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1 Introduction

In this paper we propose a method for removing fermion doublers in anomaly free

chiral gauge theories which preserves the gauge invariance in the continuum limit.

This problem is closely related to the problem of constructing an explicitely invariant

regularization for anomaly free chiral gauge models in the continuum case. In spite

of the numerous efforts [1]-[5], this problem for a long time had no satisfactory

solution although some proposals still need further investigations [6]-[9]. (See also

the reviews [10], [11] for more complete references.) Moreover a “no go” theorem has

been proven [12] stating that under some plausible conditions such a regularization

cannot exist. However, recently it was shown that this “no go” theorem may be

avoided. In our paper [13] the explicitely invariant regularization for the continuum

SO(10) model as well as for the standard model was constructed with the help of

the infinite series of the Pauli-Villars (PV) fields. At the same time D. Kaplan [14]

proposed the lattice formulation of chiral gauge models based on the introduction

of the extra dimension. In this model all the doublers may be given large invariant

masses. It was argued that for anomaly free models this construction leads to an

acceptable gauge invariant continuum theory although the proof still has to be given.

It was indicated in the paper [15] that the Kaplan’s procedure is in fact also

equivalent to introducing infinitely many regulator fields and in this sense both

proposals [13, 14] use a similar mechanism.

In this paper we shall show that the method proposed in our paper [13] can

be generalized to lattice gauge models. The regularization which will be described

below breaks a manifest gauge invariance for a finite lattice spacing. However, it

will be proven that in the continuum limit the gauge invariance is restored and no

noninvariant counterterms or fine tuning are needed.

The idea to use a regularization breaking the gauge invariance for a finite lattice

spacing was discussed before [6, 7], but in general such a procedure requires gauge

noninvariant counterterms and fine tuning of the parameters. In our approach this

problem is absent.

The paper is organized as follows. In section 2 we discuss the SO(10) model

with an even number of generations. This case is technically simpler and allows to
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present the main idea in a more transparent way. We firstly remind the construction

of the invariant regularization for the continuum model and then describe the lattice

formulation which leads in the continuum limit to the gauge invariant theory without

doublers. Section 3 is devoted to the discussion of the SO(10) model and the

standard model with the odd number of generations.

2 SO(10) model with an even number of genera-

tions

We start by reminding the main idea of the regularization proposed in our paper

[13].

The unified SO(10) model may be described by the Lagrangian

L = −1

4
(F ij

µν)
2 + i

∑

k

ψ
k

+(∂µ − igAijµ σij)ψ
k
+ (1)

Euclidean space formulation is used although it is not essential. We use the notations

of ref. [16]. Here ψ+ are the 16-component chiral spinors describing quark and

lepton fields. Index k numerates generations. The matrices σij are defined as follows:

σij = 1
2
[Γi,Γj], where Γi are Hermitian 32×32 matrices which satisfy the Clifford

algebra:

[Γi,Γj ]+ = δij (2)

The following equation holds

U−1(R)ΓkU(R) = Rκl(ω)Γe

U(R) = exp{iωklσkl}, (3)

where the matrices Rkl(ω) determine a rotation in a 32-dimensional space.

The mapping R → U(R) defines a 32-dimensional representation of SO(10).

This representation is reducible and to construct the irreducible 16-dimensional

representation one uses the “chiral” projections
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ψ± =
1

2
(1 ± Γ11)ψ , (4)

where

Γ11 = −Γ1Γ2 · · ·Γ10 (5)

We assume also that the spinors ψ+ are Weyl spinors: ψ+ ≡ 1
2
(1 + γ5)ψ+.

In the following we shall consider only the regularization of spinorial loops having

in mind that the Yang-Mills fields may be regularized in a gauge invariant way by

using the higher covariant derivative method [17]. For definiteness the number of

generations is chosen to be equal to 2.

We shall use for the regularization of the spinorial loops some modification of the

Pauli-Villars method introducing the interaction with the auxiliary fermionic spinor

fields ψr and the bosonic spinors φr. The usual obstacle for using the Pauli-Villars

method in chiral theories is the impossibility to introduce the mass term for the

auxiliary fields as the combination ψ̄ψ is equal to zero for Weyl spinors. However

in our case the Majorana mass term may be introduced due to the existence of a

“conjugation” matrix C, satisfying the relation

σTijC = −Cσij . (6)

The expression

Mr(ψ
T
r CDCΓ11ψr + h.c.) , (7)

where CD is the usual charge conjugation matrix, provides a gauge invariant

mass term for the P − V fields. However, in this eq. ψr are the 32-component

spinors ψr = ψr+ +ψr− and not the 16-component “chiral” ones. One cannot write a

gauge invariant mass term using only positive chirality spinors as the combination

ψT+CCDΓ11ψ+ is identically zero.

