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We present a computational analysis of the flow of liquid foam along a smooth wall, as encountered
in the transport of foams in vessels and pipes. We concentrate on the slip of the bubbles at the wall
and present some novel finite element calculations of this motion for the case of fully mobile
gas/liquid interfaces. Our two-dimensional simulations provide for the first time the bubble shapes
and entire flow field, giving detailed insight into the distribution of stresses and dissipation in the
system. In particular, we investigate the relationship between the drag force and the slip velocity of
the bubble, which for small slip velocities obeys power laws, as predicted by previous
semianalytical treatments. © 2006 American Institute of Physics. �DOI: 10.1063/1.2196912�
I. INTRODUCTION

Many important processes in industrial chemistry1,2 and
recent developments in microfluidics3 involve the motion of
liquid foams in vessels and pipes. Such foams consist of
discrete gas bubbles immersed in a continuous liquid phase,2

stabilized by surface active agents �surfactants�. As a result,
they are anything but simple fluids, even though their indi-
vidual components might be.4

The analysis of the flow of such materials presents a
complex problem to experiment, theory, and computer simu-
lation. Here we shall concentrate on one key aspect, namely
wall slip, which refers to the sliding motion of the foam
bubbles along a smooth wall. We will present some novel
simulations of this motion.

Two related experimental scenarios are illustrated in Fig.
1. In the first case, foam is contained between the plates of a
classical rheometer with a smooth wall.5,6 In the second, or-
dered foam structures7,8 are driven through a narrow channel
by a pressure gradient.9 In both cases, the sliding motion of
the foam along the wall is opposed by a dissipative force FD,
which is attributed to the viscous behavior of the liquid
phase at the wall. Roughly speaking, the bubbles “aqua-
plane” on a thick liquid film, the so-called wetting film. FD

increases with the slip velocity U0, but the relationship be-
tween FD and U0 is not the familiar one of simple propor-
tionality, even if the liquid may be assumed to be Newtonian.
The complication resides within the geometry, which
changes with the velocity and entails nontrivial scaling laws.

Previous theoretical treatments used a lubrication ap-
proximation to describe the liquid flow near the wall as a
unidirectional flow, which reduces the calculation of the
bubble shape to the solution of a one-dimensional problem.
These concepts were introduced by Bretherton10 for the slid-
ing motion of individual bubbles, and were extended to
foams and emulsions by Kraynik11 and Princen.12 Recently
they have been re-invoked and elaborated for foams by Ter-
riac et al.13 and Denkov et al.6

These authors derived power laws for the force-velocity

relation:
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FD = �U0
n, �1�

with n=2/3 �commonly called the Bretherton law10� in the
case of tangentially mobile gas/liquid interfaces �zero inter-
face viscosity or zero tangential stress�, and n=1/2 when the
interface is assumed tangentially immobile �infinite interface
viscosity or zero interface velocity�. The prefactor � may be
called the “viscous drag coefficient.”9,14 Its value depends on
the interfacial mobility and the ratio of liquid volume to gas
volume of the system. These power laws were found to hold
for small slip velocities and are in reasonable agreement with
appropriate experiments.3,6,9

Extending current theories to larger slip velocities proves
difficult. Also, neither of the proposed models can provide
the precise shape of the entire gas/liquid interface. We have
therefore undertaken a computational approach, using a finite
element technique, to find the flow pattern of an incompress-
ible fluid coupled with a moving boundary under surface
tension. A detailed description of the model is given in
Sec. II.

Using FEMLAB software �version 3.1�, we can compute
the complete velocity field and interface geometry consistent
with the stress on the interfaces that is associated with the
flow. This is, to our knowledge, the first full-scale simulation
of this kind to be accomplished and offers the prospect of a
reexamination and extension of previous approximative
theories.

In this article, we shall consider in detail only the ideal
of a tangentially mobile interface. Some comments on fully
and partially immobile interfaces are given at the end in
Sec. V.

Finite element techniques have already been employed
to study the drainage in liquid foams,15–17 particularly the
influence of the interfacial shear viscosity on the liquid flow
between bubbles assuming fixed geometries. In our case, the
geometry must be computed together with the flow, as they
are highly interdependent. A specific formulation of the ap-
propriate equations is employed, as described in Sec. III.

The results of our simulation, presented in Sec. IV, are in
excellent agreement with the conclusions of Bretherton10
within the appropriate velocity regime, for which his scaling
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law holds. We extend the present calculations to significantly
higher slip velocities. We are also able to expose many rel-
evant details not previously accessible, since the entire flow
and shape patterns are determined. In particular, the precise
distribution of dissipation can be identified.

