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Fig. 1. From left: Original patch, infrared (IR) scan and SDIp
detected binary mask. Note how the IR scan shows the level of
transparency, and that the SDIp detector overdetects the limit
of the blotch.

ABSTRACT
Automated blotch removal is important in film restoration and

typically involves a detection/interpolation step. Current al-

gorithms model the corruption as a binary mixture between

the original, clean images and an opaque (dirt) field. This

typically causes incomplete blotch removal that manifests as

blotch haloes in reconstruction. This paper proposes a new

approach by modeling the corruption as a continuous mixture

between the two components and generating a solution us-

ing a Bayesian framework. We use novel priors, propose a

computationally efficient scheme for implementation and our

results show more complete blotch reconstruction.

Index Terms— Blotch, transparency, Bayesian matting,

MRF, removal, opacity, non-binary, matte, frames, fusion.

1. INTRODUCTION

Audiovisual content represents a large part of our inherited

culture. Most of this content is still stored on volatile media

making them vulnerable to damage due to bad physical han-

dling or normal storage degradations. Blotches are one of the

most noticeable degradations. They are formed due to dust

particles sticking to the recording medium, preventing light

from passing through. As a result, they have random shapes

and locations, occluding original data.

Automatic digital removal has become an important task

in the postprocessing production workflow for some time now

[1, 2, 3, 4]. Any blotch restoration algorithm consists of two
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main stages: blotch detection and blotch removal. In an ideal

scenario, one would use infrared (IR) scans of storage medium

for locating blotches. Infrared is transmitted through film but

stopped by dust. As a result, the obtained scan is bright in

original data regions and dark in dirt, ie. blotched regions.

However, in many cases in film and print when an infrared

scanner is not available, one is forced to use automatic blotch

detection algorithms. Many of these algorithms have been

designed for detecting a certain type of blotches known as

opaque blotches [1, 2, 3, 4]. Opaque blotches block original

data completely. Based on this property, a wide range of spa-

tial and temporal detectors were introduced since 1984 using

both heuristics and model based methods e.g. SDI, SDIp and

3D-AR [4]. Temporal detectors search nearby frames for dis-

continuities, while spatial detectors examine correlations in

the current examined frame. It is also possible to combine

both temporal and spatial detectors as presented in the work

of Tilie et al. [1]. Generally, the output of such algorithms is

a binary blotch matte where each pixel is classified either as a

blotch or not.

In reality, most blotch pixels show a level of transparency

between dirt and original data. Even if the blotch is opaque,

the extremities of the blotch are typically transparent. Fig. 1

shows a typical image. Many authors have recognized this

in the framework of water damage on still images [5, 6, 7].

Water damage is the result of water particles accumulating

on recording medium leading to partially occluded regions

known as semi-transparent water blotches. However these

ideas have not been exploited in image sequences as yet.

We therefore propose to model an observed, corrupted im-

age pel (blotch) C(x), at site x as a linear mixture between

a clean “background” image B(x) and a fixed opaque colour

F (x) (0 for dark blotches and 255 for bright ones) as follows.

C(x) = α(x)F (x) + (1 − α(x))B(x) (1)

Here α is the mixing parameter (opacity matte) and α = 1 im-

plies total obliteration of the underlying data. This model is

related to that used for digital matting by Chuang et al [8], but

the application here is quite different. As the problem is im-

age sequence based we are able to propose more effective pri-

ors and in the next section we develop the Bayesian approach

to the solution. The novelty here is in the specification of pri-

ors and the combination of spatial and temporal solutions to

maintain interpolation integrity despite motion errors.
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Fig. 2. Top : Estimated mattes using from left: Bayesian
Blotch matting, Method S, Method T, Fusion. Bottom:
restorations. Method S reduces noise in Bayesian matting but
color bleeding occurs across edges (blue rectangle). The fu-
sion removes both artifacts, but it does not distinguish a dark
blotch from a black background (red rectangle).

