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Theories of corticocerebellar function propose roles for the cerebellum in automating motor control, a process thought to depend on
plasticity in cerebellar circuits that exchange information with the motor cortex. Little is known, however, about automating behaviors
beyond the motor domain. The present study tested the hypothesis that cerebellar plasticity also subserves the development of automa-
ticity in behavior based on low-order rules. Human subjects were required to learn two sets of first-order rules in which visual stimuli of
different shapes each arbitrarily instructed a particular finger movement. We used event-related functional magnetic resonance imaging
to scan subjects while these response rules became increasingly automatic with practice, as assessed with a dual-task procedure. We
found that the amplitude of the blood oxygenation level-dependent signal gradually decreased as a function of practice, as responses
became increasingly automatic, and that this effect was greater for a set of rules that became automatic rapidly compared with a second
set, which became automatic more slowly. These trial-by-trial activity changes occurred in Crus I of cerebellar cortical lobule HVIIA, in
which neurons exchange information with the prefrontal cortex rather than the motor cortex. Activity in Crus I was time locked specif-
ically to the processing of these rules, rather than to subsequent actions. The results support the hypothesis that decreases in cerebellar
cortical activity underlie the automation of behavior, whether related to motor control and motor cortex or to response rules and
prefrontal cortex.

Introduction
A number of theories posit that plastic changes in cerebellar

circuits support behavioral adaptation seen in motor learning
tasks (Brindley, 1964; Marr, 1969; Albus, 1971; Gilbert, 1974; Ito,
2000). These have been supported by empirical demonstrations
of motor learning-related cerebellar plasticity using electrophysiol-
ogy in nonhuman primates (Gilbert and Thach, 1977; Ojakangas
and Ebner, 1992; Greger and Norris, 2005; Soetedjo and Fuchs, 2006;
Medina and Lisberger, 2009) and numerous functional neuroimag-
ing studies in humans (Friston et al., 1992; Imamizu et al., 2000,
2003; Ramnani et al., 2000; Ramnani and Passingham, 2001; Unger-
leider et al., 2002; van Mier et al., 2004; Miall and Jenkinson, 2005;
Penhune and Doyon, 2005; Puttemans et al., 2005). Motor learning
is likely to depend on information flow between cortical motor areas
and cerebellar cortex via the pontine nuclei (Allen and Tsukahara,
1974; Wolpert and Kawato, 1998), and changes in the strength of
synapses onto Purkinje cells (PCs; the principal computational units
and output neurons of the cerebellar cortex).

Axonal fiber-tracing studies have suggested the cerebellum
exchanges information with the cerebral cortex within indepen-

dent sets of closed corticocerebellar loops (Middleton and Strick,
2000; Kelly and Strick, 2003). These consist of neocortical projec-
tions to the cerebellar cortex via the pontine nuclei, and return
projections back to the neocortex via the cerebellar nuclei and
thalamus. Such loops involve functionally diverse cortical re-
gions, which interact with different cerebellar lobules. Kelly and
Strick (2003) showed that the primary motor cortex, for example,
interacts specifically with cerebellar lobules V, VI, VIIb, and
VIIIa. These parts of the cerebellum are implicated in motor
learning by specific electrophysiological signatures of plasticity,
as revealed by trial-by-trial changes in the firing properties of PCs
(Gilbert and Thach, 1977; Medina and Lisberger, 2008).

Although prominent, motor areas of the cerebral cortex are
not the only ones that send information to the cerebellar cortex.
Other areas, such as prefrontal area 46, do so as well, although
they target different cerebellar cortical areas (specifically, Crus I
and Crus II) (Kelly and Strick, 2003). Although it is well known
that the prefrontal cortex (PFC) plays important roles in the pro-
cessing of rule-related representations (Miller and Cohen, 2001;
Wallis et al., 2001), the role of prefrontal-related regions of the
cerebellar cortex is unclear.

Ideas about cerebellar function in motor learning can provide
testable hypotheses for rule learning by analogy. During motor
learning, the cerebellum may acquire representations of move-
ment that can mimic operations initially established in motor
cortex and be used to execute these actions automatically (Marr,
1969; Thach, 1998). An important characteristic of automaticity
is the ability to perform a primary task “with little or no interfer-
ence by a demanding secondary task” (Poldrack et al., 2005)
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because of decreased dependency on at-
tention. Cerebellar patients perform poorly
in motor tasks if they are performed with
distractors (Lang and Bastian, 2002). Here,
we tested the hypothesis that Crus I and
Crus II operate similarly to acquire repre-
sentations of prefrontal information pro-
cessing that contribute to the automation of
first-order rules (Ramnani, 2006).

