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Abstract

Simulation models are one of the approaches us@wvéstigate greenhouse
gas emissions and potential effects of global wagmon terrestrial ecosystems.
DayCent which is the daily time-step version of tBENTURY biogeochemical
model, and DNDC (the DeNitrification-DeCompositiomodel) were tested against
observed nitrous oxide flux data from a field exment on cut and extensively
grazed pasture located at the Teagasc Oak ParlaiRegeentre, Co. Carlow, Ireland.
The soil was classified as a free draining sandy t@am soil with a pH of 7.3 and a
mean organic carbon and nitrogen content at 0-2@fc88 and 4.4 g k§dry soil,
respectively. The aims of this study were to vaédaayCent and DNDC models for
estimating NO emissions from fertilized humid pasture, and teestigate the
impacts of future climate change on,ON fluxes and biomass production.
Measurements of XD flux were carried out from November 2003 to Nobem2004
using static chambers. Three climate scenariogsaline of measured climatic data
from the weather station at Carlow, and high and l@mperature sensitivity
scenarios predicted by the Community Climate Chabgesortium For Ireland (C4l)
based on the Hadley Centre Global Climate Model dEMs;) and the
Intergovernment Panel on Climate Change (IPCC) Ashlission scenario were
investigated. DayCent predicted cumulativgONflux and biomass production under
fertilized grass with relative deviations of +38%da(-23%) from the measured,
respectively. However, DayCent performs poorly unitte control plots, with flux

relative deviation of (-57%) from the measured. @anson between simulated and
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measured flux suggests that both DayCent modeBporese to N fertilizer and
simulated background flux need to be adjusted. DNi¥€restimated the measured
flux with relative deviations of +132 and +258%edi» overestimation of the effects
of SOC. DayCent, though requiring some calibrafimnirish conditions, simulated
N2O fluxes more consistently than did DNDC. We useyCent to estimate future
fluxes of NO from this field. No significant differences wefeund between
cumulative NO flux under climate change and baseline conditibltsvever, above-
ground grass biomass was significantly increaseuh fihe baseline of 33 t fido 45
(+34%) and 50 (+48%) t dry matter héor the low and high temperature sensitivity
scenario respectively. The increase in above-gramads biomass was mainly due to
the overall effects of high precipitation, temparat and C@ concentration. Our
results indicate that because of high N demandhleyvigorously growing grass,
cumulative NO flux is not projected to increase significantlyder climate change,
unless more N is applied. This was observed foh ble¢ high and low temperature

sensitivity scenarios.
1. Introduction

Nitrous Oxide (NO), on a kg to kg basis, has a global warming gd@keof
approximately 298-310 times that of carbon dioXi@€,) over a 100 year timescale
(Watson et al., 1996; IPCC, 2007) with an atmospHgetime of approximately 120
years (Prather, 1998). The concentration g®Nh the atmosphere has risen from a
pre-industrial level of about 270 ppb to 319 ppl2@®5, and is estimated to be rising
at a rate of 0.8 ppb per annum (IPCC, 2007). Adogrdo the IPCC (2001; 2007)

N0 is responsible for about 6% of the anthropogeaiponent of radiative forcing.

The complex interaction of microbiological processend soil conditions,
such as water content, carbon (C) and nitrogen dditent, temperature and pH
regulates DO dynamics in the soil profile, and determines havd when MO is
released from the soil surface (Granli and Bocknii94). Management practices
such as soil tillage, crop type, and the applicabb nitrogen fertilizers influence the
physical and hydrological condition of the soil atie timing and distribution of

nutrient inputs. This in turn affects the size, pasition andactivity of the soil



O 0 N Ol h W N

[ T T =y =
A W N R O

15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32

microbial population, and therefore, the extenNe® production and emission from
agricultural soils.

Worldwide, agricultural soils, particularly grazeshstures, are the major
single source of pO emissions contributing approximately 46 to 52%haf global
anthropogenic pD flux (Mosier et al., 1998; Olivier et al., 19980eze et al., 1999;
IPCC, 2007). In Europe, grasslands are the majatriboitor to the exchange of
greenhouse gases in the biosphere, with fluxesnatély linked to management
practices. In Europe, about 40% of the agricult@ada is covered by permanent
grassland used for livestock farming (FAO, 2004jasSlands range from intensively
fertilized pure grass swards to extensively manageads-legume mixtures and semi-
natural grasslands, which are often found in maoatess areas or on moist lowland
soils (FAO, 2004). In Ireland, about 80% of theiagtural area and 58% of the total
land area is grassland (Teagasc, 2010; CSO Cerfségrulture, 2010). This

includes grazed pasture, silage, hay meadows ah rgrazing areas.