At first sight we meet again the same problem: the original theory includes only

positive chirality spinors and to introduce the P − V fields we need both positive

and negative chirality spinors. The crucial observation is that for the SO(10) model

the positive and negative chirality SO(10) spinors give the same contribution to

the divergent diagrams. The difference between the positive and negative chirality
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sponors arises only in diagrams with the number of external lines > 4, which are

convergent.

Alternatively, replacing the right-handed spinors by charge conjugated left-

handed ones one can see that the regularization is needed only for parity conserving

part of the diagrams. The parity odd part is different from zero only for the conver-

gent diagrams. This property holds also for the standard model and presumably for

all anomaly free chiral models. Let us prove it for the model under consideration.

The interaction vertex in (1) includes the projection operator 1
2
(1+Γ11). Calcu-

lating a spinorial loop one should take a trace

Tr(σijσkl . . . (1 + Γ11)) (8)

Due to the definition of Γ11, (5), the trace

Tr(σi1j1σi2j2 . . . σinjnΓ11) (9)

is equal to zero if n < 5. Therefore for the divergent diagrams with n ≤ 4 the part

proportional to Γ11 vanishes and the positive and negative chirality spinors give the

same contribution. The total contribution of the 32-component spinor ψ = ψ+ +ψ−

to the divergent diagrams is twice as big as the contribution of the 16-component

“chiral” spinor. Hence if the number of generations in the original Lagrangian (1)

is equal to 2, one can use for its regularization the 32-component spinors ψr with

the mass term (7).

Having this in mind one can take as a regularized Lagrangian the following

expression:

Lreg = i
∑

k

ψ̄k+γ
µ
(
∂µ − igAnlµ σnl

)
ψk+ +

+ i
∑

r

ψ̄rγµ
(
∂µ − igAnlµ σnl

)
ψr + (10)

+ i
∑

s

φ̄sγµΓ11

(
∂µ − igAnlµ σnl

)
φs −

−
(
∑

r

Mr

2
ψ̄rCDCΓ11ψ̄

T
r −

∑

s

Ms

2
φ̄sCDCφ̄

T
s + h.c.

)
.

Here ψr are the fermionic P-V fields and φr are the bosonic ones.
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The Pauli-Villars conditions

2
∑

r

Cr − 2
∑

s

Cs + 2 = 0 (11)

∑

r

CrM
2
r −

∑

s

CsM
2
s = 0 (12)

are assumed. In these equations Ct is the number of the P-V fields with the mass

Mt. The last term in the eq.(11) is 2 because in our case there are 2 generations

of the original fields giving the identical contributions to the spinorial loops. The

factor 2 multiplying Cr and Cs is due to the presence of the P-V fields of both

chiralities giving the identical contribution to the divergent diagrams.

The propagators generated by the Lagrangian (10) look as follows

Sψ̄+
r ψ

+
r

= Sψ̄−

r ψ
−

r
= Sφ̄+

r φ
+
r

= Sφ̄−r φ−r =
k̂

k2 +M2
r

,

Sψ̄−

r ψ̄
+ = Sψ+

r ψ
−

r
= Sφ̄−r φ̄+

r
= Sφ+

r φ
−

r
=
MrCDCΓ11

k2 +M2
r

. (13)

One sees that eqs.(10-13) define a standard Pauli-Villars regularization. If the

conditions (11-12) are fulfilled all spinor loops are finite. At the same time the regu-

larized Lagrangian (10) is manifestly gauge invariant. It is worthwhile to emphasize

that the number of generations being even was crucial for the above discussion. Due

to the presence of P-V fields of both chiralities their contribution to the divergent

diagrams is twice as big as the contribution of one generation of the original fields

ψ+. In the case of the odd number of generations the last term in the eq. (11) would

be replaced by (2n + 1) and this equation cannot be satisfied by a finite number

of P-V fields. Of course, if one allows for fractional values of Cr the eq.( 11) may

be satisfied for the odd number of generations as well. But in this case one cannot

interpret Cr as the number of the P-V fields with the mass Mr and the locality of

the regularized Lagrangian may be lost.

