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Abstract
It is shown that the signal-to-noise ratio of the magnetic moment fluctuations in the magnetic
stochastic resonance of a quantum uniaxial paramagnet of arbitrary spin value S subjected to a
weak probing ac field H(t) = H cos �t and a dc bias magnetic field H0 displays a pronounced
dependence on S. The dependence arises from the quantum dynamics of spins which differs
markedly from the magnetization dynamics of classical superparamagnets. In the large spin
limit, S → ∞, the quantum solutions reduce to those for a classical uniaxial superparamagnet.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Stochastic resonance (SR) is nowadays a well known but still
remarkable effect which allows one to control the behavior
of periodic signals passing through noisy systems. As a
manifestation of cross-coupling between stochastic and regular
motions, the SR effect is universal in physics (e.g. optics,
mechanics of solids, superconductivity, surface science),
communications engineering (optimal detection and tracing
of signals) as well as in various branches of chemistry and
biology. Comprehensive reviews of diverse aspects of SR
are available in [1–3]. The archetypal theoretical model of
SR [1] is a Brownian particle in a bistable potential subjected
to noise arising from a thermal bath. The particle is excited
by an ac driving force of frequency � close to the rate of
transitions (escape rates) between the wells nevertheless with
amplitude insufficient to induce the transitions. Consequently,
switching may occur only by the combined effect of the
regular ac force and the noise. The spectral density �(ω)

of the motion at the frequency ω = � is then evaluated,
and the resulting signal-to-noise ratio, SNR (or the spectral
power amplification coefficient) is analyzed as a function of the
noise intensity D. The curve SNR(D) has a bell-like shape,
i.e., it passes through a maximum thus exhibiting stochastic

resonance. The maximum in the SNR is interpreted as due to
the remarkable ability of noise to enhance the intensity of the
interwell hoppings in the system.

The behavior of magnetic nanosystems (such as super-
paramagnetic particles, nanoclusters, and molecular magnets)
forced by a weak ac magnetic field is yet another important
manifestation of SR. Here the magnetic anisotropy provides
the multistable states for the magnetization M while the
thermal fluctuations or random field due to the bath which
is in perpetual thermal equilibrium at temperature T are the
source of the noise. These conditions give rise to magnetic
stochastic resonance which again may be defined as the
enhancement of the SNR due to noise [4]. The magnetic
SR has been predicted first theoretically [5–7] and shortly
afterward observed experimentally [8]. The SNR of the
magnetic moment fluctuations is of some interest because
nanoparticle magnetism is a rapidly expanding area of research
with many novel applications. These arise both in the (applied)
area of information storage and in other (fundamental) aspects
such as the crossover between classical and quantum behavior
of the magnetization since single-domain particles exhibit
essentially classical behavior while smaller entities such as
free nanoclusters made of many atoms, molecular clusters, and
molecular magnets exhibit pronounced quantum behavior.
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The main features of the magnetic SR in single-domain
particles [9–13] may be completely understood in terms of
the classical (macrospin) model of the coherent rotation of
the magnetization [14]. Here each particle behaves like a
paramagnetic atom having a magnetic moment ∼104–105 Bohr
magnetons, i.e., S ∼ 104–105. In the presence of a dc bias
field, the normalized magnetic free energy density V of a
uniaxial single-domain particle is given by the asymmetric
bistable potential

V (ϑ) = −kTv−1σ(cos2 ϑ + 2h cos ϑ), (1)

where ϑ is the polar angle, σ = vK ′/(kT ) is the dimensionless
barrier height parameter, v is the volume of the particle, k is
Boltzmann’s constant, T is the absolute temperature, K ′ is the
anisotropy constant, and h = Ms H0/(2K ′) is the bias field
parameter (Ms is the saturation magnetization). In the absence
of the dc field, the magnetization of the uniaxial particle has
two equivalent stable orientations at ϑ = 0 and π , so that it is
an ideal example of a bistable system subjected to noise. Here
the reversal of the classical spin is due to thermal activation and
the rate of transitions between the potential wells is controlled
by the parameter σ , which relates the height K ′v of the
magnetic anisotropy barrier to the thermal energy. Thus one
may regard the inverse of σ as the dimensionless temperature,
i.e., the noise intensity. A dc bias field H0 applied to the
particle parallel to its anisotropy axis breaks the bidirectional
symmetry of the potential. However, an asymmetric two-
minima profile of the potential V (ϑ) survives as long as the
bias field parameter h = Ms H0/(2K ′) � 1.

