and model checking games. Logic Journal of
the IGPL, 7(1):103–124, 1999.

[18] E. Sumii and B. C. Pierce. A bisimulation for dynamic sealing. Theoretical Computer
Science, 375(1–3):169–192, May 2007.

[19] E. Sumii and B. C. Pierce. A bisimulation for type abstraction and recursion. Journal
of the ACM, 54(5):1–43, 2007.

51