II. DEFINITION OF THE MODEL

In keeping with previous work, the model system is two-
dimensional, as illustrated in Fig. 2. A bubble is pressed
against a flat wall, with periodic boundary conditions on ei-
ther side. This represents in effect the near-wall region of an
infinite train of identical bubbles sliding on a liquid film �the
“wetting film”�. The bubbles are separated by thin films
which are connected to the wetting film by so-called Plateau
borders2 �see Fig. 1�b��.

It is convenient to adopt the frame of reference in which
the bubbles are stationary and the wall moves with velocity
U0 �Fig. 2�a��, and we shall do so throughout this article. The
liquid in the wetting film and in the surface Plateau borders
is dragged along by the wall motion.

The gas/liquid interface is required to be in equilibrium
under the various forces acting on it �sketched in Fig. 2�b��.
The stress �= in the liquid consists of an isotropic pressure pL

together with the deviatoric �or shear� stress. This exerts a
normal force on the gas/liquid interface, which is subject to a
surface tension �. There are also short-range repulsive inter-
actions between the interfaces, and between interface and
wall, commonly called the disjoining pressure �.

No stress �e.g., viscous or Marangoni18,19� acts within the
surface in the present model.

The following subsections describe the bulk equations
and the corresponding boundary conditions, which are

FIG. 1. Sketch of two typical experiments to study wall slip of a liquid
foam. �a� Foam is sheared in a rheometer between a smooth and a rough
plate moving at relative velocity U0. �b� A train of equal volume bubbles is
pushed through a narrow channel at velocity U0 by a pressure drop �p.
solved numerically. Two key nondimensional parameters are
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extracted from this formulation, namely the capillary number
Ca, which is proportional to the wall velocity U0, and the
scaled length Lper of the periodic cell, representing the length
of the bubble �see Fig. 2�.

A. Bulk equations

The pressure PG in the gas domain �G is the same ev-
erywhere �pG= PG�. Since only relative pressures have any
significance here, its value is arbitrary and can be set equal to
zero for our purposes:

PG = 0. �2�

With such an offset, the calculated values of the liquid pres-
sures will be negative in some regions.

The pressure pL in the liquid domain �L may be consid-

FIG. 2. Sketch of a sliding bubble. �a� Gas bubbles are immersed in a liquid
of viscosity �B, flow field u�x ,y�, and pressure field pL�x ,y�. They slide
along a smooth wall at velocity U0 and are separated from the wall and from
each other by thin liquid films. In the latter we set a pressure reference,
equivalent to a reservoir at constant pressure. The gas/liquid interface is
assumed to be fully mobile. The bubbles are stationary while the wall moves
at U0. �b� The stress balance on the gas/liquid interface takes into account
the normal stress n · �= · n exerted by the liquid, the surface tension �, the
disjoining pressures � in the thin films and the gas pressure PG. �c� Defi-
nition of the unit cell of length Lper with periodic boundary conditions on
either side �side. The gas/liquid interface �free separates the gas domain �G

and liquid domain �L. On the liquid film boundary �film we apply a special
point boundary condition �pressure reference� at 	film �see �a��.
ered to be the sum of a static pressure PL which obtains
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whenever the system is static, and a dynamic pressure p�x ,y�
which is due to the flow and varies with position.

For low Reynolds numbers and steady incompressible
liquid flow in the domain �L �see Fig. 2�, the velocity field

u = �ux

uy
� �3�

is described by the Stokes equations:

� . �= = 0, �4�

� . u = 0. �5�

Here �= is the stress tensor for a Newtonian liquid, related to
the velocity field by

�= = − pL1= + �B��u + ��u�T� , �6�

where �B is the bulk viscosity. The deformation rate tensor 
=
is given by


= =
1

2
��u + ��u�T� . �7�

Gravity is neglected, as the typical size of a Plateau border is
smaller than 10−3 m, which leads to very small Bond num-
bers �ratio of gravitational to surface tension forces�.

B. Boundary equations

We adopt a set of boundary conditions which are physi-
cally consistent but do not attempt to fully represent any
particular experiment. In general terms:

• The system has translational symmetry, i.e., the pres-
sures on either side of the bubble are equal.

• The thin liquid films separating the bubbles are assumed
to be in equilibrium with a large reservoir at constant
pressure, i.e., the liquid volume is not fixed.

Various notations and features of the boundary conditions are
depicted in Fig. 2.

1. Liquid/wall interface �wall

The wall is moving with a velocity U0 in the x direction
�Fig. 2�a��. We assume that there is no slip between the wall
and the liquid, therefore

u = �U0

0
� . �8�

2. Liquid/liquid side boundaries �side

We apply periodic boundary conditions on u and pL on
the left- and right-hand side. The same periodicity is in effect
imposed on PG, as it is the same in each bubble.