Changes in the exchange of greenhouse gases begnassiand ecosystems
and the atmosphere may significantly impact on glabmate change. Consequently,
the increase in global mean annual temperatureliqteel to be 1.5-4.8C over the
next 50-100 years, will dramatically affect terredtecosystems (IPCC, 2007). Most
biological and chemical soil processes are strodglyendent on temperature (Shaver
et al., 2000) including decomposition (Shaw andtéja2001), N mineralization and
nitrification (Stark and Firestone, 1996), nutreniptake (BassiriRad, 2000), and
consequently emissions of GN,O and methane (G (Malhi et al., 1990; Raich
and Schlesinger, 1992; Abdalla et al., 2009a) nedpo temperature.

The DayCent (Daily Century) and DNDC (DeNitrifiaat-DeComposition)
models are two widely-used ecosystem biogeochgmistrdels used to estimate
greenhouse gas emissions. The DayCent model iddihe time-step version of the
CENTURY biogeochemical model (Parton et al., 19@fmparison of model results
and observed data have shown that DayCent religibhylates crop yield, SOM
levels, and trace-gas flux for various native arahaged systems (Del Grosso et al.,
2002; Del Grosso et al., 2009). The DNDC model deeloped to assess® NO,

N2 and CQ emissions from agricultural soils (Li et al., 1992 2000). The rainfall

driven process-based model DNDC (Li et al., 1992k wriginally developed for
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USA conditions. It has been used for simulatioraaegional scale for the United
States (Li et al., 1996), China (Li et al., 200@anada (Smith et al., 2010) and Europe
(Kesik et al., 2006). This study is part of an angaresearch programme to measure
and model MO flux from Irish agriculture (Abdalla et al., 2089 and c). The aims
of this study were to validate the DayCent and DNDGdels for estimating JD
emissions from fertilized humid grassland in thedlamds of Ireland, and to

investigate the effect of future climate changeéNg® fluxes and biomass production.

2. Materials and methods
2.1 Field experimental site

A detailed description of the study site can bentbin Abdalla et al. (2009a,
b). It is located at the Oak Park Research Centi@arlow 52 86' N and 6 54 W,
Ireland. The site area~ (7 ha) has an elevation of 56 m a.s.l, a mean anaindall of
824 mm and a mean annual air temperature of®.4 he soil is classified as a sandy
clay loam with a pH of 7.3 and a mean organic carlied nitrogen content at 0-20
cm of 38, and 4.4 g Kgdry soil, respectively. The pasture has been peema
grassland for at least the last 80 years, but i@sghed and reseeded in October
2001 with perennial ryegraskdlium perenne L., cv Cashel) at a density of 13.5 kg
ha' and white cloverTrifoliumrepens L., cv Aran) at a density of 3.4 kg Ha

Silage cutting took place once during the experialeperiod on 1% May
2004 and extensive cattle grazing was from Julile@ember 2003, and then from
July to November 2004 with a stocking rate of 2leata’. Nitrogen in the form of
calcium ammonium nitrate (CAN) was applied at & rat 200 kg N ha y*in two
applications of 128 and 72 kg N han the 2 of April and 27" of May 2004,
respectively. Grazing and cutting took place ontmle field for both the control
and the fertilized plots. Nitrous oxide fluxes wereeasured from four replicated

chambers on the control plots and four replicatehters on the fertilized plots.

2.2 Field N,O fluxes and grass biomass

Measurements of D flux were carried out from November 2003 to
November 2004. Nitrous oxide fluxes were measussdguthe methodology of Smith
et al. (1995). Large chambers were made from sie@lpainted with white paint on

the outside and black paint on the inside to preveterior heating. Chambers
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consisted of two parts: a 52 x 52 x 15°square collar inserted permanently into the
soil over which a 50 x 50 x 30 értid with a plastic septum could be sealed in place
for gas sample collection. To reduce spatial viamataused by excreta patches, we
chose a part of the field which was deemed to peesentative of the whole field, and
used four replicated large static chambers tha¢mml/0.25 mat a distance of 100 m
apart. Previous studies on grassland fields of laimsize used 3-4 replicated