Materials and Methods
During functional magnetic resonance imag-
ing (fMRI) scanning, subjects practiced the ex-
ecution of two sets of rules that they had
learned in a training phase beforehand. Perfor-
mance of each set became increasingly auto-
matic (less prone to the distracting effects of a
concurrently performed task relative to the
other). Furthermore, since prescan training
used a differential reinforcement schedule,
subsequent automatization during scanning
progressed at different rates in the two sets of
rules. Changes in automaticity were deter-
mined by investigating performance improve-
ments under dual-task conditions. In line with
neurophysiological investigations of motor
learning-related cerebellar plasticity, we hy-
pothesized gradual trial-by-trial changes in the
amplitude of the blood oxygenation level-
dependent (BOLD) signal from Crus I and/or
Crus II, reflecting underlying changes in neu-
ronal excitability. This activity would be time
locked specifically to events in which subjects
processed rules. Since our manipulation involved the development of auto-
maticity at different rates, we looked for interactions in the time courses of
event-related BOLD activity, where the rate of change differed between the
two sets of rules. In line with our hypothesis, in cerebellar Crus I the ampli-
tude of BOLD activity time locked to symbolic instruction cues decreased
more quickly for cues that progressed to automaticity more rapidly.

Subjects
Nineteen right-handed participants were used for this study (age range,
18 –30 years; 12 females, 7 males). Participants gave written informed
consent, and the study was approved by the Royal Holloway University of
London Psychology Department Ethics Committee. In line with the
requirements of the Combined Universities Brain Imaging Centre
(CUBIC; http://www.pc.rhul.ac.uk/sites/cubic/), we obtained additional
consent for participation in MRI data collection from these subjects. The
study also conformed to regulations set out in the CUBIC MRI Rules of
Operations.

Apparatus
Subjects lay supine in a 3 T Siemens Trio MRI scanner and were wearing
MRI-compatible headphones. The fingers of their right hand were posi-
tioned on a four-button, MRI-compatible response box. Stimuli were
back-projected onto a screen behind the subject and viewed in a mirror
positioned above the subjects’ eyes. A dedicated stimulus personal com-
puter with Presentation software (Neurobehavioral Systems) was used
for stimulus presentation and response collection. The Presentation per-
sonal computer received transistor–transistor logic (TTL) pulse inputs
from the response keypad (via a custom-built parallel port interface).
The personal computer also received TTL pulses from the MRI scanner at
the onset of each volume acquisition, allowing events in the experiment
to be precisely synchronized with the onset of each scan. A behavioral
dual-task paradigm was applied at three stages of the experiment (see
Dual task trial structure), in which a personal computer was used to
deliver auditory cues to the subject. The scanner was not running during
these trials. The timings of all events in the experiment were sampled

continuously and simultaneously (independent of Presentation) at a fre-
quency of 1 kHz using an A/D 1401 unit (Cambridge Electronic Design).
This allowed us to calculate all event timings with an accuracy of �1 ms.
Spike2 software running on a separate personal computer was used to
create a temporal record of these events. Reaction times (RTs) were
calculated off-line, and event timings were prepared for subsequent gen-
eral linear model (GLM) analysis of fMRI data (see First-level single-
subject analysis, below).

Experimental design
The aim of the experimental design was to compare the adaptation of
BOLD activity (the hemodynamic consequences of excitability changes)
time locked to two groups of symbolic instruction cues. The only differ-
ence between these was the extent to which associations between sym-
bolic cues and actions were learned in a previous training session (Fig. 1).
In brief, we sandwich the fMRI session, during which we hoped to see
differential automation and adaptation, between two dual-task sessions.
The before and after dual-task sessions allowed us to verify differential
learning in terms of reaction times and error rates.

After extensive instrumental training, behavior that is initially flexible
and goal oriented becomes increasingly habitual and automatic (Dickin-
son, 1985). The hallmarks of behaviors that reach this state include their
relative insensitivity to the value of reinforcers, and their relative immu-
nity to the distracting effects of secondary tasks afforded by a decreased
dependency on attentional mechanisms (Ashby et al., 2010). Adams and
Dickinson (1981a,b) have demonstrated that the rate of learning in the
initial phases of instrumental learning enhances later resistance to rein-
forcer devaluation. Our initial pilot studies confirmed that the reinforce-
ment schedule in earlier phases was related to levels of automaticity in
later learning. Our experimental design was therefore based on this ma-
nipulation. Differential levels of learning were systematically manipu-
lated using differential reinforcement schedules. Dual-task sessions were
incorporated into the experimental design to establish the effects of dif-
ferential schedules of reinforcement on automatic performance of the
primary task. The experiment consisted of five sessions, which are de-
scribed below in detail (Fig. 1, in which the order is described). All be-

Figure 1. a, Experimental design: schematic figure of the experimental sessions. S 1, Dual-task training; S 2, prescanning
behavioral training; S 3, dual task before scanning; S 4, training to automaticity during scanning; S 5, dual task after scanning and
greater automaticity; orange, unrepeated training stimuli; red, low-learning condition; blue, high-learning condition (see Mate-
rials and Methods for specific details about each session). Note that the RT bar plots are schematic only; see Figure 2 for the data.
b, Conditional learning trial structure. Each trial was divided into two 6 s periods (instructions occurred in the first period, and the
trigger, response, and outcome (modeled as a single event) occurred in the second). Onsets of instructions and trigger-related
events occurred pseudorandomly between 0.5 and 6 s within these periods, allowing us to statistically partition activity time locked
to instructions from activity time locked to subsequent events (see Materials and Methods).
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havioral data were collected in the scanner to maintain comparable
psychophysical conditions.