In contrast, we have little knowledge about magnetic
SR in superparamagnets with smaller spin values S ∼ 10–
100, where quantum effects and quantum-classical crossover
appear. Here the spin reversal is either due to thermal activation
or tunneling or a combination of both and quantum effects
appear. These quantum effects are not the same as those in the
SR for translational Brownian motion (see, e.g., [15, 16] and
references cited therein) because in spite of some analogies
the quantum spin dynamics essentially differ from those of
Brownian particles owing to the different symmetries of the
groups of rotations and translations. Here we shall treat
quantum effects in the SR of the magnetic moment fluctuations
for spin systems taking as an example a uniaxial paramagnet of
arbitrary spin value S in an external dc magnetic field H0 and
a weak probing ac field H(t) = H cos �t applied along the Z
axis, i.e., the axis of symmetry. Thus the system Hamiltonian
has the form

Ĥ = ĤS + ĤSB + ĤB,

where

ĤS = −K S−2 Ŝ2
Z − γ h̄[H0 + H cos(�t)]ŜZ (2)

ŜZ is the Z -component of the spin operator S, h̄ is
Planck’s constant, and γ is the gyromagnetic ratio, ĤSB

describes interaction of the spin with the thermostat, and
ĤB characterizes the thermostat. This Hamiltonian includes
a uniaxial anisotropy term plus the Zeeman coupling with
the external field, comprising a generic model for quantum

relaxation phenomena in uniaxial spin systems such as
molecular magnets, nanoclusters, etc (see, e.g., [17, 18]
and references cited therein). Now Garanin [17] and also
Garcı́a-Palacios and Zueco [18] have recently considered the
longitudinal relaxation of quantum superparamagnets with
Hamiltonian (2) for arbitrary S using the spin density matrix
in the second order of perturbation theory in the spin-bath
coupling. They gave a concise treatment of the spin dynamics
using the quantum Hubbard operator representation of the
evolution equation for the spin density matrix. The nonlinear
relaxation of uniaxial quantum spin systems has also been
treated by Kalmykov et al [19] via the respective evolution
equations for the reduced density matrix and corresponding
phase space distribution function in the high temperature,
Ohmic damping, and weak spin-bath coupling limits using
the methods already available for classical spins. In the
large spin limit, their quantum solutions reduce to those
yielded by the Fokker–Planck equation for a classical uniaxial
superparamagnet [13, 20–24] while for linear response, the
results entirely agree with those given in [17, 18].

2. Basic equations for SNR of uniaxial paramagnets

Here we shall treat the spin size effects in the magnetic SR
for uniaxial quantum paramagnets using the above spin-boson
model via Kubo’s linear response theory [25]. A typical
Fourier component Mω of the longitudinal components of the
magnetization of a spin system is related to the corresponding
Fourier component of a weak applied ac field Hω through the
complex magnetic susceptibility χ(ω) = χ ′(ω) − iχ ′′(ω),
namely,

Mω = χ(ω)Hω. (3)

According to linear response theory [25], χ(ω) is defined
as

χ(ω)

χ0
= 1 − iω

∫ ∞

0
C(t)e−iωt dt, (4)

where

C(t) =
〈∫ β

0 [ŜZ (−iλh̄) − 〈ŜZ 〉0][ŜZ (t) − 〈ŜZ 〉0] dλ
〉

0〈∫ β

0 [ŜZ (−iλh̄) − 〈ŜZ 〉0][ŜZ (0) − 〈ŜZ 〉0] dλ
〉

0

(5)

is the normalized equilibrium correlation function,

χ0 = (γ h̄)2

〈∫ β

0
[ŜZ (−iλh̄) − 〈ŜZ 〉0][ŜZ (0) − 〈ŜZ 〉0] dλ

〉
0
(6)

is the static susceptibility, the brackets 〈 〉0 denote the
equilibrium statistical average, and β = (kT )−1. The
spectral density �

(s)
M (�) of the forced magnetic oscillations

in a field H (t) = H cos(�t) at the excitation frequency �

is �
(s)
M (�) = (H |χ(�)|)2/2 while the noise-induced part

�
(n)
M (�) = χ ′′(�)/(πβ �) is obtained using the fluctuation-

dissipation theorem [1, 13]. Thus on combining the above
equations, one obtains the SNR = �

(s)
M /�

(n)

M of the magnetic
moment fluctuations as

SNR = π �β H 2|χ(�)|2
2χ ′′(�)

. (7)
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The linear response theory result equation (7) is very useful
because of its generality. It shows that the calculation of the
SNR may be reduced to that of the dynamic susceptibility
χ(�), which is a fundamental dynamical characteristic
of any relaxing system. For uniaxial paramagnets with
Hamiltonian (2), χ(�) has been calculated recently in [18, 19].
Using these results, we now estimate quantum effects in the
magnetic SR.