chambers to measure® fluxes (Flechard et al., 2007; Allard et al., 20

After the lids were in place an initial gas samypkes taken and a second was
taken at 60 minutes.Linearity was checked by sampling each half an Houra
closure period of 3 hours. In order to cover mdghe year we sampled every week,
and more intensively (twice a week) following ferer application. Previous studies
of NoO fluxes using static chambers have sampled atuémces ranging from one
hour to two weeks (Mogge et al., 1999; Choudharglet2002; Simek et al., 2004;
Flechard et al., 2007). Samples were taken in tbenimg between 9 and 11 am.
Samples were taken using a 60 ml gas-tight syraftgr flushing of the syringe 3-4
times in the chamber to ensure adequate mixingrafithin the chamber. All 60 ml
of the sample was then injected into a 3 ml gasttigal with a vent needle inserted
into the top of the vial to allow the extra air ghu out. NO concentrations were
measured using a gas chromatograph (Shimadzu GCKyBo, Japan) with electron
capture detection (column and detector temperatwese 30 and 300°C
respectively). The nitrous oxide standard was & D62 ppm NO in synthetic air. A
calibration series was made by proportional dilutxd the standard with pure;NThe
daily flux rate for each chamber and the averaglg flax rate for the four replicates
were calculated using the closed flux chamber tectenequation (Smith et al., 1995;
Baggs et al., 2003). Aboveground biomass samples Wwarvested each 1-2 weeks

from four circular rings of 50 cm diameter.
2.3. Models descriptions

The DayCent model is the daily time step versiothefCENTURY (Parton et
al., 1994) biogeochemical model. DayCent (DelGrossal., 2001; Parton et al.,
1998) simulates fluxes of C and N between the ghimex®, vegetation, and soil. Plant
growth is controlled by nutrient availability, watend temperature. Nutrient supply
is a function of soil organic matter (SOM) deconipos and external nutrient
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additions. Daily maximum/minimum temperature anceggitation, timing and
description of management events and soil textata dre needed as model inputs.
Key sub-models include plant production, SOM decositpon, soil water and
temperature by layer, nitrification and denitriticen, and CH oxidation. Comparison
of model results and plot data has shown that Day@siably simulates crop vyield,
SOM levels, and trace gases (Li et al., 2005; DetGo et al., 2009).

In this study the DNDC model (version 8.9; httpww.dndc.sr.unh.edu/) was
applied. DNDC contains four main sub-models (Liaét 1992; Li, 2000); the soil
climate sub-model calculates hourly and daily senhperature and moisture fluxes in
one dimension, the crop growth sub-model simulatep biomass accumulation and
partitioning, the decomposition sub-model calcidatiecomposition, nitrification,
NH; volatilization and C@production, whilst the denitrification sub-modeddks the
sequential biochemical reduction from nitrate gN@ NO,’, NO, NbO and N based
on soil redox potential and dissolved organic carbo

Measured values of meteorological parameters amdi l@anagement records
were used as input variables to the DayCent and ONibdels (Abdalla et al.,
2009a). Field MO flux data were used for DayCent and DNDC modalglations by
comparing measured and predicte®DNluxes. The models accuracies were evaluated
by calculating the Root Mean Square Error (RMSE) aelative deviation (RD)
between observed and DayCent/DNDC out puts.

RMSE = g(modelled — observetN)*? 1)

RD = (modelled- observed)/observed x 100 (2)
where N is the number of data series. Annual cutiveldlux for models outputs were
calculated as the sum of simulated daily fluxed @€ al., 2003). Soil properties and

climate input data of both models are summarizethiole 1.

2.4. Climate scenarios

The future climate data used in this research wtakstically downscaled by
the Irish National Meteorological Service Research @rgG41, 2008) based on the
Hadley Centre Global Climate Model (Had@Vand the emission scenario (A1B)
published by the Intergovernmental Panel on Clim@tenge (Nakicenovic and
Swart, 2000; IPCC, 2001). Two different temperatsgasitivity scenarios (high and
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low) were investigated to estimate the uncertaintyuture climate (Collins et al.,
2006). A regional climate model, known as R{C#as applied to the HadGMlata in
a process which is known as dynamic downscalingARG based on a model
initially developed by the Rossby Centre and furttheveloped by the C4l project at
Met Eireann. The resultant model data has a hawtaoasolution of 25 km. A full

description is given in the C4l (2008) report.