2. BAYESIAN BLOTCH MATTING

We use a standard blotch detector (e.g. [4]) to overdetect the

blotch regions. This results in an initial segmentation into

two regions: 1) definite background and 2) suspected blotch

region (see Fig. 1). Our observation model is the same of that

proposed by Chuang et al. in equation 1 with the important

exception that F is known. In this section we lay out the

skeleton of Chuang’s method and then build our modifications

next. Our task at each pixel site is to refine our estimate for

B(x), α(x) given the observation model in Eq 1. This is an

underconstrained problem since there is one equation and two

unknowns B(x), α(x) at each site. The solution is generated

by incorporating colour priors (for B, F ), and maximizing

the conditional probability distribution P (α,B|C, F ) at a site

as follows (where we drop x for clarity).

arg max
α,B

P (α, B|C, F ) = arg max
α,B

P (C|α, B, F )P (B)P (α) (2)

The likelihood P (C|α,B, F ) is a normal distribution cen-

tered at Ĉ = αF + (1 − α)B with variance σ2
e set to 1. The

background distribution P (B) is modeled as a multivariate

normal distribution. The parameters for that distribution are

estimated by using nearby definite background samples. This

region (R) is taken as a circular patch centered on x and large

enough to contain at least 50 uncorrupted pixels. In Chuang’s

work, P (α) is constant hence does not effect the maximiza-

tion process. Substituting background and error models in

Eq. 2, taking log and maximizing w.r.t (α,B) as in [8], a set

of 4 equations is obtained in the RGB space as follows.

[
σ2

eR−1
B + I(1− α)2

] [
B

]
=

[
σ2

eR−1
B B + (1− α)C − (I(1− α)α)F

]
(3)

α =
(C −B).(F −B)

||F −B||2 (4)

where (B, RB) is the background distribution mean and co-

variance respectively.

For each suspected blotch pixel, the corresponding (α,B)
values are obtained by solving Eq. 3 and Eq. 4 iteratively us-

ing the mean of previously calculated opacities as a first es-

timate. In order to capture the richness of the original, clean

data, the patch R is segmented into several clusters using [9].

A matting solution pair (αj , Bj) is calculated for each back-

ground cluster j and the pair producing the highest condi-

tional probability of Eq. 2 is selected.

Fig. 2a shows the extracted matte and restored data of

Fig. 1 using this approach. Both matte and restored data

are a bit noisy. This is mainly due to improper background

cluster selection as choosing the solution pair (αj , Bj) with

maximum conditional probability of Eq. 2 is risky since dif-

ferent combinations of (αj , Bj) could give similar probabil-

ities. Increasing the number of background clusters give a

better chance of choosing the right cluster, however, it often

fails. Chuang et. al. tried to solve this problem by initializing

α over the previously calculated values. However, this ini-

tialization depends on the scanning pattern and errors usually

accumulate quickly. It is well acknowledged that these prob-

lems could be resolved by incorporating spatial smoothness

into the framework [10]. This is discussed next.

3. SPATIAL PRIORS WITH MRFS

Priors for B, α can be made explicit in the framework using

P (α,B|F,C, BN , αN ) ∝ P (α,B|C, F )P (B|BN )P (α|αN )
Patch smoothness is imposed by modeling background and

opacity values with MRFs on neighborhood N . Assuming

Gaussian observation noise and a Multivariate Normal distri-

bution for the background colour B, yields

P (α, B|C, F ) ∝ exp−
(
βl[||C − Ĉj ||2/σ2

e + (B − B̄)T R−1
B (B − B̄)]

)

P (B|BN ) ∝ exp−
(
βb

∑
k∈Nλk||Bj −Bk||2

)

P (α|αN ) ∝ exp−
(
βa

∑
k∈Nλk|αj − αk|2

)
(5)

Recall that the background colour model is a multimodal

Gaussian distribution and so the likelihood P (α,B|C, F ) en-

forces the constraint that the combination of α,B should cre-

ate an image close to the observed Ĉ, as well as ensuring that

B comes from one of the clusters in the background model.