An important part of our analytical approach was to ensure that our
behavioral data were drawn from the same trials that were used in the
analysis of the fMRI data, the aim of which was to compare trial-to-trial
learning-related changes in excitability in two conditions. During learn-
ing, trials in which errors are present are followed by trials in which there
is an increased probability of a correct response, and theories of cerebel-
lar learning have suggested that in these later trials there should be excit-
ability changes compared with earlier trials. We aimed to investigate
trial-to-trial changes in excitability that relate to learning, holding other
confounding factors constant. It was not possible, for example, to validly
compare trials with and without errors, since activity differences between
trials would otherwise be explained by the presence of error-related pro-
cessing rather than long-term plastic changes. However, it is appropriate
to compare across early and late trials that are both free of errors. Our
event-related design allowed us to model correctly executed trials sepa-
rately from trials in which errors were present, and our analysis of reac-
tion times similarly excluded these trials. Hence, fMRI results were
comparable to reaction time results because exactly the same trials con-
tributed to both. Furthermore, neither the BOLD signal nor the behav-
ioral RT data were contaminated by the presence of errors.

Task
Conditional task trial structure. Subjects were required to learn the arbi-
trary relationships between visual instruction cues (green shapes) and
finger responses by trial and error. This task is commonly known as a
conditional learning task. For each of two sets of stimuli, five different
shapes mapped onto the four finger responses (for all stimulus-response
mappings, see supplemental Fig. 1, available at www.jneurosci.org as
supplemental material). We chose to have five shapes per condition to
avoid subjects using higher-order learning strategies. For example, if
there were only four shapes per condition, then participants may have
calculated stimulus-response contingencies through a process of elimi-
nation (i.e., shape 1 corresponds to button 1, thus shape 2 must corre-
spond to a different button). The use of five shapes per condition ensured
that participants could not rely on more complex strategies and were
forced to learn through trial and error. Participants were told there were
more shapes than finger responses before entering the scanner. Each trial
began with the presentation of an instruction cue (500 ms). After a vari-
able delay period (see Experimental timing), subjects saw a “Go!” signal
immediately followed by the four adjacent underscores (trigger cue),
prompting subjects to execute a response. After the trigger cue, the sub-
ject would receive either relevant feedback (a green or red dot indicating
a correct or incorrect response respectively) or ambiguous feedback (a
yellow dot). This ambiguous feedback contained no information that
could inform the participant about whether or not they correctly selected
their response on that trial. If participants failed to execute a response
within a 1000 ms time window, the word “Missed” was displayed instead
of these feedback cues (this was rare, occurring on average in 1.73% of
trials; SD, 1.69%). The identities and timings of motor responses were
logged by Presentation and Spike2, respectively.

Dual-task trial structure. Dual-task paradigms have been consistently
used as rigorous tests of automaticity (Passingham, 1996; Oliveira et al.,
1998; Poldrack et al., 2005; Grol et al., 2006). We assessed the level of
automaticity attained in both conditions to determine the robustness of
performance to distractors. Subjects performed the task described above
(the variable delay between instruction cues and trigger cues was re-
moved). While performing this task, subjects were required to simulta-
neously perform a verb-generation task. Subjects heard a word through
the MRI compatible headphones every 3 s (e.g., “beer”). Immediately
after this, the subject responded by saying an appropriate verb (e.g.,
“drink”). The onset of the conditional task was randomly jittered across
3 s. Previous versions of this dual task have simultaneously presented the
visual instruction with the auditory stimulus. However, this leads to a
“bottlenecking” effect such that interference occurs with only one part of
the primary task. In order to properly assess the automaticity of all com-
ponents of the primary task, it is necessary to jitter the secondary task
with respect to it.

Our primary task involved the use of a manual response. Our second-
ary task therefore needed to be one that avoided the use of the hand
because subjects sometimes needed to execute responses in primary and
secondary tasks simultaneously. This would not have been physically
possible, so the secondary task therefore required output to be delivered
by a different effector. We were also concerned that the if visual instruc-
tions were presented simultaneously for both the primary and secondary
tasks, the visual display for the primary task would not be the same as that
used in the training sessions (see Session 2: initial behavioral training,
and Session 4: training during scanning). Furthermore, it could be ar-
gued that task failure on the primary task might be related not to the
demands of processing two decisions, but instead to the failure to see the
instructions of the primary task because they would have to be located in
a different part of the visual field to those of the secondary task. We
therefore opted to use a task that required instructions to be delivered in
a different (auditory) sensory modality (as opposed to visual input, as
used in the primary task), verbal output (as opposed to manual output, as
used in the primary task), and a rule that was independent of the primary
task (generation of a verb following the presentation of a noun).