The baseline scenario is a measured daily climatie skt (1961-1990) from a
nearby weather station in Carlow. The two futurenate scenarios (high and low
temperature sensitivity) investigated in this stady of daily data and for a period of
30 years (2061-2090) from the Had@MNeather input data are maximum and
minimum air temperature and precipitation. £&Oncentrations of 350 and 700 ppmv
were suggested and used in the models for the ibasahd future scenarios,
respectively (IPCC, 1995).

2.5 Statistical analysis

Statistical analyses were carried out using theSRR{GraphPad, San Diego,
USA) and Data Desk (Data Description Inc. New Ydu&§A) software packages.
Flux data was checked for normal distribution and transformed. Regression
analysis and both 1- and 2-way analyses of varigABEOVA) were applied to BD

flux and biomass production.

3. Resultsand discussion
3.1 Model validations and results under baseline scenario

Temporal patterns of XD for the observed and DayCent modelled fluxes from
the fertilized plots were generally similar for ma$ the measured period. However,
DayCent overestimated the influence of added Nlifest by producing two types of
N2O peaks; a smaller one at the time of N applicaaod a higher one later in
August, 2004 (Figure 1). This second higher peak nat observed for the control
plots. Here, as both the fertilized and controtplwere subjected to the same climate
and extensively grazed, it was clear that N avditgbin the soil was the only
difference between the two, suggesting that ther lpeak was due to residual effects
of applied N fertilizer. The model suggests thaplegal fertilizer N is retained in the

soil for long periods (up to September), where otbevironmental factors like
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rainfall and temperature are high (Figure 2), r@sglin a second higher J® peak
(Figure 1). Comparisons over many years showedthieabeight and time of this later
peak depends on the combined effects of highefalhisnd temperature (Figure 2).
Rainfall increases soil moisture and stimulatestdgcation by temporarily reducing
the oxygen diffusion into the soil (Dobbie and SmiR001) and increasing the
solubility of organic carbon and nitrate in thel ¢Bowden and Bormann 1986). High
temperature increases both soil organic matterrdposition and microbial response
to other perturbations, such as fertilization aamhfall (Stanford and Epstein 1974;
Bramley and White, 1990; Antonopoulos, 1999; Wenmraad Katterer, 2006). The
model also overestimated the measured soil wated fpore space values (WFPS;
Figure 3). This overestimation may result in sigraiht flux discrepancies between
the measured and modelled data since WFPS isieatmteterminant of pD flux
(Keller and Reiners, 1994; Ruser et al., 1998; Dembdind Smith, 2001). This
parameter is a key requirement for a reliable satmah of NO (Frolking et al., 1998),
as increasing WFPS may reduce the contribution itffication, and increase
denitrification (Li, 2000; Li et al., 2001).

The second simulated peak resulted in a higher @&tivet N,O flux of 3.6 kg
ha' compared with the measured flux of 2.6 kg-hahich corresponds to a relative
deviation of +38% from the measured flux (Table Zhe regression between
observed and modelled fluxes (y = 0.41x + 0.57panted for 32% of the variation
in the data (RMSE = 2) (Figure 4). However, by exahg this peak, the model gave
approximately similar cumulative X flux to that observed, with a deviation of only
+1%. This is not the case for the control plots rehalthough this second peak was
not observed, the model performed poorly companeabserved data with a relative
deviation of (-57%) RMSE = 0.5 (Table 2 and Figlijeln contrast to Del Grosso et
al. (2008), DayCent underestimated the flux at 2&fertilizer with a cumulative flux
of 0.5 kg ha compared with a cumulative measured flux of 1 Kd.fde comparison
with field data suggests that, for applicationsuafertilised Irish grasslands, DayCent
could be improved by increasing the background gioms of NO (Del Grosso et al.,
2008).

The pattern of simulated grass biomass by the Daty@edel agreed well

with the measured results and the model underestithabserved biomass by (-23%).
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The relationship between the weekly simulated algpeend grass biomass and the
weekly field observed biomass is illustrated inUfey 5. Here, the regression (y =
0.47x + 0.5) accounted for 38% of the variationtie data (RMSE = 0.15).
Comparable results using DayCent were also repddedvheat, rice, maize and
soybean (Stehfest et al., 2007; Del Grosso e2@08). Simulated soil temperature by
DayCent and DNDC compared favourably with measurdsngFigure 6); for
DayCent f = 0.64 and RMSE = 0.57 whilst for DNDE&= 0.88 and RMSE = 0.44.