According to equation (4), the behavior of χ(�) in
the frequency domain is completely determined by the time
behavior of the correlation function C(t). For uniaxial
paramagnets, C(t) may be written as the finite discrete set of
relaxation modes [18, 19]

C(t) =
2S∑

k=1

cke−λk t , (8)

where λk are the eigenvalues of the (finite, in the quantum
case) system matrix and

∑2S
k=1 ck = 1. Consequently,

equations (4) and (8) allow us to write χ(�) as the finite sum
of Lorentzians [18, 19]

χ(�)

χ0
=

2S∑
k=1

ck

1 + i�/λk
. (9)

Consequently, the asymptotic behavior of χ(�) in the
extremes of very low and very high frequencies is given by

χ(�)

χ0
∼

{
1 − i�τcor + · · · , � → 0,

−i(�τef)
−1 + · · · , � → ∞,

(10)

where

τcor =
2S∑

k=1

ck/λk and τef =
(

2S∑
k=1

λkck

)−1

. (11)

We remark that the relaxation times so defined τcor and τef

parameterize the time behavior of the correlation function
C(t). Indeed, the integral relaxation time τcor is the area under
C(t), namely, τcor = ∫ ∞

0 C(t) dt , and the effective relaxation
time τef = −1/Ċ(0) gives precise information on the initial
decay of C(t) in the time domain. The relaxation times τcor and
τef can equivalently be given by the analytic formulas [17–19]

τef = 2χSτN∑S
k=1−S [S(S + 1) − k(k − 1)]ρk

, (12)

τcor = 2τN

χS

S∑
k=1−S

[∑S
m=k (m − 〈ŜZ 〉0)ρm

]2

[S(S + 1) − k(k − 1)]ρk
, (13)

where χS = ∑S
m=−S m2ρm − (

∑S
m=−S mρm)2, 〈ŜZ 〉0 =∑S

m=−S mρm , the ρm = e
σ

S2 m2+ 2σh
S m

/Z S are the matrix
elements of the equilibrium density matrix, Z S =∑S

m=−S e
σ

S2 m2+ 2σh
S m is the partition function, σ = βK , h =

h̄γ SH0/(2K ) is a reduced field parameter, and τN is a
characteristic free diffusion time.

Equations (12) and (13) have been derived in [19] in
the weak coupling limit and for Ohmic damping. Thus, the

correlation time characterizing the thermal bath is short enough
to allow one to approximate the stochastic process originating
in it by a Markov process. These approximations may be
used in the high temperature limit, β|εm − εm±1| � 1, where
εm, εm±1 are eigenvalues of the energy. In the parameter range,
where they fail (e.g., throughout the very low temperature
region), more general forms of the phase space and density
matrix equations must be used (given, e.g., in [17, 18]).
Nevertheless, we shall still use the model based on the above
approximation because despite many drawbacks it qualitatively
describes the relaxation in spin systems. Moreover, the model
can be regarded as the direct quantum generalization of the
Langevin formalism used by Brown [14] in his theory of
relaxation of classical superparamagnetic particles.

By analogy with the SNR of the magnetic moment
fluctuations for a classical superparamagnet [13], equation (7)
can be presented as SNR = π(βγ h̄SH )2 R�/(2τN σ), where
the dimensionless SNR factor R� is given by

R� = στN �|χ(�)|2
β(γ h̄S)2χ ′′(�)

. (14)

Thus the relevant quantity is R�. In general, R�, besides
the obvious dependence as in the classical case on the noise
intensity (temperature), the constant (bias) field strength h, and
the frequency of the exciting field �, also depends on the spin
value S. In the adiabatic, � → 0, and very high-frequency,
� → ∞, limits, equation (14) can be considerably simplified
yielding

R0 = τN σχS/(τcorS
2) (15)

and
R∞ = τNσχS/(τef S

2). (16)

In the classical limit, S → ∞, the above results agree in all
respects with the corresponding classical solutions [13] (see
appendix).