This dual-task paradigm was performed before and after scanning to
determine whether changes in automaticity occurred during scanning. It
should also be noted that to avoid the effects of novelty of the dual-task
situation on performance, subjects were familiarized with the dual task
using a set of novel visual cues before the experiment.

Experimental sessions
All experimental sessions took place inside the MRI scanner so that the
learning and training environments were exactly the same.

Session 1: dual-task training. Subjects were familiarized with the re-
quirements of performing conditional trials concurrently with verb gen-
eration (8 min; 10 instruction cues, 6 repetitions per instruction cue). On
a few occasions at the early stages of this session, subjects sometimes
failed to generate a manual response at all in the primary task, or gener-
ated associated nouns rather than verbs (e.g., “car”–“bus” instead of
“car”–”drive”). The purpose of the session was to eliminate these proce-
dural errors through familiarization, rather than to increase automaticity
or to reduce errors in response selection in the primary task. By the end of
the session, these procedural errors were eliminated (all subjects were
able to execute at least 15 trials consecutively without such errors). It was
important that this session should contribute only to the learning of the
context of concurrent task performance, and not to the learning of the
actual associations between instructions and actions. The instruction
cues that were used in session 1 were therefore not carried forward into
subsequent sessions (a new set of associations was used from session 2
onward). Any learning of associations in session 1 could therefore not
contribute to subsequent sessions.

Session 2: initial behavioral training. After the dual-task training, sub-
jects started to learn the associations between instructions and responses
(10 instruction cues � 8 repetitions—pseudorandomly intermixed).
Subjects were unaware that the 10 different instruction cues fell into two
categories; high learning (HL) and low learning (LL). These were pseu-
dorandomly intermixed. In the HL condition, subjects always received
relevant feedback about their responses (green or red dots). In the LL
condition, subjects only received relevant feedback for 50% of the trials
(50% yellow dots—ambiguous feedback pseudorandomly intermixed
with relevant feedback). This design enabled us to apply different rein-
forcement schedules to each condition, thereby slowing learning in the
LL condition systematically while providing subjects with identical expo-
sure to visual cues in these otherwise identical conditions. Subjects were
unaware that there were differential reinforcement schedules. This is the
only stage in the experiment where trial parameters differed between
conditions. Subjects were unaware that the 10 instructions fell into two
categories, HL and LL.

Session 3: dual task before scanning. Subjects performed conditional
trials with the same instruction cues with the same associations as those
used in session 2 (5 shapes � 2 conditions � 6 repetitions), concurrently
with verb generation. Trials in both HL and LL conditions were given
50% relevant feedback so as to minimize the levels of learning within this
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session while maintaining comparability with other sessions. Instruction
cues were randomly ordered as in session 2.

Session 4: training during scanning. During this session, trial parame-
ters and reinforcement schedules were exactly matched across the two
conditions (2 conditions � 5 instruction cues � 7 repetitions; 86% rel-
evant feedback). As with session 2, HL and LL trials were pseudoran-
domly intermixed. Differential performance between conditions could
therefore be attributed to the training received in session 2.

Session 5: dual task after scanning. This was an exact replication of
session 3.

Experimental timing
An important feature of our study was the ability to time lock activity
specifically to instruction cues. A variable delay was introduced between
the instruction cue and the “Go!” signal. This allowed us to isolate BOLD
activity time locked to the instruction cue without the contaminating
effects of subsequent trial events (“Go!” signal, trigger cue, motor re-
sponse, and error feedback), as in previous studies (Ramnani and Miall,
2003, 2004; Balsters and Ramnani, 2008).

Events in each trial took place across four repetition times (TRs; 0 –12
s; TR � 3 s) (Fig. 1b). To optimally sample evoked hemodynamic re-
sponses (EHRs), we randomly varied the interval between scan onset and
instruction cue onset from trial to trial over the range of the first two TRs
(jittering). This achieved an effective temporal sampling resolution
much finer than one TR. These intervals were uniformly and randomly
distributed, ensuring that EHRs time locked to the instruction cue were
sampled evenly across the time period following instruction cues. The
“Go!” signal (along with motor responses and feedback) occurred in
the period occupied by the third and fourth TR, and the “Go!” cue’s
onset was varied in the same manner (in the range 6 –10.5 s after the
onset of the first TR). The range of the variable delay between the
onset of instruction cues and the onset of the “Go!” signal varied from
1549 to 9080 ms.

