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Abstract: When a left-circularly polarised Gaussian light beam, which has 

spin angular momentum (SAM) Jsp = σħ = 1ħ per photon, is incident along 

one of the optic axes of a slab of biaxial crystal it undergoes internal conical 

diffraction and propagates as a hollow cone of light in the crystal. The 

emergent beam is a superposition of equal amplitude zero and first order 

Bessel like beams. The zero order beam is left-circularly polarised with zero 

orbital angular momentum (OAM) Jorb = ℓħ = 0, while the first order beam 

is right-circularly polarized but carries OAM of Jorb = 1ħ per photon. Thus, 

taken together the two beams have zero SAM and Jorb = ½ħ per photon. In 

this paper we examine internal conical diffraction of an elliptically polarised 

beam, which has fractional SAM, and demonstrate an all-optical process for 

the generation light beams with fractional OAM up to ± 1ħ 
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1. Introduction 

In general, a light beam may have both spin angular momentum (SAM) and orbital angular 

momentum (OAM). The SAM per photon is Jsp = σħ and is related to the state of polarization  

for left-circular σ =  + 1, for right-circular σ = −1, while for linearly polarised light σ = 0. For 

elliptically polarised light, Jsp varies from zero to ± 1ħ as the state of polarisation varies from 

linear to circular. Thus non-integer values of σ can readily be obtained. A Gaussian beam can 

only carry SAM. 

Higher order beam modes such as Laguerre-Gaussian or high order Bessel beams can 

possess OAM due to the presence of an azimuthal phase factor i
e

θℓ , where θ is the azimuthal 

angle measured around the beam axis and ℓ is the azimuthal mode index [1–3]. This factor 

corresponds to an optical vortex of topological charge ℓ, in which the phase winds by 2πℓ on a 

closed path around the beam. Experimentally, beams with OAM can be generated via 

numerous methods such as computer-generated fork holograms [4], spiral phase plates [5], q-

plates [6,7], and internal conical diffraction [8,9]. Bessel beams are of special interest due to 

their properties of divergence-less propagation and self-repair [3]. They can be generated 

using internal conical diffraction [8,9], refraction by an axicon [10] or using an annular slit 

and positive lens combination [11]. 

For a scalar beam with an azimuthally symmetric intensity profile the OAM per photon is 

Jorb = ℓħ, where ℓ is the total topological charge. Thus since the topological charge is 

necessarily an integer, the OAM of such a beam is quantized. However, in more general cases 

the OAM is not necessarily connected to the topological charge of the vortices [12], allowing 

for beams with fractional OAM. Such beams have been created by superposing Laguerre-

Gaussian beams of different strength and vortex charge [13,14], as well as by using spiral 

wave plates [5] and q-plates [6]. In a quantum description such beams are superpositions of 

states of different OAM, so that the expectation value of OAM varies continuously. 

In this paper, we describe how a relatively simple and robust all-optical setup, based on 

internal conical refraction, can be used to produce a light beam with continuously tunable 

OAM between 0 and ± ħ per photon. This all optical arrangemenet will provide a rapidly 

switchable method for the generation of high quality beams with fractional OAM, at the 

expense of high efficiency. These high quality beams may find use in optical trapping where 

the rotational frequency of a confined particle is known to be directly proportional to the 
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OAM [14]. Fractional beams provide a discrete multi-dimensional state space for photons, 

which may find applications in quantum information processing and encryption [15,16]. 

2. Conical diffraction of a Gaussian beam 

When a monochromatic light beam is incident on a biaxial crystal, (n1 < n2 < n3), such that the 

wave vector lies along one of the two optic axes then the beam spreads out as a cone in the 

crystal and emerges as a double-ringed cylindrical beam. Conical refraction was predicted by 

Hamilton [17] in 1832 and experimentally observed by Lloyd shortly afterwards [18]. For a 

light beam of finite size it is necessary to account for the corresponding angular spread of the 

wave vector, therefore it is necessary to treat conical refraction as a diffraction problem. The 

wave theory of conical diffraction in the paraxial approximation was first treated by Belskii 

and Khapalyuk [19]. Berry extended this work by showing that the crystal may be represented 

as a linear operator that transforms the transverse field of the incident light beam [20,21]. 