Simulated emissions of ® flux by the DNDC model showed similar patterns
as the field measured flux for most of the measypedod. However, DNDC
predicted a significantly higher peak, from botle tlertilized and control plots in
February. This higher peak resulted in an annuaiutative NO flux of 6.04 and
3.58 kg NO-N ha’, with annual differences between the measurechastklled flux
of 3.44 and 2.58 kg #D-N ha?, for fertilized and control plots respectively pla 2
and Figure 1). Due to this peak, estimation of ahmumissions was very poor with
relative deviations of +132% (RMSE = 5.2; for fezed plots) and +258% (RMSE =
4; for the control plots) from the measured fluxNDC also significantly
underestimated the observed above-ground bioma3&%y(RMSE = 0.22) (Figure
5). The model (DNDC) is very sensitive to soil argacarbon content (SOC; Li et al.,
1996, 2001; Beheydt et al., 2007; Abdalla et al03&a); a 20% increase in SOC
corresponds to a 58% increase igONflux (Abdalla et al., 2009a). Similar over-
estimates of the effects of initial SOC by DNDC éalso been reported by Li et al.
(1992), Brown et al. (2002) and Hsieh et al. (200BNDC also significantly
overestimates observed WFPS (Figure 3), leadirghigher than observed predicted
flux (Beheydt et al., 2007; Abdalla et al., 2009a).

Although the Daycent model needs to be better patensed for application
in Irish grasslands, both cumulative totalONemission, and the general pattern of
emissions agree quite well with measured data, \mece better than equivalent
estimates from the DNDC model, which significardlyerestimated the observed flux
and underestimated the observed biomass. Improteg parameterisation of
DayCent for Irish grasslands will make the modelsaful tool for testing different
mitigation scenarios, and will enhance the quatifythe reporting to the United

Nations Framework Convention on Climate Change (ONE) through use of an

10
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IPCC tier 3 methodology (IPCC, 2006). In this studgpending on the results of
model validations, we considered that using DayGentestimating the magnitude
and seasonal trends ob®! fluxes and above ground biomass was more suithhte
DNDC.

3.2 Modé results under climate change scenarios

Because the DNDC model significantly overestimatdx$erved MO fluxes and
significantly underestimated observed above grobiodnass, the impacts of future
climate change were investigated using the DayGeatlel only. Two climate
scenarios from the C4l, low and high temperaturesisigity, to provide the highest
and lowest impacts of climate change, were invastdy For each scenario, the
DayCent model was run for a period of 30 years.ufated patterns of JD fluxes,
under both scenarios, were similar to that at éeeline scenario during most of the
year (Table 3; Figure 7). Here, average heighthef first peak at baseline was
approximately similar to that of 2004 but, undamelte change scenarios, DayCent
predicted a significant increase for this peak. Tédason was the higher temperature
and rainfall, expected due to climate change dufamtjlizer application, compared
with the baseline. The average height for the sequak at baseline was decreased
because time for this peak was different from oearyo another. However, under
climate change, the second peak disappeared, nduelyo the decrease in available
N later in the season. No statistically significalitference (p>0.05) between the
annual cumulative fluxes for the three scenarios feand. Under climate change, the
high temperature sensitivity scenario producedhsijghigher cumulative nitrous
oxide fluxes (4.4 kg K9 whilst the low temperature sensitivity scenarioduced
slightly lower cumulative nitrous oxide fluxes (4Kg ha') compared with the
baseline fluxes (4.2 kg Ha This is different from the significant increase NO
flux predicted for a nearby cropland field, usin§iDC, where climate change was
projected to increase the flux by 55-88% dependinghe N fertilizer application
rate. However, in the cropland field, most of thexés took place during the post crop
harvesting period, where straw was incorporatedremdrops were present (Abdalla
et al., 2009c).