3. Film �film

We assume the liquid to be at rest in the thin film that

separates the bubbles:
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u = �0

0
� . �9�

At a reference point 	film �Fig. 2�a�� we set

pL = PL, �10�

which implies zero dynamic pressure, since p= pL− PL=0
�see Sec. II A�. This is equivalent to saying that the film is in
equilibrium with a liquid reservoir at static pressure PL. It
also implies that the amount of liquid in the system adjusts to
maintain this pressure condition. This is justified in the rhe-
ometer experiments shown in Fig. 1�a�, in which the reser-
voir is provided by the surrounding foam. For the case of
foam flow in narrow tubes it seems more appropriate to ap-
ply a constant volume constraint. This can be implemented in
FEMLAB, but is not considered further in this article.

4. Gas/liquid interface �free

We consider the case of a tangentially mobile gas/liquid
interface, which corresponds to zero interface viscosity or
zero tangential stress exerted by the boundary. Therefore,

u . n = 0,

�11�
n . �= . t = 0,

with n and t being the interface normal and tangent, respec-
tively.

The equilibrium of the normal forces on an element of
free interface of surface tension � and radius of curvature r
requires the local force balance

PG − �r−1 − � + n . �= . n = 0. �12�

r is defined to be positive along the outward normal of the
liquid domain. � represents the disjoining pressure,20 which
provides a short-range, repulsive force between the inter-
faces. The equilibrium condition �12� is essentially that ex-
pressed by the familiar Young-Laplace law.21

In foams the disjoining pressure is a result of the inter-
action of surfactants adsorbed at the interface. A commonly
used expression for � is

��d� =
C

dm , �13�

where d is the separation between the interfaces and C and m
depend on the surfactant and the type of interfaces �gas/
liquid or liquid/wall�. In what follows, � is significant only
in the films of which there are two kinds, namely the thin
film between the bubbles and the wetting film, with disjoin-
ing pressures �GLG and �SLG, respectively. � is therefore
implemented as

� = �GLG + �SLG =
CGLG

dGLG
m +

CSLG

dSLG
m , �14�

with m=8.
In real foams, film thicknesses are of order 10−7 m,

which is very much smaller than the capillary radius
R=O�10−4 m� of the Plateau border. Finite element tech-

niques are not capable of resolving such difference in length
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scales. We therefore implement a nonphysical disjoining
pressure. This is justified, as we are only interested in the
flow regime with thick wetting films, in which the disjoining
pressure is negligible. The inclusion of this artificial disjoin-
ing pressure nevertheless provides some qualitative insight
into its role. For a more detailed discussion see Sec. III D.

C. Scaling

We introduce the following constants for scaling pur-
poses:

velocity scale U = ��B
−1, �15�

pressure scale P = PG − PL, �16�

length scale R = �P−1 �capillary radius� . �17�

The reduced variables are therefore

x̂ = R−1 x , �18�

ŷ = R−1 y , �19�

L̂per = R−1 Lper, �20�

û = U−1 u , �21�

p̂ = P−1 p , �22�

�̂ = R � , �23�

�̂ = R2 � . �24�

As is conventional we introduce the capillary number Ca

Ca =
�BU0

�
. �25�

Equations �4�, �5�, �8�, �9�, and �12� are then simplified to

�̂û = �̂p̂ on �L, �26�

�̂ . û = 0 on �L, �27�

û = �Ca

0
� on �wall, �28�

û = �0

0
� on �film, �29�

n . �=̂ . n − �̂ = �̂S . n on �free, �30�

where �̂S= �I=−n n��̂ denotes the surface gradient operator,
with the surface identity tensor �I=−n n�.22 The rescaling ex-

poses the role of the two key parameters Ca and L̂per. Ca
represents the wall velocity if � and �B are considered fixed,

and L̂per the size of the bubbles through the definition of �L.

The reduced viscous force on the wall F̂D=�−1FD is

given by
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F̂D = �
wall

t . �=̂ . n dx̂ . �31�

Note, for clarity, the symbol Ù will be removed from now on.
Only reduced variables are used.

III. COMPUTATIONAL BACKGROUND

Various methods of addressing the problem of incom-
pressible fluid flow with moving boundaries have been re-
ported in the literature.23–27 Most of them employ a time
dependent Arbitrary Lagrangian-Eulerian �ALE� formulation
of the problem. Its principle resides in defining a fixed ref-
erence domain �ref which is mapped onto the physical do-
main �L by a generally time dependent transformation �
which satisfies appropriate displacement conditions. Using
the inverse of this transformation, the Navier-Stokes equa-
tions are projected onto the reference domain �ref. A finite
element technique is then applied on �ref to define a mesh
and to solve the projected equations.28 Doing so corresponds
to solving the original equations on the mesh mapped by �
onto the deformed domain.