It was shown in our paper [13] that in this case the problem may be solved by

introducing an infinite number of P-V fields.

Obviously the regularization (10) works also for the standard model. The mass

terms being invariant under SO(10) transformations are also invariant with respect

to any subgroups of SO(10) in particular SU(3) × SU(2) × U(1). So to get the

invariant regularization of the standard model it is sufficient to keep in the eq. (10)
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only the gauge fields Akl corresponding to the gluons and electroweak bosons and

put all other gauge fields equal to zero.

Let us generalize the regularization described above to the case of lattice gauge

models. It is well known that in the lattice models all fermionic stats are accompa-

nied by doubler states due to the fact that the lattice fermion propagator

S(p) = (
∑

µ

a−1 sin pµa)
−1 (14)

has poles not only at p = 0, but also in the vicinity of the points p = (πa−1, 0, 0, 0),

(πa−1, πa−1, 0, 0), etc. Following Wilson [18] one can kill these unwanted states by

adding to the lattice action the term

κ

2a

∑

x,µ

(
ψ̄(x)ψ(x+ aµ) + ψ̄(x+ aµ)ψ(x) − 2ψ̄(x)ψ(x)

)
(15)

This term provides all the states but one with the masses of the order a−1 and

therefore cures the desease. In the case of vector gauge theories it may be easily

done gauge invariant by replacing lattice derivatives by the covariant ones. However

it cannot be done for chiral gauge theories and the Wilson term inevitably breaks

the gauge invariance.

Nevertheless it will be shown that using the regularized action of the type (10)

one can introduce Wilson like mass terms in such a way that all doubler states will

acquire the masses of the order of the cut-off and the gauge invariance, although

broken for a finite lattice spacing is restored in the continuum limit. In this process

no gauge non invariant counterterms or fine tuning of the parameters is needed.

The idea is to compensate gauge noninvariant contributions of the original fields

ψ+ by the corresponding contributions of the PV fields. To do that one introduces

the same Wilson like mass term for all the fields ψ+, ψr, φr and chooses the P-V

masses Mr ≪ a−1. Then in the vicinity of p = 0 one can neglect the Wilson terms

recovering the gauge invariant continuum result. On the other hand in the vicinity

of p = (π/a, 0, 0, 0) etc. the leading terms in the integrands of Feynman diagrams

are zero due to the P-V conditions and the remaining contributions vanish when

a→ 0. The formal proof will be given below.

The lattice action for the SO(10) model looks as follows
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I =
∑

x,µ,k

[
− 1

2ia
ψ̄+
k (x)γµUµ(x)ψ

+
k (x+ aµ) −

− κ

a

(
ψ̄+
k (x)CDψ̄

+T
k (x+ aµ) − ψ̄+

k (x)CDψ̄
+T
k (x)

)
+ h.c.

]
+

+
∑

x,µ,r

[
− 1

2ia
ψ̄r(x)γ

µUµ(x)ψr(x+ aµ) − (16)

− κ

a

(
ψ̄r(x)CDψ̄

T
r (x+ aµ) − ψ̄r(x)CDψ̄

T
r (x)

)
− Mr

2
ψ̄r(x)CDCΓ11ψ̄

T
r (x) + h.c.

]

+
∑

x,µ,r

[
− 1

2ia
φ̄r(x)γ

µΓ11Uµ(x)φr(x+ aµ) −
1

2ia
φ̃r(x)γµΓ11Uµ(x)φ̃r(x+ aµ) −

−
(
φ̃r(x)CDφ̄

T
r (x+ aµ) + φ̃r(x+ aµ)CDφ̄

T
r (x) − 2φ̃r(x)CDφ̄

T
r (x)

)
+

+
Mr

2

(
φ̄r(x)CDCφ̄

T
r (x) + φ̃r(x)CDCφ̃

T

r

)
+ h.c.

]

In this equation the index k as before numerates generations. For the moment

we shall take k = 1, 2.

Uµ = exp{igaσijAijµ } (17)

All other notations are the same as in eq. (10) except for the new set of bosonic P-V

fields φ̃r. The fields φ̃r are necessary to make a nonzero mass term φ̄CDφ̃T .