For both future scenarios, predicted biomass pitimluonvas significantly

higher (p<0.05) than in the baseline (Figure 8)isTihcrease was due to the overall

11
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effect of increasing rainfall, temperature and ;Céncentration. Under baseline
conditions, annual above-ground grass biomassnidityer) was about 33 t havhilst
under climate change this value was increased 1e-38%) and 50 (+48%) t Hafor
the low and high temperature sensitivity scenafin.increase in grass dry matter
production in Ireland due to climate change wa® aisedicted by Fitzgerald et al.
(2009). Here, changes in precipitation (Rosenzvaeid) Tubiello, 1997; Izaurralde et
al., 2003; Mearns et al., 2003) and temperatursc(fSi et al., 1997) can affect crop
productivity. Higher temperatures may increase tplearboxilation and stimulate
higher photosynthesis, respiration, and transpinatrates. Plant growth and
development would continue to increase, becausenbBnced metabolic rates at
higher temperatures, combined with increased cardaailability (Reddy et al.,
2000).Changing atmospheric carbon dioxide concentratamngd also have positive
effects on plants (Mitchell et al., 1993; CurtisdldaWang, 1998; Anwar et al., 2007).
Several factors may be responsible for this eff@dhcreasing C@has a direct effect
on C availability by stimulating photosynthesis aeducing photorespiration (Akita
and Moss, 1973) (ii) increasing G@oncentrations decrease stomatal conductance
(Moss et al., 1961; Akita and Moss, 1973; Wong,2%tHogers et al., 1983; Morrison
and Gifford, 1984) which reduces the transpiratiate per unit leaf area. Reduced
transpiration will also increase the leaf tempeamtwhich can further increase
photosynthesis (Acock, 1990). Both an increasehotgsynthesis and a decrease in
transpiration result in an increase in the grastemase efficiency. (iii) increases in
CO, decrease the crop N concentration (Schmitt andalsy 1981; Hocking and
Meyer, 1991).

Climate feedback could have significant impactdNg® fluxes from soil. Soil
nitrogen increases due to increasing mineralisatth changing temperature and
precipitation (Waksman and Gerretsen, 1931; Kiradni, 1995; Wennman and
Katterer, 2006; Abdalla et al., 2009c). Howeverthis simulation, climate change
showed no significant effect on,® flux from the soil. In our simulations, there was
considerably greater demand for N from enhanceslsggeowth under climate change
(Figure 8). The amount of available soil N, in essef the N requirement of the grass
decreased, resulting in low.@ flux. Here, NO flux has a threshold response to N,
and the amount of N lost to atmosphere dependsearhount of N taken by the crop

(McSwiney and Robertson, 2005; Abdalla et al., 208®il mineral nitrogen and N

12
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mineralization are the main sources gfONproduction (Bouwman 1990; Granli and
Bockman 1994; Abdalla et al., 2010). Nitrogen hagliect influence on pO
production by provision of N for both nitrificatioand denitrification (Baggs and
Blum, 2004). This is in agreement with many othteidges over a range of different
soils and crop systems (McSwiney and Robertson5-208ble; Abassi and Adams,
2000; Maddock et al. 2001; Ball et al., 2002 andjafteen et al., 2002-forest and
grasslands). However, the soil type under invesStigais a sandy loam that has
relatively low mineralization. Soil characteristiasd environmental conditions affect
mineralisation (Schoenau and Campbel, 1996), ardettiensive grazing had no
significant effect on BD flux. Compared to the baseline, a significantrdase
(p<0.05) was observed for the daily soil ammonidrhfm depth, from 35 to 14 and
19 mg kg for the high and low temperature sensitivity sc&rsa respectively (Table
3). Therefore, future YO flux from this field will not be significantly &kcted by

climate change, unless more N fertilizer is applied

Considering that the grass area in Ireland is abddtha (CSO, 2010), sandy
loam soil make up > 30% of Irish soil types and thieogen fertilizer application
rates used by the farmers at the time of this weeke 200 kg ha N, DayCent
predicted large increase in above-ground grassdserdue to climate change. Under
climate change, for the high and low temperatursisgity scenarios, above-ground
grass biomass could increase by approximately 8818Vt dry matter, respectively.
However, the increase in® flux due to climate change under this low N ingrass
is negligible, suggesting that future climate cheangll favour Irish low N input
grasslands, with more biomass but no significaahge in NO flux.

DayCent model was run assuming that the currehd fieanagement will
remain the same in the future. However, the predidtiture higher above ground
biomass production by DayCent would encourage fesnte increase grazing
intensity. This would increase emissions of meth@itd;) and excretal N deposition
from grazing animals. Alternatively, farmers cowdgply less N fertilizer to the
pasture to achieve the current amount of abovengrdiiomass production without
making significant change on,® or CH;, fluxes.