3. Results and discussion

As shown in [18, 19], two distinct bands appear in the spectrum
of the imaginary part χ ′′(�) of the susceptibility for a uniaxial
quantum paramagnet. The low-frequency band is due to
the slowest (‘interwell’) relaxation mode. The characteristic
frequency and the half-width of this band are determined by
the smallest nonvanishing eigenvalue λ1 [18, 19]. We remark
that the smallest eigenvalue λ1 is associated with the long time
behavior of C(t) ∼ e−t/τ , t 	 τ , which is dominated by the
longest relaxation (or the reversal) time of the magnetization
τ . The high-frequency band in χ ′′(�) is due to the individual
near degenerate high-frequency modes corresponding to the
eigenvalues λk 	 λ1 (2S � k � 2). Thus, if one is interested
solely in the low-frequency region (�τ � 1), where their
effect may be ignored, the dynamic susceptibility χ(�) may
be approximated as the single Lorentzian [19]

χ(�)

χ0
≈ 1 − i�τcor

1 + i�/λ1
, (17)

3
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Figure 1. Integral relaxation time τcor, equation (13) (dashed lines),
λ−1

1 (crosses), and its analytic approximation τ as rendered by
equation (18) (solid lines) as functions of (a) the field parameter h for
various values of the anisotropy (inverse temperature) parameter σ
and vice versa as functions of (b) the anisotropy (inverse
temperature) parameter σ for various values of the field parameter h
both for S = 10.

where λ−1
1 can also be approximately evaluated as [18]

λ−1
1 = 2τN

χ�

×
S∑

k=1−S

∑S
n=k ρn(n − 〈ŜZ 〉0)

∑k−1
m=−S [� − sgn(m − mb)]ρm

[S(S + 1) − k(k − 1)]ρk
.

(18)

Here � = ∑S
m=−S sgn(m − mb)ρm and

χ� =
S∑

m=−S

m sgn(m − mb)ρm −
(

S∑
m=−S

mρm

)

×
(

S∑
m=−S

sgn(m − mb)ρm

)
,

where

mb = −(S − 1/2)h − 1/2 + Fp[(S − 1/2)h + S + 1/2]

is the quantum number corresponding to the top of the barrier
and Fp[a] denotes the fractional part of a. In the absence of a
dc field (h = 0), equation (18) reduces to a closed analytical
expression for τ given by Villain et al and Würger [26].

Equations (14) and (17) indicate that the low-frequency
behavior of the SNR of a quantum paramagnet is mainly
determined by τcor and τ . The dependences of τcor and τ

on the model parameters (external field, anisotropy constants,
and spin value) may, however, differ markedly. For example,
the behavior of τcor and τ is similar for small dc external
fields only. In strong dc fields, τ can diverge exponentially

Figure 2. Integral relaxation time τcor, equation (13), λ−1
1 (crosses),

and its analytic approximation τ , equation (18), as functions of σ for
h = 0.2 and various S. Diamonds and filled circles: classical limit,
S → ∞, equations (A.6) and (A.4), respectively.

from τcor as in a classical uniaxial paramagnet. This
effect was discovered numerically by Coffey et al [20] for
classical superparamagnets and later explained quantitatively
by Garanin [21] (see also [13], chapter 1 for details). He
showed analytically that the contribution of relaxation modes
other than the overbarrier one to the overall relaxation process
becomes significant for high external fields due to population
depletion of the shallower of the two potential wells of a
bistable potential under the action of a strong external dc field.
The effect being manifested in the exponential divergence
of the two relaxation times. Comparison of τcor and τ as
functions of the field parameter h for various values of σ

and as a function of σ for various values of h are given in
figure 1. The times τcor and τ as functions of the anisotropy
parameter σ for various values of the spin value S are shown
in figure 2. Here τ has been evaluated both by using the
approximate equation (18) and by calculating numerically the
smallest eigenvalue of the system matrix (as described in [19]).
For values of the field h < 0.5, the relative deviation of τ

calculated by either method does not exceed 1%. We see
that the figures 1 and 2 display a pronounced dependence of
both τcor and τ on the field, anisotropy, and spin parameters.
It is apparent from figure 2 that for large S, the quantum
solutions reduce to the corresponding classical ones, however,
they can deviate strongly from each other for small S. Typical
values of S for the quantum-classical crossover are ∼20–50.
In general, the smaller the anisotropy σ is the smaller the S
number required for convergence of the quantum equations to
the classical ones [19].