In our model there are several different dimensional parameters like Mr, a
−1,

which in the continuum limit become infinite. It is convenient to introduce one

fixed mass scale λ and take all other masses to be proportional to λ: a−1 = λN ,

Mr = λN δ, etc. The continuum limit corresponds to N → ∞. In the following we

assume that Mr ≪ a−1, i.e. δ < 1. More precise condition will be specified below.

One sees that the action (16) is nothing but a discretization of the gauge invari-

ant continuum Lagrangian (10) except for the presence of the Wilson mass terms

breaking the gauge invariance. Due to these terms each generation of the origi-

nal fields ψk has only one massless state. Correspondingly each P − V field ψr, φr

describes one state with the mass Mr and 15 doublers with the masses ∼ κa−1.

We shall see that when a → 0 the contribution of the doubler states vanishes and

hence we are left with the same set of the Feynman rules as the one defined by the

manifestly gauge invariant Lagrangian (10).

The action (16) generates the propagators of the same type as given by the
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eq. (13) and the additional propagators ψ̄±ψ̄±, φ̄±φ̄±, φ̃±φ̃±.

They look as follows

Sψ̄k

+
ψk

+
=

ŝ

s2 +m2
, (18)

Sψ̄+
r ψ

+
r

= Sψ̄−

r ψ
−

r
= Sψ̄+

r ψ
+
r

= S
φ̃

+

r
φ̃+

r

= −Sφ̄−r φ−r = −S
φ̃
−

r
φ̃−r

=
ŝ

s2 +m2 +M2
r

(19)

Sψ̄+

k
ψ̄+

k

= Sψ+

k
ψ+

k

=
CDm

s2 +m2 +M2
r

, (20)

Sψ̄+
r ψ̄

+
r

= Sψ+
r ψ

+
r

= Sψ̄−

r ψ̄
−

r
= Sψ−

r ψ
−

r
= S

φ̄+
r φ̃

+
r

= S
φ̄−r φ̃

−

r

=
CDm

s2 + (m2 +M2
r )
, (21)

Sψ̄−

r ψ̄
+
r

= Sψ+
r ψ

−

r
= Sφ̄−r φ̄+

r
= S

φ̃
−

r φ̃
+

r

= Sφ+
r φ

−

r
= S

φ̃+
r φ̃

−

r

=
MrCDCΓ11

s2 + (m2 +M2
r )
, (22)

Here

sµ = a−1 sin(pµa) , (23)

m = κa−1
∑

µ

(1 − cos(pµa)) . (24)

Let us show that the doublers contribution vanishes in the limit a→ 0. Consider

for example the polarization operator Πµν . It includes the contributions of all the

fields ψk, ψr, φr, φ̃r and consists of the different pieces corresponding to the different

types of the propagators (18-22) entering the diagram.

The generic form of Πµν is:

Π(ij)(kl)
µν (k) =

π

a∫

−π

a

Tr[V ij
µ (p, q)S(p)V kl

ν (p, q)S(q)]d4p , p+ q + k = 0 (25)

where S(p) stands for one of the propagators (18-22) and Vµ is the interaction vertex

V ij
µ = gγµ

(1 + γ5)

2
σij

(1 + Γ11)

2
cos

[
1

2
(p− q)µa

]
. (26)

We separate the integration domain in eq. (25) into two parts Vin, Vout, defined as

follows

Vin: |p| < λNγ ≪ a−1;Vout: |p| > λNγ , γ <
1

2
. (27)

In the domain Vin|pa| ≪ 1 and one can use the expansion over (pa). We shall

show that the integral over Vin in the limit a→ 0 coincides with the corresponding
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integral generated by the manifestly gauge invariant continuum Lagrangian (10).

Consider firstly the diagrams including the propagators (18-19).

Π(a)
µν ∼ g2

∫ Tr
[
γµσ

ij p̂γνσ
kl(p̂+ k̂)

(
1+γ5

2

)(
1±Γ11

2

)]

[p2 + κ2a2p4 +M2
r ][(p+ k)2 + κ2(p+ k)4a2 +M2

r ]
d4p . (28)

Expanding the denominator in terms of (pa) one gets

Π(a)
µν ≃ g2

∫
Tr

[
γµσij p̂σ

klγν(p̂+ k̂)
(1 + γ5

2

)(1 ± Γ11

2

)]

·
[

1

[p2 +M2
r ][(p+ k)2 +M2

r ]
− κ2p4a2

[p2 +M2
r ]

2[(p+ k)2 +M2
r ]

+ . . .