The priors are Gibbs Energy priors ensuring that B, α are

both smooth within an 8-connected neighborhood BN , αN .

λk are the usual MRF hyperparameters and (βl, βb, βa) are

weights that tradeoff the required level of smoothness. It is

important to ensure that the smoothness constraint on B (βb)

is emphasized relative to the smoothness of α (βa), a fact rec-

ognized in [10, 11]. This allows α to be more active than B,

hence βa < βb. In addition, βl < βb since the α, B pairs are

not well discriminated by the likelihood alone. The values
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for β’s are set differently depending on whether a spatial or

spatio-temporal solution (discussed below) is generated. Tex-

ture parameters λks are set inversely proportional to gradients

at the same locations in the motion compensated frame În.

Solution: A solution to the problem of choosing α,B is

created by using the standard Bayesian matting formulation

(Eq. 3-4) to generate pairs of α,B candidates assuming that

the background consists of 4 components and using the mean

of the background cluster Bj as an initial guess for B. Hence

there are 4 candidate pairs. The problem then is to select the

optimal pair over the blotch in question. This is in effect a

labeling problem and we employ QPBO graph cuts [12] to

estimate the correct label configuration and so generate the

solution for α and B respectively. Fig. 2b shows the extracted

matte and restored data of Fig. 1 using the current approach

(defined as Method S). The extracted matte and reconstructed

data are now less noisy than Fig. 2a. However the smooth-

ness constraints can produce bleeding artifacts as seen inside

the blue rectangle in Fig. 2b.

4. SPATIO-TEMPORAL FUSION

Since blotches do not occur in the same place in consecutive

frames (usually), then it is sensible to use the motion com-

pensated previous or next frames (I ′n−1, I ′n+1) to generate a

more accurate background model in the region of the blotch

under consideration. Motion compensation is achieved here

using a simple block matching search with a block size con-

figured to include at least 100 uncorrupted pixels. To make

this process more robust to blotch corruption, the α estimated

using Method S in the current frame In are used as weights

to weight out the effect of the blotch approximately. Back-

ground models P (B|In, In−1, In+1) are then estimated for

each pixel at site x in the current frame n, from a 3x3 patch

centered on x in the motion compensated frame În. The small

background patch size imposes further matte smoothness as it

is expected for small data patches to vary smoothly from one

pixel to another. Fig. 2c shows the extracted matte and re-

stored data of Fig. 1 using this temporal approach, (defined

as Method T). Extracted matte and reconstructed data are less

noisy than Fig. 2a and nearby regions bleeding, as seen inside

the blue rectangle in Fig. 2b, is reduced.

It is clear that when motion can be well estimated be-

tween frames Method T is a useful approach, but when there

is pathological motion or severe corruption in the images, the

spatial solution S would be an appropriate fallback. We pro-

pose then to generate an overall solution based on the fusion

of Method S and T. Hence, for each pixel in the suspected

blotch region, there are two possible solutions: (Bs, αs) and

(Bt, αt) with negative log likelihoods Ls and Lt respectively.

The task is to select one of these two solutions depending on

the accuracy of the motion compensation. This accuracy can

be related to the size of the displaced frame difference (DFD)

between the corrupted and motion compensated frames. When

that DFD is large, the spatial solution should be favored, and

when it is small, the temporal solution should be favored. We

therefore modify the negative log likelihoods in Eq. 5 spa-

tially and temporally to L′
s and L′

t respectively to account for

this issue as follows.