Functional imaging and analysis
Data acquisition. Four hundred ten echo-planar imaging (EPI) scans
were acquired from each participant using a 3 T Siemens Trio scanner
(Royal Holloway University of London, UK). The field of view covered
the whole brain: 192 � 192 mm (64 � 64 voxels); 36 axial slices were
acquired (25% slice gap, 0.8 mm) with a voxel size of 3 � 3 � 3 mm
[TR � 3 s; echo time (TE) � 32; flip angle � 90°]. The functional
sequence lasted 20 min. Immediately after the functional sequence, phase
and magnitude maps were collected using a standard gradient recalled echo
(GRE) field map sequence (default echo times were used: TE1 �5.19 ms; TE2

� 7.65 ms). High-resolution T1-weighted structural images were also ac-
quired at a resolution of 1 � 1 � 1 mm using an MPRAGE sequence.

Image preprocessing. Scans were preprocessed using SPM5 (www.fil.
ion.ucl.ac.uk/spm) on a Dual Core AMD Athlon 64 MHz personal com-
puter with 2 gigabytes of RAM, running Windows XP and Matlab 2007a
(MathWorks Inc). Before analysis, all images were realigned and un-
warped using field maps to correct for motion artifacts, susceptibility
artifacts, and motion-by-susceptibility interactions (Andersson et al.,
2001; Hutton et al., 2002). Images were subsequently normalized to the
ICBM EPI template using both linear affine transformations and nonlinear
transformations (Friston et al., 1995a). Last, a Gaussian kernel of 8 mm was
applied to spatially smooth the images to conform to the Gaussian assump-
tions of a GLM as implemented in SPM5 (Friston et al., 1995b,c).

Statistical analysis
First-level single-subject analysis. Four event types were modeled at the
first level. A GLM was constructed from regressors formed by the con-
volution of event delta functions with the canonical hemodynamic re-
sponse function (HRF). The learning-related conditions (conditions 1
and 2) were also parametrically weighted, and these weighted regressors
were included as separate regressors (see Time � condition interaction).
Trials in which responses were incorrect, too early (before the trigger
cue), or too late (RT � 1000 ms) were modeled separately as a fourth
event type and were differentiated from events of experimental interest.
This fourth event type included both the onsets of the instruction cue and
“Go!” signal in error trials. Thus, activity time locked to incorrect trials

were excluded from regressors explaining instruction-related activity: (1)
HL instruction cues (correct only) [parametrically weighted HL instruc-
tion cues (HLT)]; (2) LL instruction cues (correct only) [parametrically
weighted LL instruction cues (LLT)]; (3) trigger cues; and (4) error (both
instruction cue and trigger cue onsets).

The residual effects of head motion were modeled in the GLM by
including the six head motion parameters acquired from the realignment
stage of the preprocessing as covariates of no interest.

Time � condition interaction. Our modeling strategy accounted for the
individual rates of learning for each instruction cue in HL and LL.

Instruction cues for correctly executed trials in the two learning con-
ditions (HL and LL) were parametrically weighted to produce two fur-
ther regressors (HLT and LLT). These regressors modeled the expected
linear changes in hemodynamic response amplitudes to instruction cues,
where changes were linear increases from one correctly executed trial to
the next for each of the five given instruction cues (any intermediate trials
containing errors were excluded and were modeled separately). The re-
sulting model approximated the expected time course of excitability
changes in our learning conditions.

Before the study, a set of planned experimental timings was carefully
checked so that the timings resulted in an estimable GLM in which the
statistical independence of the event types was preserved.

Second-level random-effects group analysis
In this article, we focus on the differential adaptation between the high
and low learned tasks as tested for statistically at the between-subject
level. This was done using one-sample t test to produce random-effects
statistical parametric maps (SPMs) in the usual way. These t tests were
applied to contrast images (on a per subject basis) comparing the effects
due to HLT vs LLT.

Given our anatomically specific hypothesis, a small volume correction
was used (bilateral Crus I and Crus II mask) to correct for multiple
comparisons. This mask was generated using the atlas of Diedrichsen et
al. (2009). SPMs were thresholded at p � 0.001 for display purposes, and
all significant results reported survived a correction for multiple compar-
isons over the appropriate search volume.

Localization
Anatomical details of significant signal changes were obtained by super-
imposing the SPMs on the T1 canonical single-subject image from the
Montreal Neurological Institute series. Results were checked against nor-
malized T1 images of each subject. The atlas of Duvernoy and Bourgouin
(1999) was used as a general neuroanatomical reference. The atlases of
Schmahman et al. (2000) and Diedrichsen et al. (2009) were used as a
specific neuroanatomical reference for cerebellar activations. We used
the nomenclature of Larsell and Jansen (1972) to label cerebellar lobules.
The SPM anatomy toolbox (Eickhoff et al., 2005) was used to establish
cytoarchitectonic probabilities where applicable.