]
d4p . (29)

The first term in this expression coincides exactly with the continuum expression

generated by the Lagrangian (10). The next terms are majorated by λ2N4γ−2 ∼
aε, ε > 0 and vanish in the limit a→ 0.

The diagrams including the propagators (22) are analyzed in the same way:

Π(b)
µν ∼ g2

∫

Vin

Tr
[
γµσijγνσ

kl
(1 + γ5

2

)(1 ± Γ11

2

)]
.

·
{

M2
r

[p2 +M2
r ][(p + k)2 +M2

r ]
− κ2p4a2M2

r

[p2 +M2
r ]

2[(p+ k)2 +M2
r ]

+ . . .

}
d4p . (30)

Again the first term conicides with the corresponding continuum expression and the

next terms are majorated by N2γ−2M2
r and vanish in the limit a→ 0, if Mr = λN δ,

δ ≤ γ.

Finally the contribution of the propagators (20-21) is proportional to the integral

Πc
µν ∼

∫

Vin

g2d4p
κ2a2p4d4p

[p2 + κ2a2p4 +M2
r ][(p+ k)2 + κ2a2(p+ k)4 +M2

r ]
(31)

and vanishes in the limit a→ 0.

Obviously the same arguments may be repeated for the spinorial loops with three

and more external lines. For all these diagrams the integrals over Vin coincide in

the limit a→ 0 with the corresponding integrals generated by the manifestly gauge

invariant Lagrangian (1).

Now we shall show that the integrals over Vout do not contribute at all to the

continuum limit. Again consider as an example the polarization operator Πµν . The
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sum of the diagrams contributing to Π(a)
µν looks as follows

Π(a)
µν =

∫

Vout

{Tr[γµσij cos(
1

2
(p− q)µa)ŝ(p)γνσ

kl cos(
1

2
(p− q)νa) (32)

·ŝ(−(p+ k))
(1 + γ5

2

)[
2
(1 + Γ11

2

)
(s2(p) +m2(p))−1(s2(p+ k) +m2(p+ k))−1

+
∑

r,±

(1 ± Γ11

2

)
(s2(p+ k) +m2(p+ k) +M2

r )
−1(s2(p) +m2(p) +M2

r )
−1

−2
∑

r,±

(1 ± Γ11

2
(s2(p+ k) +m2(p+ k) +M2

r )
−1(s2(p) +m2(p) +M2

r )
−1]}d4p

Here the first term describes the contribution of the two generations of the orig-

inal fields ψ+
k (hence the factor 2). The second term describes the contribution of

the fermionic P-V fields of both chiralities (hence the summation over ±). The last

term describes the contribution of the bosonic P-V fields (the factor 2 is due to the

presence of the two sets of bosonic fields φs, φ̃s).

As we have already discussed the part proportional to Γ11 vanishes as

Tr(σijσklΓ11) = 0 . (33)

Therefore the summation over ± simply doubles the individual contribution.

In the domain | p |> λNγ the integrand in eq. (32) may be expanded in terms

of M2
r . The zero order term is proportional to

(2 + 2
∑

r

Cr − 4
∑

s

Cs) , (34)

where Cr is the number of fermionic P-V fields with the mass Mr and Cs is the num-

ber of the bosonic P-V fields with the mass Ms. Using the Pauli-Villars conditions

one can make this sum equal to zero.

The first order term is proportional to

∑

r

CrM
2
r − 2

∑

s

CsM
2
s , (35)

which again may be done equal to zero by P-V conditions. The remaining terms are

majorated by a2M4
r and vanish in the limit a→ 0.
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The same reasoning may be applied to the diagrams Π(b)
µν and Π(c)

µν . For example

the integrand in the diagram Π(c)
µν is proportional to

2m2(p)
{

1

[s2(p) +m2(p)][s2(p+ k) +m2(p + k)]
+

+
∑

r

1

[s2(p) +m2(p) +M2
r ][s

2(p+ k) +m2(p+ k) +M2
r ]

− (36)

−
∑

r

1

[s2(p) +m2(p) +M2
r ][s

2(p+ k) +m2(p+ k) +M2
r ]

}

Expanding it in terms of M2
r one sees that the first two terms are zero due to the

P-V conditions and the remaining terms are majorated by a2M4
r .