The SNR in the adiabatic limit � = 0, R�=0, versus the
dimensionless temperature parameter σ−1 is shown in figures 3
and 4 for various values of S and h. The maximum in R0 is

4
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Figure 3. SNR in the adiabatic limit � = 0 as a function of
dimensionless temperature σ−1 (a) for various S and h = 0 and
(b) for various values of the field parameter h and S = 3/2. Solid
lines: equation (15). Filled circles: classical limit, S → ∞,
equations (A.2) and (A.4).

attained at σ−1
max ∼ 0.4–0.6 and it shifts to low temperatures

with increasing S (for the molecular magnet Mn12 acetate with
S = 10, σ−1

max ≈ 0.45 corresponds to T ∼ 30 K). Moreover,
the maximum of the SNR moves to higher temperatures with
increasing h. In the limit σ−1 → 0, R0 → 0 for small
S and h while S increases at finite h, R0 → constant (see
figure 4) because of the temperature dependence of τcor (see
figures 1 and 2) which on increasing S and h, τcor progressively
loses its Arrhenius character. The explanation for this shift
follows because the bias field radically alters the temperature
dependence of the static susceptibility χS of the system [27]. In
a nonzero bias field, the effect of saturation of the longitudinal
magnetization is crucial causing χS to tend to zero at zero
temperature. In general, we see that the quantum effects
can lead to both amplification and attenuation of the SNR.
Meanwhile, we recall that in the classical limit, S → ∞, and,
λ1 from equation (A.6) is exponentially small for σ 	 1 and
decreases rapidly as the system is cooled, while all the other
eigenvalues of the system matrix λk have a non-exponential
dependence on σ . Hence, at any finite frequency � (i.e.,
outside the adiabatic limit), the ratio �/λ1 tends to infinity with
decreasing temperature, T → 0, even at very low frequencies
since the interwell transition is almost ‘frozen out’. In spite
of this, the spin, although confined to a particular potential
well, is not yet completely immobilized and can still take part in
intrawell motion. Thus for � �= 0, R� → const as σ 	 1 (see
figure 5). The function R� versus the dimensionless frequency
�τN is presented in figures 6 and 7 exemplifying the quantum
effects. Here the SNR is a monotonically increasing function
from the low-frequency limit R0 right through to its plateau
value R∞ given by equation (16).

Figure 4. SNR in the adiabatic limit � = 0 as a function of σ−1

(a) for various values of h and S = 10 and (b) for various values of S
and h = 0.3. Solid lines: equation (15). Filled circles: classical limit
S → ∞, equations (A.2) and (A.4).

Figure 5. SNR as a function of σ−1 (a) for various values of �τN

and S = 10 and (b) for various values of S and �τN = 1 in the
absence of the dc bias field (h = 0). Solid lines: the quantum
equations (9) and (14). Filled circles: classical limit, S → ∞.

4. Concluding remarks

We have studied the magnetic SR of a quantum uniaxial
superparamagnet of arbitrary spin S in the high temperature
and weak spin-bath coupling limit. The principal result is that
one may determine the transition from the SR corresponding to
quantum elementary spin relaxation to that pertaining to a giant
spin as a function of the spin size S. In other words, one can
study the evolution of the SR from that an elementary spin to
molecular magnets (S ∼ 10) to nanoclusters (S ∼ 100), and to
classical superparamagnetic particles (S � 1000). Hence, one

5
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Figure 6. SNR as a function of �τN (a) for various values of σ ,
S = 10, and h = 0 and (b) for various values of h and S = 10,
σ = 10. Solid lines: equations (9) and (14). Dashed lines: the
low-frequency quantum equations (17) and (14). Dashed–dotted and
dotted lines: the adiabatic, equation (15), and high-frequency,
equation (16), limits, respectively.

may accurately estimate the value of S (typically in the range
20–50) at which the crossover to classical superparamagnetic
behavior takes place [28]. Thus one may assign a range of
validity as a function of the spin size to the classical Néel–
Brown treatment of a superparamagnetic particle with the
simplest uniaxial anisotropy and Zeeman energy.