We implement a modified version of this procedure in
FEMLAB to focus on stationary regimes. The following sec-
tions present a brief overview of the formulation to point out
its physical relevance to our problem. For a detailed descrip-
tion we refer the reader to Refs. 23, 24, 26, and 28 and to the
FEMLAB documentation �version 3.1�.

A. Reference domain and deformed domain

Key ingredient of any ALE formulation is the definition
of the transformation � of the reference domain �ref onto the
physical domain �L. For our computations, we chose �ref

such that it is similar to that of the static solution of the
problem �Fig. 3�. �ref is described by �X ,Y� coordinates. It

FIG. 3. A transformation � is computed, which maps the reference domain
�ref onto the deformed physical domain �L. The flow equations are then
mapped onto �ref using �−1 and solved there.
consists of two half Plateau borders with radius of curvature
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Rref with half a liquid film of thickness Tlref /2 and length
Llref above. The Plateau borders are linked by a wetting film
of thickness Tsref such that the total width of �ref matches the
given length of the periodic cell Lper. Rref, Tlref, and Tsref are
defined such that �ref is as close as possible to the expected
deformed domain �L. Llref is kept small to reduce computa-
tion times but large enough to obtain a finite liquid film at the
end of the simulations.

The transformation � maps �X ,Y� in �ref onto �x ,y� in
�L

�x,y� = ��X,Y� , �32�

such that it satisfies the following physical boundary condi-
tions:

• the boundary �film is assumed fixed, i.e., x=X and
y=Y on �film,

• �x ,y� satisfies the normal force equilibrium on the free
interface �30�.

Additional computational conditions are needed to en-
sure that a good quality mesh is obtained after the transfor-
mation. We therefore choose

• a symmetry condition on �wall : �x /�Y =0,
• translational periodic conditions on �side:

�xleft=xright−Lper yleft=yright�.

On �free, the normal force equilibrium �30� does not impose
a condition on the tangential displacement of a node along
the free interface. We therefore introduce the relationship

�x − X�nY − �y − Y�nX = 0. �33�

This ensures that a point on the interface is displaced along
the normal of �ref. After implementing these boundary con-
ditions, the motion of a point in the interior of the domain is
defined by the partial differential equation

�� = 0. �34�

Although some recent work24 reports improved results with
more complex descriptions of �, the one presented here
proved sufficient for our problem.

B. Weak formulation of the force balance
on the interface

The various conditions given in Sec. III A define a
closed set of equations which can be solved by a finite ele-
ment procedure. For this, a “weak formulation” of Eq. �30� is
needed. This well known feature of finite element techniques
gives less restriction on the solution and more precise
results.28 The weak formulation of Eq. �30� has been derived
by Cairncross24 for the three-dimensional case.

For a one-dimensional free interface given by its coordi-
nates ���s� ,
�s�� in any local frame �e� ,e
�, the appropriate

form is
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0 = − �PG + n . �= . n� � 
̃
��

�s
ds + �� �


�s

�
̃

�s
�� ��

�s
�2

+ � �


�s
�2	−1/2

ds + �

̃
�


�s
�� ��

�s
�2

+ � �


�s
�2	−1/2�

s=0

s=1

�35�

for any virtual displacement 
̃ �Fig. 4�. Defining the area A
and the length L of the interface as

A =� 

��

�s
ds, L =� �� ��

�s
�2

+ � �


�s
�2	1/2

ds , �36�

the first term on the right-hand side of Eq. �35� can be inter-
preted as a volume term and the second and third as a surface
term for the virtual work.

Equation �35� is only valid for any frame �e� ,e
� as long
as �� /�s�0. As this is not the case for our geometry, we
describe the free interface in the left and right half of our
periodic cell in two different frames, namely

e� =
1
�2

�eX − eY�, e
 =
1
�2

�eX + eY� for the left half,

�37�

e� =
1
�2

�eX + eY�, e
 =
1
�2

�eX − eY� for the right half.

�38�

We implement the reduced form of expression �35� in FEM-

LAB.
The derivations of this section emphasize that the shape

�x ,y� �or equivalently �� ,
� in Eq. �35�� of the physical
domain �L is given by a nonlinear system of equations. It is
strongly coupled with the flow field through the normal
stress term n .�= .n.

C. Projection of the fluid equations
on the reference domain

Equations in Secs. III A and III B govern the deforma-
tion of the reference domain and its associated mesh to fit the

FIG. 4. The weak form can be viewed as the virtual work associated with an
infinitely small displacement of an interface of length L associated with a
liquid domain of area A.
physical domain �L. Instead of solving the Stokes equations
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�26� and �27� on the deformed mesh, they are projected on
the reference mesh via the inverse of � once written in the
weak form.