In the lattice case there are also additional tadpole diagrams which are absent

in the continuum theory. They arise when one expand Uµ(x) in terms of Aµ and

considers the higher order terms. These diagrams are analysed exactly in the same

way and one sees that they do not contribute to the continuum limit.

Generalization to the spinor loops with more than two external lines is absolutely

straightforward. Integrals over Vout vanish in the limit a→ 0 for all spinor loops.

Therefore we proved that for small lattice spacing the Feynman rules for the

spinor loops which follow from the lattice action (16) are identical to the manifestly

gauge invariant rules generated by the continuum Lagrangian (10). To remove

ultraviolet divergencies one needs only the usual gauge invariant counterterms.

3 Regularization of the chiral models with an odd

number of generations.

Now we pass to the discussion of the SO(10) model with an odd number of genera-

tions. Again we start by reminding the procedure for the continuum model [13].

The difficulty with the regularization of the odd number generation model is due

to the fact that the P-V fields always enter with both chiralities, and one cannot

satisfy the P-V condition

2
∑

Cr − 2
∑

Cs + (2n + 1) = 0 (37)

11



by a finite number of P-V fields.

Instead it was proposed in the paper [13] to introduce an infinite system of P-V

fields ψr with the masses Mr = M | r | and Grassmanian parity ε(ψr) = (−1)r−1.

The index r changes from −∞ to +∞, r = 0 corresponds to the original field ψ+,

positive r numerating the positive chirality P-V spinors, negative r numerating the

negative chirality ones.

As it was discussed above the contribution of the positive and negative chirality

spinors to the divergent diagrams are equal. For definites we shall take the number

of generations equal to 1.

The propagators are given by the eqs.(13). The integral corresponding to the

diagrams Π(a)
µν looks as follows

Π(a)
µν (k) =

∫
dp

∑
(−1)rTr[γµσij p̂γνσkl(p̂+ k̂)

(
1+γ5

2

)
]

[p2 −M2r2][(p + k)2 −M2r2]
. (38)

Here we omitted the term proportional to Γ11 because its contribution is equal to

zero as we have shown above.

The leading term in the integrand for p→ ∞ is

∼ Tr[γµσ
ij p̂γνσ

kl(p̂+ k̂)
(1 + γ5

2

)
]

+∞∑

r=−∞

(−1)r

(p2 +M2r2)2
. (39)

Using the representation

+∞∑

r=−∞

(−1)r

(p2 +M2r2)2
= − ∂

∂p2

+∞∑

r=−∞

(−1)r

p2 +M2r2
, (40)

one can do the summation over r explicitely

+∞∑

r=−∞

(−1)r

p2 +M2r2
=

π

MR sinh(πR
M

)
, R2 = p2

0 + p2
1 + p2

2 + p2
3 . (41)

One sees that the leading term in the integrand decreases exponentially.

Next to leading terms are analyzed analogously by expanding the integrand in

the eq.(38) in a series over kµ. The integrands of the corresponding terms are

proportional to
−∞∑

r=−∞

(−1)r

(p2 +M2r2)n
, n > 2 (42)
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and can be calculated by differentiating the eq.(41) with respect to p2. All these

terms are decreasing exponentially and therefore the integral (38) is convergent.

The diagrams Π(b)
µν including the propagators ψ+

r ψ
−
r are treated in the same way.

For example the integrand for Π(b)
µν is proportional to

∞∑

r=−∞
(−1)r

M2r2

[(p+ k)2 +M2r](p2 +M2r2)
. (43)

Representing M2
r in the numerator as (M2r2 + p2) − p2 one reduces the problem

of summation over r to the case considered above. The corresponding functions

decrease exponentially providing the convergence of the integrals.

Generalization to the diagrams with more than two external lines is obvious: all

these diagrams correspond to the convergent integrals.

To analyze the convergence of the regularized diagrams it is not necessary in fact

to expand them in series over kµ. Instead one can use the Feynman representation

1

[p2 +M2
r ](p+ k)2 +M2

r ]
=

1∫

0

dα

[(1 − α)(p2 +M2
r ) + α[(p+ k)2 +M2

r ]]
2
. (44)

Shifting the integration variables pµ, pµ → pµ − αkµ, one can write this expression

in the standard form
1

[p2 + α(1 − α)k2 +M2
r ]

2
. (45)

Now the summation over r can be done explicitly for arbitrary k leading to the same

conclusion about the convergence of the integrals. The representation (45) is also

useful for practical calculations.