Here we have considered the SR in uniaxial superparam-
agnets in weak ac fields and in the simplest configuration (the
direction of the ac and dc magnetic fields coincides with the
easy axis of the magnetization). However, the method may
be generalized to other interesting cases such as the nonlinear
SR in strong ac fields and arbitrary directions of applied fields.
Furthermore, the relatively elementary calculation outlined
above is of particular interest as a basis for future understand-
ing of the SR of spin systems characterized by nonaxially sym-
metric Hamiltonians commonly used to describe the magnetic
properties of molecular magnets and nanoclusters. Now as
shown for classical superparamagnets [12], the SNR in the
magnetic stochastic resonance of single-domain ferromagnetic
nanoparticles having nonaxially symmetric magnetocrystalline
anisotropy exhibits a strong intrinsic dependence on the decay
rate α of the Larmor precession. This dependence (precession
aided relaxation) is due to coupling between longitudinal
relaxation and transverse (precessional) modes arising from
the lack of axial symmetry. The effect, which does not exist
for axially symmetric potentials, may be used to determine
α for quantum spin systems by means of the SR effect. The
extension to particular nonaxially symmetric spin systems such
as biaxial, cubic, etc would also allow one to include spin
size effects in important technological applications involving
magnetic relaxation where tunneling in the presence of a
transverse field influences the behavior of the reversal time,

Figure 7. SNR as a function of �τN for various values of S and
σ = 10, h = 0. Solid lines: equations (9) and (14). Dashed lines: the
low-frequency equations (17) and (14). Dashed–dotted and dotted
lines: the adiabatic, equation (15), and high-frequency, equation (16),
limits, respectively. Filled circles: classical limit, S → ∞.

the switching and hysteresis curves, etc. Furthermore, our
approach can also be applied to the calculation of the nonlinear
effects in the magnetic SR of quantum superparamagnets
driven by a strong ac magnetic field by generalizing the matrix
continued fraction method of solution of the Fokker–Planck
equation for the ac nonlinear response of classical spins [29].
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Appendix. Classical limit

In the classical limit, S → ∞, the normalized longitudinal
dynamic susceptibility χ(�) is also given by equation (4),
where now C(t) from (5) becomes

C(t) = 〈cos ϑ(0) cos ϑ(t)〉0 − 〈cos ϑ〉2
0

〈cos2 ϑ〉0 − 〈cos ϑ〉2
0

. (A.1)

Here 〈cos ϑ〉0 and 〈cos2 ϑ〉0 can be calculated analytically
yielding [13]

〈cos ϑ〉0 = 1

Z

∫ 1

−1
xe−βV (x) dx = eσ sinh(2σh)

σ Z
− h,

〈cos2 ϑ〉0 = 1

Z

∫ 1

−1
x2e−βV (x) dx

= eσ [cosh(2σh) − h sinh(2σh)]
σ Z

+ h2 − 1

2σ
,

where βV (x) = −σ(x2 + 2hx),

Z =
∫ 1

−1
e−βV (x) dx = 1

2

√
π

σ
e−σh2{erfi[(1 + h)

√
σ ]

+ erfi[(1 − h)
√

σ ]}
6
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is the partition function, and erfi(x) = (2/
√

π)
∫ x

0 et2
dt is

the error function of imaginary argument. A simple analytic
equation for χ(�) for a classical superparamagnet is given
in [21, 24].

The classical analogues of equations (15) and (16) are

R0 = τNσ

τcor
(〈cos2 ϑ〉0 − 〈cos ϑ〉2

0), (A.2)

R∞ = τN σ

τef
(〈cos2 ϑ〉0 − 〈cos ϑ〉2

0). (A.3)

τcor and τef can now be expressed instead of summations in
closed integral form as [13, 24]

τcor = 2τN

Z(〈cos2 ϑ〉0 − 〈cos ϑ〉2
0)

×
∫ 1

−1

[∫ x

−1
(z − 〈cos ϑ〉0)e

−βV (z) dz

]2 eβV (x)

1 − x2
dx, (A.4)

τef = 2τN
〈cos2 ϑ〉0 − 〈cos ϑ〉2

0

1 − 〈cos2 ϑ〉0
. (A.5)

Finally, at low temperatures, σ 	 1, the smallest nonvanishing
eigenvalue λ1 = τ−1 can be closely approximated by Brown’s
asymptotic high energy barrier formula for the magnetization
reversal time of a uniaxial superparamagnetic particle in the
presence of a dc field, namely [14],

λ1 = τ−1 ≈ e−σ (1−h)2
σ 3/2 (1 − h2)

τN
√

π
[1 − h + (1 + h)e−4σh].

(A.6)
For h = 0, the corresponding equations for λ1, τcor, and τef are
given in [13, 30].
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[15] Löfstedt R and Coppersmith S N 1994 Phys. Rev. Lett. 72 1947
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