A conically diffracted beam can be represented as the superposition of two beams that are 

associated with Bessel functions of zero (B0) and first order (B1), whose phase and electric 

field distribution is directly dependent on the input polarisation (ex, ey), and is described by 

Eq. (1)a): 
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where w is the beam waist, J0(kPR) and J1(kPR) are the Bessel functions of zero and first-

order and a(P) is the Fourier transform of the transverse profile of the incident field. R0 = AL 

is the radius of the conically diffracted beam in the focal image plane, where the crystal 

anisotropy factor ( )( )3 2 2 1
2

1A n n n n
n

= − −  and L is the length of the crystal. The individual 

beam profiles B0(R,R0,Z) and B1(R,R0,Z) satisfy the free space paraxial wave equation and 

have been shown to correspond very closely to experiment [9]. For a left-circularly polarised 

Gaussian beam input the B0 component is polarised in the same sense with Jsp =  + 1ħ but zero 

OAM, while the B1 is right-circularly polarised (Jsp = −1ħ) and Jorb =  + 1ħ. Thus taken 

together, the combined beam has zero SAM, but OAM of + ½ħ per photon. This 

transformation of SAM to OAM in conical diffraction is discussed in more detail by Berry 

[22]. Since the B0 and B1 fields have opposite circular polarisation a circular analyser can be 

used to isolate B1, which has OAM of 1ħ per photon and half the optical power of the incident 

beam. 

This property of conical diffraction, which converts a Gaussian beam with SAM into a B1 

beam with OAM of the same magnitude, also facilitates the generation of non-integer OAM in 

the range 0 to 1ħ per photon. This can be achieved using an elliptically polarised input beam, 

which corresponds to non-integer SAM. An elliptically-polarised beam is produced when a 

quarter-wave plate is placed in a linearly polarised beam so that the incident polarisation 

makes an angle α with the fast axis. The SAM per photon, Jsp, is given by Eq. (2): 
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As α is changed from 0° to 45° the polarisation of the input beam changes from linear with 

zero SAM, through elliptical with fractional SAM, to circular with SAM of 1ħ. 
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3. Experiment 

A 10 mW 632 nm Gaussian laser beam linearly polarised in the horizontal plane was focused 

using a 5 cm lens to a beam waist size of 52 µm near the input face of a 3 cm slab of the 

biaxial crystal KGd(WO2)4, supplied by CROptics©. At 632 nm the refractive indices are: n1 

= 2.01169, n2 = 2.042198 and n3 = 2.09510 [23]. The crystal was then oriented so that the 

light is incident along one of the optic axes, which lies normal to the input face. Internal 

conical diffraction generates a double ring-shaped beam with radius R0 = 5.9x10
−4

 m and 

0
0

R AL
w w

ρ = =  = 11.3. The experimental set-up is shown in Fig. 1. A λ/2 plate was used to 

rotate the plane of polarisation relative to the fast axis of the λ/4 plate (P1) which was also 

oriented to be horizontal. The azimuthal orientation of the biaxial crystal was chosen so that 

the plane containing the two optic axes also lies in the horizontal plane. 

To select the B1 beam a λ/4 plate (P2) and linear polariser were placed after the crystal. 

The fast axis of wave plate P2 was set orthogonal to the fast axis of P1 and the output linear 

polariser (LP) was rotated so that it is always orthogonal to the linear polarisation incident on 

P1. If α is the angle of the input linear polarisation relative to the fast axis of P1, then the 

polarisation of the light incident on the crystal changes from linear for α = 0°, through 

elliptical, to left-circular for α = 45°. Using matrix algebra to describe the operations of the 

various elements of the setup and Eq. (1)a) for the operation of the crystal, it can be shown 

that for a given angle α, the output optical field is given by: 

 ( ) ( )[ ]1 0
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, , , cos sin2 sin .
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α
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Thus, it can be seen that the output circular analyser only transmits the B1 component of 

the field generated by the crystal. In the case of α = 45° the polarisation into the crystal is left-

circular. The square bracket in Eq. (3) reduces to i
e

θ− , which describes a 2π azimuthal phase 

change. The last term indicates that the linear polarisation at the output is orthogonal to the 

input linear polarisation. Thus the output beam is linearly polarised but carries OAM of 1ħ per 

photon. For α = 0° the light into the crystal is polarised horizontally and the square bracket in 

Eq. (3) reduces to -isinθ. As before, the output is linearly polarised, but now the OAM is zero 

and there is a sin
2
θ azimuthal variation of intensity, with the zero intensity along the 

horizontal plane, which corresponds to θ = 0°. 

 
Fig. 1. Optical setup to generate a light beam with fractional OAM, and also including a Mach-

Zehnder interferometer to record the phase distribution. (See text for explanation) 

The optical setup also included a Mach-Zehnder interferometer to examine the phase 

distribution of the output beam as the polarisation into the crystal was changed. The beam in 

the reference arm is Gaussian and its polarisation was rotated through 90° so that it has the 

same polarization as the output beam. The intensity distributions and fringe patterns were 

recorded using a CCD camera. The camera is in the far-field region of the conical diffracted 

beam, i.e. the region where the ring-shaped beam has undergone diffraction to generate a 

superposition of conically diffracting beams described by Bessel functions [9,21]. 