The weak formulation of Stokes equations is derived
from the virtual power principle. This states that the velocity
field u, the pressure field pL, and their associated stress ten-
sor �= satisfies29

�
�

�=:�ṽ + �u:p̃1= d� = 0, �39�

for any virtual velocity field ṽ which is in accordance with
the kinematic flow conditions and virtual pressure field p̃.

We project Eq. �39� onto �ref by rewriting �u in terms
of the gradient �ref in �X ,Y� coordinates and the inverse
Jacobian J=−1 of �:

�u = �refu . J=−1, �40�

J=−1 =
1

D

�y

�Y
−

�x

�Y

−
�y

�X

�x

�X
� , �41�

D =
�x

�X

�y

�Y
−

�x

�Y

�y

�X
. �42�

Equation �39� then becomes

�
�ref

�− pL1= + �B��refu . J=−1+t��refu . J=−1���:��refṽ . J=−1�

+ p̃1=:��refu . J=−1�Dd�ref = 0. �43�

This expression is linear in terms of the flow variables ux, uy,
and pL and depends on the shape variables �x ,y� by the in-
verse Jacobian J=−1.

D. Simulation

Equations �28�, �29�, �35�, and �43� define the set of
coupled, stationary, nonlinear partial differential equations
for our problem, which we solve in FEMLAB. Both surface
shape and liquid flow variables are included in a single set of
equations to be directly solved using the built-in nonlinear
Newton algorithm.

We start the computations with a small value of Ca for
which we know that the domain deforms very little. As an
initial guess for the Newton algorithm we use the reference
geometry �ref �x=X ,y=Y�, ux=0,uy =0 and p= PL. Having
obtained the converged solution, we iteratively increase Ca
with logarithmic step size. At each step we use the previous
solution as an initial guess while keeping the reference ge-
ometry unchanged. A number of converged solutions for in-
creasing Ca are displayed in Fig. 5 �solid line� together with
the reference domain �dashed line�.

As Ca is varied, we find three distinct regimes, which
are described in the following. Understanding their key fea-
tures allows us to choose physically relevant and correct in-

gredients and parameter ranges for further simulations and
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analysis. To demonstrate the distinction between the regimes,
the force FD on the wall is plotted in Fig. 6�a�. Also shown in
Fig. 6�b� is the quantity

n =
� log�FD�
� log�Ca�

, �44�

which presents the index of the power law relationship in Eq.
�1� whenever it is reasonably constant. The six surfaces dis-
played in Fig. 5 correspond to the � symbols in Fig. 6�a�.

�1� Quasistatic regime �images 1–3 in Fig. 5�: For small Ca
the shape of the bubble is approximately that of the
static case, being fully determined by the disjoining
pressure � and the capillary radius R= PG− PL. FD var-
ies linearly with Ca �dotted line in Fig. 6�.

�2� Scaling regime �images 4–6 in Fig. 5�: As Ca increases,
the normal stresses on the free interface increase, which
has two effects. In the wetting film they eventually over-
come the static value of the disjoining pressure �SLG

�compare Eqs. �30� and �14�� and the film thickens, with
�SLG becoming negligible. Results for FD are given by
the solid line in Fig. 6. The high power m=8 chosen for
the disjoining pressure in Eq. �14� ensures a sharp tran-
sition between the quasistatic regime and the scaling re-
gime, whose transition point we define where
�SLG / �PG− PL��5%. Second there is a progressive de-
formation of the rest of the free interface.

�3� Thick film regime: At even higher capillary number, the
thickness hfilm of the wetting film becomes of the same
order as the capillary radius R. This regime is beyond
the scope of current experiments, nor can it be compared
with previous theoretical results. We identify this regime
with hfilm/R�20% �dashed line in Fig. 6�.

In the remainder of the article we focus on the scaling
regime of intermediate Ca �10−6�Ca�10−1�, which covers
most foam rheology experiments.3,4,6,9,13 In this range, the
wetting film is sufficiently thick such that the disjoining pres-
sure can be neglected.6 However, computing the flow over
the whole range of Ca causes convergence issues due to