4. Conclusions
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Although further improvement is possible, the DayCenodel effectively
estimates the O fluxes and biomass production from the Irish glasds compared
with DNDC model. DNDC significantly overestimatdstmeasured D flux, with
relative deviations of +132% (RMSE = 5.2) and 258 SE = 4) for the fertilized
and control plots. DayCent predictedONflux and biomass production from fertilized
grass with relative deviations of +38% (RMSE = 2d&-23%) (RMSE = 0.15)
compared with the observed values, respectivelydeat predicts a significantly
higher peak coinciding with higher temperature sadfall in August - September,
associated with fertiliser N still held in the slaiter in the season. The model fit under
control plots was not good with a relative deviataf (-57%) (RMSE = 0.5). Under
climate change, grass biomass was projected teaserfrom the baseline value of 33
t ha' to 45 (+34%) and 50 (+48%) t hdor the low and high temperature sensitivity
scenarios, respectively. Our results suggest,dhatto significant grass growth and
higher N demand by the grass, climate change iexpécted to significantly affect
N2O fluxes from this low N input pasture, unless mires applied in the future. This
was projected for both the high and low temperasersitivity scenarios. Our results
suggest that future climate change will favour litgh, low N input grasslands with

more biomass but with no significant change pONlux.
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Table

Table 1. DayCent/DNDC modelsinput data for the pasture field
Climate data

L atitude (degree) 52°86' N

Y early maximum of average
daily temperature (°C)

13.3 (basdline), 15.2 (high scenario) and 12
(low scenario

Y early minimum of average
daily temperature (°C)

5.4 (basdline), 10.3 (high scenario) and 7
(low scenario)

Y early accumulated precipitation
(mm).

794 (baseline), 1472 (high scenario) and
1407 (low scenario)

N concentration in rainfall (mg NI™)

0.001

Atmospheric CO, concentrations
(PPmM)

350 (baseline) and 700" (future scenarios)

Soil properties (0-10 cm depth)

V egetation type Moist pasture
Sail texture Sandy clay loam
Bulk density (g cm™) 1.0

Clay fraction 0.34

Soil pH 7.3

Initial organic C content at surface soil | 0.038

(kg Ckg™).

Harvest Grazing/ cutting
WFPS at field capacity 0.87

WFPS at wilting point 0.09

Depth of water-retention layer (cm) 100

Slope (%) 0.0

"Default values

Table 2: Annual measured flux, DayCent predicted flux, DNDC predicted flux and
differences between predicted and measured fluxes of N,O (kg N.O-N ha!).

Treatment | Measured | DayCent | DNDC | Flux difference Flux difference
flux (DayCent-measured) | (DNDC-measured)

Control 1.0 0.5 3.58 -0.5 +2.58

fertilized | 2.6 3.6 4.06 +1.0 +3.44

Table 3: DayCent simulated soil ammonium, nitrate, annual above ground biomass
and cumulative N,O fluxes at different climate scenarios. Values with different letters
for the same column are significantly different from each other (P<0.05).

Climate Average soil Averagesoil | Average | Cumulative flux (kg
scenario ammonium (g | nitrate(gkg™) | biomass | N,O-N ha'y™)
kg™) (thaty™)
Baseline 35a 3a 33a 4.2a
High sensetive | 14b 2a 50b 4.4a
Low sensetive | 19c 2a 45¢c 4.1a
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Figure 1: Comparisons of DayCent (a and b) and DN®&nhd d) model-simulated
(o) and field measured) N,O fluxes from the fertilized (a and c) and con{tobnd
d) pasture treatments in 2003/2004. (Error barsneasured values are * standard
error). Arrow show time of fertilizer application.
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Figure 2: Simulated nitrous oxide fluxes (a), meadprecipitation (b) and maximum
(o) and minimum ¢) temperature (c) during 2000-2005.
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Figure 3: Comparisons between the simulasedaqd field measured) WFPS from
the cut and grazed pasture for DayCent (a) and D{®)@nodels in 2003/04. (Error
bars for measured values are + standard error).
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Figure 4: Correlation between the DayCent modelitated and field measured®™
fluxes for the grass field. y = 0.41x + 0.57£r0.32).
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Figure 7: Effects of climate change opNemissions from the grass field for the high
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Figure 8: Effects of climate change on above grognags biomass production for the
high () and low (A) temperature sensitive climate scenarios compavet
measured baseline climaie)(
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