Results
Behavioral results: dual task
To assess the levels of automaticity attained by subjects, it was
important to determine the robustness of the task to distractors.
For this reason, we used a dual-task paradigm before and after the
main scanning session. A two-way repeated-measures ANOVA
was used to investigate differences in both RTs and error rates
before and after scanning (sessions 3 and 5) for the two condi-
tions (Fig. 2). When RT was the dependent variable, only trials
with correct responses were used. There was a main effect of the
sessions: RTs were significantly faster in session 5 than in session
3 (F(11,198) � 10.97; p � 0.001). There was also a significant main
effect of condition (F(1,18) � 18.75; p � 0.001): RTs in HL were
significantly faster than in LL. This main effect indicates that
differential reinforcement schedules applied in the prior training
session (session 2) were effective in manipulating levels of auto-
maticity attained during the training that occurred in session 4.
There was also a significant condition-by-session interaction ef-
fect (F(11,198) � 2.38; p � 0.01): the RT difference between con-
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ditions was greater after the session 4 scan compared with the
difference before the scan.

Similar results were obtained when error rates were the de-
pendent variable. Our subject’s error rates showed significant
main effects of session (F(1,18) � 13.182; p � 0.005) and condition
(F(11,198) � 8.214; p � 0.05). There was also a significant interac-
tion (F(11,198) � 3.955; p � 0.05). Error rates were lower in the HL
condition than in the LL condition, lower in session 5 than in
session 3, and the difference between conditions was greater in
session 5 than in session 3. These results, particularly the signifi-
cant interaction terms, demonstrate that there were significant
improvements in the level of automaticity during the fMRI ses-
sion (session 4) that intervened between the two dual-task ses-
sions (sessions 3 and 5). Taking the RT and error data together,
we conclude that automaticity was greater in HL trials than in LL
trials, and that this effect was greater in session 5 than in session 3.

Behavioral results: learning during scanning (session 4)
RTs and error rates were analyzed using two-way repeated-
measures ANOVAs. Only correctly executed trials were included
in this analysis. RTs during the training and scanning session
(session 4) showed no significant effects of trial (F(1,17) � 0; p �
0.99), condition (F(6,102) � 0.616; p � 0.72), or trial-by-condition
interactions (F(6,102) � 1.44; p � 0.21. On these error-free trials,
training in the previous initial training session (session 2) was
therefore effective in ensuring that overt performance reached
a plateau before session 4. The time-by-condition interactions
observed in our imaging results are better explained by
changes in automaticity (see Behavioral results: dual task,
above) than by overt improvement in RT performance.

Subjects showed a significant difference in error rates between
conditions (F(1,18) � 19.13; p � 0.001): the LL condition was
associated with more response errors. There was also a significant
main effect of trial (F(5,90) � 9.77; p � 0.001). We did not find a
significant trial-by-condition interaction (F(5,90) � 2.1; p �
0.073). However, the processing of errors cannot explain our
neuroimaging results because trials in which there were errors
were excluded from the fMRI analysis.

Functional imaging
Our differential reinforcement schedule resulted in differential
levels of automaticity between HL and LL conditions. Our hy-
pothesis predicted that differences between HL and LL condi-
tions that were modulated by practice (a time � condition

interaction) would be found in cerebellar cortical areas con-
nected with the PFC.

As hypothesized, excitability changes time locked to the in-
creasingly automatic processing of instruction cues were found in
prefrontal-projecting cerebellar territories (Crus I). The signifi-
cant effect lay between the superior posterior fissure and the hor-
izontal fissure of the right hemisphere (Fig. 3). Figure 3 also
shows the temporal dynamics of the BOLD signal that exhibited
the time-by-condition interaction in session 4. Activity related to
the increasingly automatic processing of HL instruction cues de-
creased during scanning, while BOLD activity remained stable in
the LL condition. These effects are not explained by the erroneous
processing of instruction cues, or by the error feedback itself,
since the reductions in BOLD activity were time locked to cues in
which trials were correctly performed (other trials were ex-
cluded), and not to any other part of the trial, such as those in
which error feedback was delivered.

Speculatively, the stable responses in the LL condition are
consistent with the relatively late engagement of cerebellar plas-
ticity. LL trials may represent a state through which the HL trials
have already passed. It is possible that cerebellar plasticity is only
engaged after a certain level of learning has been achieved in other
systems. This possibility may be tested empirically in future work
by continuing to train LL trials until they achieve the same levels
of automaticity as those of the HL trials in this experiment. One
could then test whether the same areas of the cerebellar cortex
exhibit learning-related changes in excitability.

Discussion
First-order rules can be those in which a given response is arbi-
trarily paired with a specific stimulus property. In contrast,
second-order rules are more abstract because they specify which
rule set to apply. Some suggest that habit formation involves the
automation of first-order rules through plastic mechanisms in
the basal ganglia (Yin and Knowlton, 2006; Ashby et al., 2010).
However, this view is not universally accepted (Wise, 1996; Bal-
leine et al., 2009; Desmurget and Turner, 2010). Networks im-
portant for automation of first-order rules likely include
cerebellar circuitry (Bracke-Tolkmitt et al., 1989; Canavan et al.,
1994; Balsters and Ramnani, 2008). Here, we provide evidence
that cerebellar plasticity may underlie such learning (Ramnani,
2006).