FIG. 5. Variation of the bubble shape �solid line� with the capillary number
Ca. The dashed line represents the reference domain �ref.
large mesh deformations �e.g., the wetting film thickness
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goes from 0.001 to 0.2�. We therefore run several cycles of
computations for smaller ranges of Ca �Fig. 7�. For each
cycle, the reference mesh is defined such that we ensure
small mesh deformations over the chosen range of Ca. To
stabilize the computations in the quasistatic regime at the
beginning of each cycle, we artificially adjust the magnitude
of the disjoining pressure such that for the smallest value of
Ca the dynamic stresses in the wetting film are negligible.
Typical orders of magnitude of the implemented reduced
disjoining pressure �=�SLG+�GLG in Eq. �14� are
CSLG=0.01m, CGLG=0.1m, with m=8 �see also caption of
Fig. 7�. dSLG is taken to be the vertical distance between the
interfaces in the case of the wetting film, and dGLG the hori-
zontal distance in the case of the thin film between bubbles.
The results for four such cycles �which together cover the
whole range of Ca� are shown in Fig. 7. Focusing on the
scaling regime �solid line� the results overlap perfectly,
which demonstrates that the chosen disjoining pressures have
no influence on the physical quantities here.

For a two-dimensional �2D� model, computational times
and memory requirements are generally low. However, for

FIG. 6. �a� Reduced friction force �Eq. �31�� exerted by the bubble on the
wall as a function of its velocity, given by Ca. The � symbols correspond to
the six cases shown in Fig. 5. The line styles represent three distinct re-
gimes: disjoining pressure �dotted line�, interest in this article �full line�, and
thick film �dashed line�. �b� Slope of �a� in a log-log plot, which represents
n in Eq. �1� whenever it is reasonably constant.
small Ca values, the dimension of the wetting film are much
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smaller than those of the Plateau borders. This difference in
length scales implies a very fine mesh which dramatically
increases memory requirements. With our calculations we
reached the limits of a 2 Gbytes RAM computer.

IV. RESULTS

A. General description

We have computed the bubble shapes and corresponding
flow fields for a wide range of capillary numbers Ca and
bubble lengths Lper. Key features of the results are schemati-
cally indicated in Fig. 8. The velocity field u�x ,y� and the
dynamic pressure field p�x ,y� are shown in Fig. 9 for three
different values of Ca with Lper=4.

The overall flow pattern consists of a slow-moving, an-
ticlockwise vortex in the Plateau border region and a fast-
moving, plug-like flow in the wetting film. As already em-
phasized by Bretherton,10 the entrance and exit of the wetting
film play a major role in the global behavior of the system.
At the entrance to the narrow film �on the left-hand side�, the
convergence of the flow is associated with a significant in-
crease in pressure. This reaches an approximately constant
value equal to the gas pressure PG so that the film thickness

FIG. 7. Same graphs as in Fig. 6, but here we show four computational
cycles run for different ranges of Ca with appropriately adjusted disjoining
pressures. 1: CSLG= �2�10−4�m, 2: CSLG= �2�10−3�m, 3: CSLG= �2�10−2�m,
and 4: CSLG= �5�10−2�m in Eq. �14�. The symbols mark the beginning and
the end of the scaling regime �solid line� of each cycle according to the
definitions given in the text. All solutions in this regime collapse on a single
curve.
remains almost constant. At the other end of the wetting film
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there is a divergent flow into the Plateau border and a corre-
sponding reduction of pressure. This leads to the formation
of a constriction, which has been theoretically predicted6,10

and experimentally observed6 by various researchers. For
small capillary numbers, this constriction is preceded by a
small bulge. Both features are most evident in Fig. 10, which
shows the variation of curvature along the gas/liquid inter-
face.

The thin films between the bubbles are canted at an
angle, which is required for the external forces to be in bal-
ance.

B. Shape properties

With increasing capillary number Ca the bubble deforms
notably and the thickness of the wetting film grows. This
contributes significantly to an increase of the area AL of the
liquid domain �L, as a consequence of the constant pressure
condition applied in the film between the bubbles �Sec. II B�.

FIG. 8. Sketch of the key features of the bubble shape and flow field ob-
tained in the simulations. We obtain plug-like flow in the wetting film and a
slow-moving vortex in the Plateau border. The downstream end of the wet-
ting film forms a constriction, which is preceded by a small bulge.

FIG. 9. Equilibrium bubble shapes, velocity profiles and dynamic pressure
fields �p�x ,y�= pL− PL� for three different values of Ca. The bubble is
increasingly sheared and the wetting film thickens significantly toward

higher Ca.
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Taking hfilm as the thickness at the center of the wetting film,
its variation with Ca is shown in Fig. 11. This conforms very
well to a power law

hfilm = 1.25 Ca0.66 �45�

over a large range of Ca.
Bretherton10 obtained

hfilm = 1.33 Ca2/3 �46�

for Ca�10−3, using the lubrication approximation. He also
predicted for the height of the constriction

hcons = 0.716 hfilm. �47�

Fitting our simulations for Ca�10−3, we precisely confirm
this relationship. Over the whole range of Ca we find
�Fig. 11�

hcons = 0.753 hfilm. �48�

FIG. 10. Curvature along the free interface for different values of Ca. The
distance on the free interface is measured from the upper left end of the
gas/liquid interface.