Therefore the infinite set of P-V fields with the Majorana masses provides a

gauge invariant regularization in the case of the odd number of generations as well.

Generalization to the lattice models goes along the same lines as for the case

of the even number of generations. The lattice Lagrangian is given by the eq.(16)

where now there is no summation over k, k = 1.

The propagators are given by the eqs.(18-22). To get the analog of the eq.(38)

we choose the following set of P-V fields. The fields ψ(±1), ψ(±2), . . . ψ(±n) are

the fermions with the masses M |r|, and the fields φ(±1), φ(±3), . . . φ(±(2n+1)); φ̃(±1),

13



φ̃(±3), . . . φ̃(±(2n+1) are the bosons with the masses M |r|. As before positive r cor-

respond to the positive chirality fields and negative r correspond to the negative

chirality ones. With this choice the contribution of the fields with the number r to

the integrand of the polarization operator Πµν is proportional to

(−1)r

[s2(p) +m2(p) +M2r2][s2(p+ k) +m2(p+ k) +M2r2]
. (46)

The analog of the eq.(38) for Πa
µν now looks as follows

Π(a)
µν =

π

a∫

−π

a

d4p
+∞∑

r=−∞
(−1)r ·

·
Tr[γµσ

ij ŝ(p) cos[1
2
(p− q)aµ]γµσ

klŝ(p+ k) cos[1
2
(p− q)aν ]

(
1+γ5

2

)
]

[s2(p) +m2(p) +M2r2][s2(p+ k) +m2(p+ k) +M2r2]
(47)

As before we separate the integration domain into Vin: | p |< λNγ ≪ a−1; γ < 1
2
,

Vout: | p |> λNγ. In the domain Vin we can expand the integrand in terms of (pa).

In this way one gets the expression which differs from the continuum expression (38)

only by the presence of the Wilson mass term m2 ≈ κ2a2p4:

Π(a)
µν (k) =

∫

Vin

d4p
∞∑

r=−∞
(−1)r

Tr
[
γµσ

ij p̂γνσ
kl(p̂+ k̂)

(
1+γ5

2

)]

[p2 + κ2p4a2 +M2r2][(p+ k)2 + κ2(p+ k)4a2 +M2r2]

(48)

In the domain | p |< λNγ the Wilson term κ2a2p4 ≪ p2 + M2r2. The series in

eq. (48) converges for any p2 and one can neglect the Wilson term, recovering the

continuum expression (38). In the domain Vout we can expand the integrand of the

eq. (47) in a series over kµ. The zero order term is

Π(a)
µν (k) =

∫

Vout
d4p

+∞∑

r=−∞
(−1)r

Tr
[
γµσ

ij ŝ(p)γν ŝ(p) cos(paµ) cos(paν)
(

1+γ5
2

)]

[s2(p) +m2(p) +M2r2]2
(49)

The summation over r is done in the same way as in the continuum case

+∞∑

r=−∞

(−1)r

[s2(p) +m2(p) +M2r2]
= − ∂

∂s2




π√
M2(s2 +m2) sinh

(
π
√
s2+m2

M

)


 . (50)

For small a this expression decreases exponentially. Therefore the integral over Vout

is equal to zero in the limit a → 0. Next order terms in the series over kµ are
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analyzed in the same way. These arguments are easily extended to any spinor loop.

The corresponding integrals can be written in the form

In =
∫ π

a

−π

a

d4p
+∞∑

r=−∞

n−1∑

l=0

Al(p,Q,Mr)

s2(p+Ql) +m2(p+Ql) +M2r2
(51)

Ql = k1 + · · · + kl .

where Al is a polinomial in M2
r . The summation over r can be done explicitely using

eq. (50). One gets for In

In =
∫ π

a

−π

a

n−1∑

l=0

Ãl(P,Q)√
M2(s2 +m2) sinh

(
π
√
s+m2

M

)d4p (52)

In the domain Vin one can expand the integrand in terms of (pa). The Wilson

term ∼ κ2a2p4 ≪ p2 and can be neglected. Hence we recover the gauge invariant

continuum result.

In the domain Vout,
√
s2 +m2 ≫ M and the integrand vanishes exponentially

when a→ 0.