L′s = ||C − Ĉj ||2/σ2
e + (Bs − B̄s)

T R−1
Bs(Bs − B̄s)] + (Q−DFD)2

L′t = ||C − Ĉj ||2/σ2
e + (Bt − B̄t)

T R−1
Bt

(Bt − B̄t)] + DFD2 (6)

Q is a constant that can be related to a motion threshold and

here we set it to 30 grey scale levels. When DFD is close to

Q, L′
t is greater than L′

s and so the spatial solution is favored,

while the opposite is true when DFD is small. Hence we have

favored the motion based solution when the motion compen-

sation has performed well. Using the same framework as in

Sec: 3, the fused solution (Bx, αx) is achieved by maximizing

the global probability P (α,B|F,C, BN , αN , Î) using QPBO

graph cuts as before. (βl, βb, βa) is set to (0, 1, 0) in Method

S and (1, 1, 0) for spatio-temporal fusion to take into account

the change in the relative importance of the energies between

methods. Fig. 2d shows the extracted matte and restored data

of Fig. 1 by fusing both Method S and T. Note how the fusion

tends towards Method T due to good motion estimation and

achieves an overall improved result.

5. RESULTS AND DISCUSSION

Fig. 3 compares results using Bayesian blotch matting and

by fusing both Methods S and T. As a reference, temporal

restoration results using a binary underdetected mask are dis-

played (overdetected masks can also lead to poor reconstruc-

tion). Our method does not produce visible artifacts and per-

forms more believably than the reference binary blotch re-

moval or Bayesian Matting. We have also found that the pro-

cess is more robust to motion errors since the spatial method

provides a nice fallback in case of pathological motion.

Note that the algorithm cannot distinguish a blotch from a

dark background as it is assumed that F is black. As a result,

a blotch lying on a black region gets classified as background

(α = 0). However, the restored data remains meaningful.

Fig. 2d shows an example of this scenario where the fused

matte represent complete transparency in the corresponding

black region of the restored image (red rectangle), however,

the reconstructed background is still consistent with the rest

of the uncorrupted image which is acceptable for viewing.

Quantitative Evaluation: Ground truth mattes are derived

from IR scans by gamma correction. Mean Squared Error

(MSE) between this ground truth and the estimated mattes

were measured for Method (C,F) and yielded for Fig. 3(a)-

Fig. 3(e): (0.0263, 0.0142), (0.0159, 0.0161), (0.0056, 0.0053),
(0.0088, 0.0051), (0.0063, 0.0047). In most cases, Fusion

was able to reduce MSE over Method C except for Fig. 3(b).

In this case, the fused matte is mainly transparent as being

lying on a dark background leading to incorrect matte extrac-

tion but correct background reconstruction. The average pro-
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cessing time for a 720x576 frame is 25-30 seconds using 2.33

GHz Quad Core Processor and coding with MATLAB. Most

of the time is consumed in the Bayesian Matting implemen-

tation while the rest is consumed in QPBO and a coarse mo-

tion estimation algorithm. QPBO is implemented efficiently

by processing the small blotch masks only. This represents a

coverage on average of much less than 1% of the picture data.
In conclusion then, the novelty of our algorithm is the ex-

ploration of blotch transparency. Our model for blotch trans-
parency has been successfully combined with a practical ini-
tialization strategy (using SDIp) to generate useful restora-
tion results. Our algorithm produces less noisy results than
Bayesian blotch matting, maintains texture structure and de-
tects blotch boundaries accurately. In the future we hope to
explore other constraints on the underlying images e.g. using
AR models for imposing smoothness.
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(a) (b) (c) (d) (e)

Fig. 3. From Top: Blotched image, corresponding infrared
scan, temporal restoration using underdetected SDIp mask,
overdetected SDIp mask, extracted matte using Bayesian
blotch matting, extracted matte by fusing Method S and
T, Bayesian blotch matting restoration and our restoration.
(βl, βb, βa) are set to (0, 1, 0), (1, 1, 0) for Method S and Fu-
sion respectively, while Q set to 30 grey scale. Note how our
approach is able to produce smoother results and maintains
texture structure c.f Bayesian blotch matting.
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