We tested the hypothesis that areas of the cerebellar cortex
interconnected with the PFC exhibited signatures of plasticity as
the execution of first-order rules became increasingly automatic
(Ramnani, 2006). Under dual-task conditions, performance on
the application of rules to symbolic cues improved through re-
peated practice during scanning. Performance under dual-task
conditions was better following training compared with perfor-
mance before training, and furthermore, the improvement for
cues that were reinforced more before scanning (HL) was greater
than that for cues that were reinforced less (LL) (Fig. 2). This
suggests that the processing of these cues became automatic as a
result of practice, and the rate at which it became automatic
depended on the level of reinforcement before practice.

We identified activity time locked to symbolic instruction
cues that changed from trial to trial, and the rate depended on
whether performance became automatic at slow (LL cues) or fast
(HL cues) rates. We have not just used time-by-condition inter-
actions to study cerebellar adaptation (Friston et al., 1992) but
have demonstrated differential adaptation by manipulating the
automation of information processing. This constitutes a three-
way interaction among cue, time, and the degree of automation.

Figure 2. Reaction time behavior: reaction times in each session. HL, Black; LL, gray. Sub-
jects’ reaction times were the same in HL and LL conditions in both initial training (S2) before
scanning and during scanning itself (S4). However, HL trials became more automatic than LL
trials (the RT differences between HL and LL were larger in S5 than in S3). It is important to note
that the errors themselves did not contribute to the trial-by-condition interaction reported in
the cerebellum since activity was time locked to instruction cues, not motor responses or errors,
and only correctly executed trials were included in the regressors related to this contrast. The
decline in error rate is therefore unlikely to explain our observation that cerebellar activity
decreased.

Balsters and Ramnani • Cerebellar Plasticity and Automation of Rule-Related Processing J. Neurosci., February 9, 2011 • 31(6):2305–2312 • 2309



This difference in cerebellar adaptation
can only be explained by a difference in
the automation of rule-based learning and
is orthogonal to cerebellar adaptation to
execution per se. In line with our hypoth-
esis, activity in Crus I was time locked to
the processing of HL cues, which declined
rapidly compared with LL cues (Fig. 3).
The statistical effects found in Crus I were
greater than for any other region (see sup-
plemental Table 3, available at www.
jneurosci.org as supplemental material).
Whereas previous studies have demon-
strated such plasticity in the human cere-
bellum for motor learning (Imamizu et
al., 2000, 2003; Ramnani et al., 2000; Ram-
nani and Passingham, 2001; Ungerleider
et al., 2002; van Mier et al., 2004; Miall and
Jenkinson, 2005; Penhune and Doyon, 2005; Puttemans et al.,
2005), for the first time our study demonstrates plastic changes in
cerebellar cortical parts of the “prefrontal loop” that occur as a
direct consequence of manipulating the automaticity of rule-
based information processing. Such activity reflects the acquisi-
tion of internal models of prefrontal information processing that
contribute to the automatic execution of cognitive operations
(Balsters and Ramnani, 2008).

Cerebellar cortical physiology and synaptic plasticity
Was the directionality of the changes observed in our study phys-
iologically plausible? Among the many models that attempt to
explain cerebellar plasticity at the cellular level (Hansel et al.,
2001; Kim and Linden, 2007), long-term depression (LTD) re-
mains one of the most influential (Ogasawara et al., 2008) partly
because it is consistent with classic models that explain cerebellar
learning in terms of changes in the excitability of PC-parallel fiber
(PF) inputs. Memory formation is explained in terms of concur-
rent PF and climbing fiber inputs that depress the sensitivity of
PC-PF inputs, leading eventually to a reduction in simple spike
frequency in in vitro cerebellar preparations. While the progres-
sive depression in simple spike activity observed in LTD is con-
sistent with decreasing activity in our study, such observations
are more compelling if made in vivo (Ito and Kano, 1982; Ito et
al., 1982; Ito, 1984; Hartell, 2002).

Gilbert and Thach (1977), recording from PCs in cerebellar
lobules III, IV, and V of rhesus monkeys, found a high frequency
of complex and simple spikes at the start of learning, which de-
clined to background levels as learning progressed. Classical eye-
blink conditioning, a simple form of cerebellar-dependent motor
learning (De Zeeuw and Yeo, 2005; Lepora et al., 2009), is also
accompanied by a learning-dependent decline in the frequency of
simple spikes following the onset of predictive conditioned stim-
uli that generate conditioned responses (Jirenhed et al., 2007).
Similarly, Medina and Lisberger (2008) investigated excitability
changes in PCs in the monkey cerebellum during smooth pursuit
eye movement adaptation, and also reported a progressive de-
pression in simple spike activity and decreases in complex spike
probability in PCs. Furthermore, the complex spikes on a given
trial corresponded to a depression in simple spikes on the follow-
ing trial. These studies provide support for the hypothesis that
changes in PC-PF transmission encodes aspects of memory traces
associated with cerebellar motor learning.