The final conclusion is that for small a the expression for the spinorial loops in

our lattice model coincides with the manifestly gauge invariant expression generated

by the continuum Lagrangian (10) both in the case of even and odd number of

generations. It is worthwhile to note that in the lattice case it is not necessary to

take infinite number of P-V fields. It is sufficient to take a finite number N1(a)

of such fields which becomes infinite when a → 0. Indeed the series in eq.(52)

is convergent for any p and the integration domain is finite for a 6= 0. Therefore

choosing N1 big enough one can always make the contribution of the remaining

fields
∑∞

|n|=N1
as small as one wishes.

In the continuum limit the number of P-V fields becomes infinite and one gets

the same gauge invariant result.

Up to now we discussed only the spinor loops. There are other diagrams to be

worried about, in particular spinor particle self energy diagrams. In the continuum

case we assumed that the higher covariant derivative regularization was introduced

for the gauge fields. It happens that in the lattice model such a regularization is

also needed. Although for a finite lattice spacing the self energy diagrams are finite
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without any additional regularization in the continuum limit they may require nonin-

variant counterterms like fermion mass renormalization. Higher covariant derivatives

for gauge fields cure this decease.

One modifies the lattice Yang-Mills action as follows:

Sw = − 1

g2

∑
Tr(Uµν + (Uµν)+) → (53)

→ − 1

g2

∑{
Tr Uµν +

(Λ2a2)

g2

[
Tr Uµν(x)Uρ(x)(U

µν(x+ aρ))
+U+

ρ (x)

−Tr Uµν(x)(Uµν(x))+
]}

+ h.c.

where

Uµν = Uµ(x)Uν(x+ aµ)U
+
µ (x+ aν)U

+
ν (x)(no trace). (54)

It leads to the following modification of the gauge field propagator (assuming a

diagonal gauge):

G(p) =

[
1

a2

(∑

µ

cos(pµa) − 1
)]−1

→ (55)

→
[
a2
(∑

µ

(cos(pµa) − 1) + Λ2
(∑

µ

(cos(pµa) − 1)
)(∑

ν

(cos(pνa) − 1)
)]−1

.

Choosing a−
3

2 ≪ Λ ≪ a−2 we can suppress the gauge field propagator so that the

doublers contribution to the fermion self energy and all other diagrams vanishes in

the limit a → 0. To show it one again separates the integration domain into Vin
and Vout and proves that the integrals over Vin coincide with the gauge invariant

continuum limit and the ingetrals over Vout are zero in this limit. Let us consider

as an example the self energy diagram for the original fermion field including the

propagator ψ̄+ψ̄+. In the domain Vin it is given by the integral

∑

in
∼
∫

Vin

κap2d4p

[p2 + κ2a2p4][(p+ k)2 + Λ2a4(p+ k)4]
d4p. (56)

This diagram is majorated by N2γ−1 and as γ < 1
2

vanishes in the limit a→ 0.

The integral over Vout looks as follows

∑

out
∼
∫

Vout

m(p)
[
cos 1

2
(p− q)µa

]2

[s2(p) +m2(p)]
[
a−2

∑
µ(cos(pµa− 1) + Λ2

(∑
µ(cos(pµa) − 1)

)2] (57)
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In the limit a→ 0,
∑

out ≤ Λ−2a−3 → 0.

Note that if the higher covariant derivatives for gauge fields were absent (Λ = 0)

this term would produce an infinite mass renormalization for the fields ψ.

All other diagrams including internal gauge lines may be treated in the same

way demonstrating a manifestly gauge invariant continuum limit.

It completes the proof of the gauge invariance of our construction. The lattice

action (16) together with the higher derivative regularized gauge field action (51)

leads to the continuum theory which is free of doublers and gauge invariant.

4 Discussion

We demonstrated above that the problem of removing the fermion doublers in

anomaly free chiral gauge models may be solved by introducing the lattice action

defined by the eqs. (16),(51). This action breaks the gauge invariance for finite

lattice spacing but the invariance is restored in the continuum limit. The only coun-

terterms which are needed to take a continuum limit are the usual gauge invariant

counterterms. From the point of view of calculations the procedure described above

is quite simple in the case of even number of generations

In this case it is essentially a discretization of the usual Pauli-Villars method. So

in many practical calculations one probably can neglect the third generation which

contains heavy particles and use this simple procedure.

It goes without saying that the arguments presented in this paper used the

weak coupling expansion. It would be of great interest to check their validity in

nonperturbative calculations.
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