FIG. 11. Variation of the wetting film thickness in the middle of the film and
at the constriction with Ca. Both conform very well to power laws �Eqs.

�46� and �48��; see the inserted log-log plot of the same data.
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The increase of area �AL �defined as the difference be-
tween the dynamic and static area AL−AL�Ca=0�� of the
liquid domain with Ca is shown in Fig. 12. It is fitted by a
power law

�AL = 4.23 Ca0.61. �49�

This may be compared with the expectation based on Eq.
�46�, attributing the area increase to the change of film thick-
ness. Recalling that the system is of length Lper=4 there is
rough agreement with this crude estimate.

C. Force on the wall

The tangential component of the viscous stress
�t · �= · n� at the wall is shown in Fig. 13 for a range of Ca.
It varies considerably with position.

FIG. 12. Increase �AL of the liquid area AL with Ca. The results are fitted
well by a power law �Eq. �49��, which can be attributed to the fact that most
of the area increase is related to the thickening of the wetting film, and
hence to Eq. �46�.

FIG. 13. Distribution of the tangential viscous stress �t · �= · n� along the
wall of the periodic cell for various values of Ca �the same as in Fig. 9�. The
stress at the exit of the wetting film displays a pronounced peak of opposite

sign.
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The stress is negligibly small in the wetting film for
small Ca, as a result of the plug-like nature of the flow. For
larger Ca the thickness of the wetting film varies with posi-
tion, leading to finite wall stress. However, this contribution
remains negligible when compared to the stresses concen-
trated at the entrance and exit of the film. These two regions
display significantly different features. On the right-hand
side we observe large positive stress in the constriction,
which is followed by a region of negative stress. For the
left-hand part the stress is in the same direction �negative�
everywhere.

The total dissipative force FD exerted by the bubble on
the wall is given by the integration of the tangential stress
t ·�= ·n along the wall according to Eq. �31�. As Fig. 13 illus-
trates, this is almost entirely associated with the entry of the
liquid into the wetting film; on the other side of the film
contributions of the positive and negative stress before and
after the constriction roughly cancel. This corroborates pre-
vious analyses.6,9,10

A log-log plot of the total force FD vs Ca is shown in
Fig. 14. The inset shows the value of

n =
� log�FD�
� log�Ca�

, �50�

which should be constant wherever FD is related to Ca by a
power law.

Unlike in the case of the wetting film thickness, no
unique power law is satisfactory over the entire range of Ca.
In the limit of small capillary numbers �Ca�10−3�, the lu-
brication approximation power law with n=2/3 is recovered,
as predicted by Bretherton10 and confirmed by Ratulowski.30

In this limit we obtain

FD = 3.60 Ca0.64, �51�

which compares very well to Bretherton’s prediction of
2/3

FIG. 14. Total dissipative force FD �Eq. �31�� exerted on the wall as a
function of Ca. The insert shows the slope, which corresponds to the power
n in the relation F�Can �Eq. �1�� whenever it is reasonably constant. This is
only the case for small Ca.
FD = 3.73 Ca . �52�
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D. Viscous dissipation

An example of the distribution of the local viscous dis-
sipation rate in the system is shown in Fig. 15 for
Ca=4.73�10−2. Pronounced features of this distribution are
again found near the entrance and exit region of the wetting
film. In the entrance region �left�, most dissipation occurs
near the wall. In the exit region �right�, part of the dissipation
is localized on the wall before and after the constriction,
while another part is concentrated on the gas/liquid interface
just after the constriction.

The power required to push the bubble at the velocity
specified by Ca is dissipated throughout the viscous liquid
and therefore given as an integral of local contributions by

FD � Ca = �
�L

2�B
=:
= �53�

in terms of the deformation rate tensor 
= �Eq. �7��.
In order to visualize the variation of the dissipation rate

along the x axis, we integrate 2�B
= :
= along the y axis at each
point. The result is normalized by the total dissipation rate
and plotted in Fig. 16 for various values of Ca.

In contrast to the case of the tangential wall stress �Sec.
IV C�, the contribution of both ends of the wetting film is
approximately equal. The graph also shows that the two re-
gions of significant dissipation increase in width with Ca.
Beyond Ca�10−3 the two regions begin to interact through
the Plateau border.