The directionality of change observed in our study is the same
as that observed in these experiments. Could declining BOLD

signal in our study have been caused by learning-related declines
in complex and simple spikes? The cerebellar cortex is an impor-
tant model for establishing in vivo relationships among neural
activity, blood flow, and tissue oxygenation (the latter two being
important contributors to the BOLD signal). Cerebellar blood
flow increases monotonically with summed field potentials
caused by climbing and PF stimulation (Mathiesen et al., 1998),
suggesting that decreasing BOLD signal in our study is consistent
with decreasing discharge rates in simple and/or complex spikes.
However, synaptic inputs to PCs contribute to cerebellar blood
flow more reliably than postsynaptic effects such as simple and
complex spikes (Gold and Lauritzen, 2002; Thomsen et al., 2004).
There may be a more reliable relationship between oxygen con-
sumption (component of the BOLD effect) and postsynaptic
neural activity in the cerebellar cortex. Oxygen consumption in-
creases linearly with local field potentials caused by both climbing
fiber (Offenhauser et al., 2005) and PF stimulation (Thomsen et
al., 2009), and appears to be dependent upon postsynaptic pro-
cesses, most likely in PCs.

It has been suggested that the uniformity of cellular organiza-
tion across the cerebellar cortex implies uniformity in the nature
of the information processing. The processes that took place in
Crus I as the application of rules became increasingly skilled and
automatic were probably comparable to those discussed above in
which motor skills are acquired. We suggest that learning-related
decreases in BOLD activity observed in our study may have been
caused by plastic processes that involve learning-related de-
creases in simple and complex spikes or the synaptic events cor-
related with spiking activity.

Dual systems: automatic versus controlled processing
Shiffrin and Schneider (Schneider and Shiffrin, 1977; Shiffrin
and Schneider, 1977) proposed a “dual-process” account of in-
formation processing that distinguished between two particular
modes. In one, information processing is effortful and “con-
trolled,” and learning enables a transition to another in which it is
“automatic” and robust to distractors. Friston et al. (1992) sys-
tematically investigated the effects of motor learning in the cere-
bellum by introducing the use of time-by-condition interactions
(see Materials and Methods). These test for changes in signal over
time that are driven specifically by learning rather than other
time-varying confounds unrelated to learning [e.g., physiological
or scanner drift (Bandettini et al., 1993; Smith et al., 1999)]. It has
been previously suggested that areas in the lateral parts of the PFC
are important for earlier phases where attention is required for

Figure 3. a, b, Cerebellar activations during training to automaticity: section from Schmahmann et al. (2000) cerebellum atlas
(a) comparable to that in b; excitability changes in event-related BOLD activity in Crus I associated with the condition in which there
are greater changes in automaticity (b); data points represent the means and SEs of estimated peak hemodynamic response
amplitudes for each trial in HLT and LLT (c). These are derived from the subject-specific fitted responses in SPM. Lines of best fit were
calculated using linear least squares. HL, Blue; LL, red.
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performance. Prefrontal activity sustained over working memory
delays is suppressed by distractors that cause forgetting of re-
hearsed material (Sakai et al., 2002), elevated when subjects start
to learn a novel sequence, and much less active during the execu-
tion of prelearned sequences executed automatically (Jueptner et
al., 1997a,b). Attending to prelearned sequences even though
they can be executed automatically, reactivates the PFC (Jueptner
et al., 1997a). Hence, prefrontal circuits are engaged when there is
a requirement to attend to actions, as in the early phases of learn-
ing. Jueptner et al. (1997b) demonstrated bilateral activity in the
cerebellar cortex that was greater during the performance of new
sequences than prelearned sequences. These authors have not
localized activity to particular cerebellar structures, but we find
their coordinates to be localized to Crus II—a cerebellar target of
the PFC in monkeys (Kelly and Strick, 2003). In these studies, it is
not possible to discriminate the experimental variance ascribed
to motor learning and rule learning as it is in the present experi-
mental design, but, considering the rule-related requirements of
their experiment, the profile of activity is consistent with ours.
The progress to automaticity in such studies may be supported by
interactions between lateral parts of the PFC and interconnected
areas in the cerebellar cortex.

We report that increasingly automatic execution of first-order
rules is accompanied by changes in excitability in a cerebellar
target of the PFC. This parallels findings that report excitability
changes in cerebellar targets of the motor system during motor
learning. It remains for future work to test whether such plasticity
shares common cellular mechanisms to support both forms of
learning. Future work from our laboratory will investigate
whether higher-order rules engage the cerebellum, and whether
neocortical– cerebellar interactions change during the automa-
tion of abstract rules.
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