4. Results and discussion 

We first examined the phase distribution by setting the reference beam collinear with the 

output beam. Figure 2(i) shows the interference pattern for α = 45°, i.e. left-circular light into 
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the crystal. As expected the fringe pattern is a spiral, indicative of an optical field with Jorb =  

+ 1ħ per photon. The output and reference beams were then slightly misaligned to generate a 

wedge fringe pattern. Figure 2(ii-iii) shows the wedge fringe patterns for α = 0° and 45° and 

Fig. 2(iv-v) shows a Mathematica simulation of the same interference patterns. As expected, 

the wedge fringe pattern Fig. 2(iii) for circular polarisation input α = 45° shows the expected 

single fringe dislocation indicative of a beam with ℓ = 1 [2]. 

  
Fig. 2. (i) Collinear interference of Gaussian beam with output beam for circularly polarised 

input. Wedge fringe patterns for non-collinear interference of Gaussian beam with output beam 

for (ii) α = 0° and (iii) α = 45°.  (iv-v) Mathematica simulation of (ii) and (iii). 

The intensity distributions as the angle α was changed from 0° to 45° were also measured. 

These are shown in Fig. 3(a), while Fig. 3(b) shows the same intensity distributions calculated 

using Mathematica using Eq. (3). Linear polarisation into the crystal α = 0° generates a 1st 

order Hermite-Bessel (HB01) beam Fig. 3(a-i), with zero intensity on the same axis as the 

direction of the incident polarisation; there is no fork dislocation in the wedge fringe pattern-

Fig. 2(ii) indicates that there is no OAM present. As α is increased from 0° to 45° the beam 

evolves from a Hermite-Bessel (HB01) distribution to the 1st order Bessel distribution Fig. 

3(a-vi). 

  
Fig. 3. Measured (a) and simulated (b) intensity distributions of the output beam as the 

polarisation of the input to the crystal is changed by setting the angle α of the linear 

polarisation relative to the fast axis of the phase plate P1to the following values:(i) 0°, (ii)8°, 
(iii) 16°, (iv) 24°, (v) 32°, (vi)40°and (vii) 45°.(b) Mathematica simulation of the intensity 

patterns in (a) using Eq. (3). 

Following Berry [22], the angular momentum per photon of a light beam is given by 
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where the first term gives the OAM and the second the SAM. Applying this equation to Eq. 

(3) yields the dependence of the OAM on wave-plate angle α (incident SAM Jsp): 
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2 2 2
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2 1 2 1
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sin
J J

sin sin
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α α
= =

+ +
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Since the B1 field is linearly polarised, the SAM is zero. For α = (0°, 8° 16°, 

24°,32°,40°,45°) the orbital angular momentum expectation valus Jorb = (0, 0.276, 0.827, 

0.852, 0.957, 0.994, 0.999, 1) ħ per photon. The relationship between input SAM and the 

output OAM can be understood by noting (from Eq. (3)) that the power in the transmitted 

beam varies as (sin
2
(2α) + 1)/2. For α = 45° the optical power is split nearly equally between 

the B0 (blocked) and B1 (transmitted) fields. Thus at α = 0° the power in the transmitted field 

is one-quarter of the input power, whereas at α = 45° it is one-half. 

The variation of the output beam OAM with input polarisation can also be understood in 

terms of the superposition of Hermite-Bessel beams [24–25]. For α = 0° the polarisation into 

the crystal is linear and the output is a Hermite-Bessel beam with zero OAM. However, for α 

= 45° the polarisation into the crystal is circular, which may be regarded as a superposition of 

two equal amplitude orthogonal linear states with a π/2 phase difference. These two linear 

states generate orthogonal Hermite-Bessel beams which together form a conically diffracting 

first order Bessel beam with OAM. 

6. Conclusion 

We have shown how internal conical refraction of elliptically polarised light can be used to 

generate a beam with continuously variable fractional OAM in the range 0 to1ħ per photon. 

The value of OAM is varied in a relatively simple way by congruent rotation of a λ/2 plate, to 

tune the ellipticity of the input, with a biaxial crystal and a linear polariser at the output end. 

This technique may find application in the generation of beams with controllable OAM. Such 

control would be useful in optical trapping experiments and as an easily controllable source 

for optical computing. 
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