E. Influence of bubble size

We have described a flow pattern of plug flow and end
effects. Our results remain essentially the same provided that
the wetting film is long enough to permit this plug flow. In
the Bretherton regime �Ca�10−3�, the end effects extend
over regions which scale as Ca1/3.6,10 Thus there remains a
region of plug flow provided that

Lfilm

Ca1/3 � � , �54�

where the constant � is found to be approximately 10 in our

FIG. 15. Viscous dissipation field for Ca=4.73�10−2. It emphasizes the
role of the entrance and the exit of the wetting film.
simulations. To illustrate this, Fig. 17 shows that Lper �Lfilm
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=Lper−2� has negligible influence on the relationship be-
tween FD and Ca. Only when the length of the wetting film
becomes of the order of the Plateau border size �Lfilm�2� do
we begin to see a small deviation in the slope of the curve for
larger Ca. More insight into the disappearance of the flat-film
region in the wetting film for high Ca can be gained in Figs.
10 and 14. The appearance of a finite wall stress at the center
of the wetting film is in agreement with a small but nonzero
dissipation all along the wetting film for Ca=4.73�10−2 and
Lper=4.

V. FINITE INTERFACE MOBILITIES

All previous sections apply to mobile interfaces. In real
systems, a finite surface viscosity or elastic effects oppose
surface shear and the surface is not fully mobile. In some

FIG. 16. Variation of the integrated and normalized viscous dissipation
along the wall of the periodic cell for the same Ca as in Figs. 13 and 10.
This emphasizes the dominance and similar magnitude of the dissipation at
the entrance and exit of the wetting film.

FIG. 17. Investigation of the influence of the bubble length Lper on the
relationship between FD and Ca. The film length is given by Lfilm=Lper−2.
We see that it has little influence. For small values of Lper�4 small devia-

tions begin to show up in the slope at high Ca.
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cases the interface may be considered immobile. This limit-
ing case was considered by Denkov et al.6 However, neither
these authors nor previous authors have confronted the effect
of the inevitable surface stresses associated with finite sur-
face mobilities upon the equilibrium shape of the interface.
With this in mind we have hesitated to explore this case of an
immobile surface, since we are uncertain as to how such
effects may be incorporated in a 2D model.

We did perform some calculations in the spirit of Den-
kov et al.,6 ignoring this problem, and obtained results rea-
sonably consistent with these authors. In particular, the vis-
cous force scales as

FD � Ca0.440, �55�

compared with

FD � Ca0.5. �56�

�Ref. 6�.

VI. CONCLUSION

Our results confirm the theoretical scaling results within
the appropriate regime in which the previous approximations
hold. Roughly speaking, this regime is confined to approxi-
mately Ca�10−3 and Lfilm�10 Ca1/3, as explained in Secs.
IV C and IV E. Beyond this regime, our simulations give
some indication of the departures from scaling which are to
be expected in experiments.

Other insights have been gained from scrutiny of the
detailed flow pattern. Note in particular that the dissipation is
concentrated at both ends of the system, in roughly equal
amounts �Sec. IV D�. There is no necessary relation between
this distribution and that of the tangential viscous stress on
the wall �Sec. IV C�, other than the balance of the total rate
of dissipation and the power input at the wall.

The variation of the liquid area �corresponding to vol-
ume if the system is extended in the third dimension� with
Ca may have relevance to dilatancy in foams. This is an
increase of the amount of liquid in a foam with strain and/or
strain rate, which has been introduced by Weaire and
Hutzler.31 This effect is more familiar in the mechanics of
granular materials but may play a significant role in foams
also. In particular it has been invoked as a possible factor in
the explanation of convective instability.32 The result shown
in Fig. 12 pertains to what we might call surface dynamic
dilatancy.

Most foam flow problems are well described by the sce-
nario presented here, namely one in which the difference in
pressures between adjacent bubbles is much less than the
difference in pressure between the bubbles and the liquid.
This assumption may break down in recent developments in
microfluidics, which deal with highly dissipative foam flow
in narrow channels.3,13 Future simulations will have to inves-
tigate how the additional pressure gradient influences the
bubble shape and also the resulting pressure driven
drainage2 between adjacent Plateau borders. Such studies
may also consider a constant volume constraint in place of

the constant pressure condition �Sec. II B�.
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More generally, there remain many other problems in
foam physics in which this kind of self-consistent simulation
of flow pattern and surface equilibrium would be illuminat-
ing. The success of the present exercise gives some hope of
rapid progress on the three-dimensional problems which link
local behavior to continuum theories of drainage and rheol-
ogy.

An important example is that of the flow through the
node or junction at the confluence of a number of Plateau
borders �usually four� in a bulk foam. The properties of this
junction are significant in the theory of foam drainage. The
effect of its deformation and possible instability at high flow
rates has not been analyzed.
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