Typeset by: CEPHA Imaging Pvt. Ltd., INDIA

Chapter 15

Techniques for Dynamic
Adaptation of Mobile
Services

John Keeney, Vinny Cahill, Mads Haahr

Contents
Introduction
Issues in Dynamically Adaptable Mobile Applications and Middleware
Reflective Middleware
Aspect-Oriented Approaches to Dynamic Adaptation
Policy-Based Management of Dynamic Adaptation
Chisel and ALICE: A Policy-Based Reflective Middleware for Mobile Computing

Conclusions

Introduction

This chapter discusses the dynamic adaptation of software for mobile computing.
The primary focus of the chapter is to discuss a number of techniques for adapting
software as it runs, and managing the application of those adaptations. In a mobile
computing environment the need for adaptation can often arise as a result of a spon-
taneous change in the context of the operating environment, ancillary software, or
indeed the user. To exacerbate this problem, if that contextual change is in some

331

[19:20 2006/2/24 4663-Ch-015.tex] Ref: 4663 BELLAVISTA: Mobile Middleware Page: 331 331-350

Typeset by: CEPHA Imaging Pvt. Ltd., INDIA

332 W Mobile Middleware

way unanticipated, then the required adaptation may be itself unanticipated until
the need for it arises. For this reason, this chapter is particularly concerned with
supporting adaptations that are “completely unanticipated™ [19]. The chapter dis-
cusses reflective and aspect-oriented techniques for dynamically adapting software
for mobile computing. Policy-based management is then discussed as a mechanism
to control such dynamic adaptation mechanisms. The chapter then introduces the
Chisel dynamic adaptation framework, which supports completely unanticipated
dynamic adaptation, and discusses a case study whereby Chisel is used with ALICE,
a mobile middleware, to provide a flexible and adaptable middleware framework for
mobile computing.

Issues in Dynamically Adaptable Mobile Applications
and Middleware

The main difficulty with mobile computing is the inherent scarcity and variability of
resources available for use by mobile computers as they move. The primary resource
requirement of a mobile device when it is working as part of a distributed system
is its network connection, often some form of wireless connection, which when
used by a device that is physically moving, suffers from unanticipated and possibly
prolonged disconnections [14]. The reason why this issue is such a major problem
for mobile computing is that the applications currently being developed are being
built as distributed systems applications that do not sufficiently account for these
disconnections and reconnections [30].

Middleware for Mobile Computing

“Middleware can be viewed as a reusable, expandable set of services and functions
that are commonly needed by many applications to function well in a networked
environment” [1]. Traditional middleware systems provide abstractions and shelter
applications from the complexities of the underlying environment, communication
subsystems, and distribution mechanisms, thereby providing a single view of the
underlying environment, as seen in traditional middleware systems such as COM+
[24] Java RMI [39] and CORBA [25].

A middleware system for mobile computing must be flexible in order to provide
a homogeneous and stable programming model and interface to possibly erratic
execution contexts. Itis desirable that an adaptable middleware for mobile computing
be open, allowing the application and the user to inspect the execution environment
and manipulate the application and middleware in a mobile-aware manner, using
application-specific and user-specific semantic knowledge.

[19:20 2006/2/24 4663-Ch-015.tex] Ref: 4663 BELLAVISTA: Mobile Middleware Page: 332 331-350

Typeset by: CEPHA Imaging Pvt. Ltd., INDIA

Techniques for Dynamic Adaptation of Mobile Services ® 333

Difficulties with Applications and Middleware for
Mobile Computing

As environment conditions change, to values unknown and unprecedented by the
application designer, the middleware that provides abstractions for these environ-
mental resources must dynamically adapt to support the applications that run on top
of that middleware. As stated, one of the primary services provided by the middleware
is the ability to supply network communications services as these resources change.
A key requirement for middleware for mobile computing is the ability to adapt to
drastic changes in available resources, especially network connection availability [15].
The characteristics of the available connections can range from an inexpensive, very
high-bandwidth, low-latency connection such as a high-speed wired LAN connec-
tion, to a very expensive, low-bandwidth, high-latency connection such as a GSM
connection, where each communication protocol used may make use of different
communication models and addressing modes.

Mobile computing applications should also be able to handle periods of discon-
nection, supported by the middleware underneath. The difficulties that are associated
with such a range of connection characteristics are further compounded by the fact
that these characteristics can change in an unanticipated manner. For example, these
disconnections occur when the device moves out of range for wireless connections,
or an interface device is suddenly disconnected, as seen when a user suddenly dis-
connects the device from a synchronization cradle or removes a networking device
currently in use. A further issue with such a varied collection of communication
technologies that can be leveraged for mobile computing is that the user may not
wish to fully use the available resources in an eager or greedy manner to maintain data
connectivity. For example, even if a GPRS connection is available, this connection is
generally much more expensive than available wireless connections. A further exam-
ple is the case where although currently disconnected, with connections available,
the user may be aware that cheaper or more convenient connection resource will soon
be available, i.e., something that cannot be anticipated in a generalized manner by
the adaptable middleware platform. For these reasons, it is imperative that the added
potential of the user’s own resources, preferences, and intelligence are exploited.

Reflective Middleware
Principals and Key Ideas

A reflective computational system is one that reasons about its own computation.
This is achieved by the system maintaining a representation (metadata) of itself
that is causally connected to its own operation, so that if the system changes its
representation of itself, the system adapts [22]. With behavioral reflection in an

[19:20 2006/2/24 4663-Ch-015.tex] Ref: 4663 BELLAVISTA: Mobile Middleware Page: 333 331-350

Typeset by: CEPHA Imaging Pvt. Ltd., INDIA

334 W Mobile Middleware

object-oriented system, the reflective system reasons about and adapts its own behav-
ior by associating meta objects with the objects in the application, where the meta
objects control or adapt the behavior of the application objects [12]. In a reflec-
tive system, the communications between the meta objects and base objects take
place through a set of well-defined interfaces, referred to as that system’s meta object
protocol (MOP) [20].

Case Studies of Reflective Middleware

Although a number of reflective middleware frameworks are discussed in detail in
previous chapters, this section discusses two additional reflective systems which target
middleware for dynamic adaptation. In addition, a number of systems described
later in this chapter make use of reflective techniques, but are discussed under a
different category.

ACT

ACT [35, 306] is a generic adaptation framework for CORBA compliant [25] ORBs
that supports unanticipated dynamic adaptation. When the ORB is started ACT is
enabled by registering a specific portable request interceptor [25], intercepting every
remote invocation request and handing them to a set of dynamically registered inter-
ceptors. These dynamically registered interceptors can be added in an unanticipated
manner. Rule-based dynamic interceptors allow the request to be redirected to a
different source or handed to either a number of local proxy components exporting
the same interface as that of the destination server component [35] or to a generic
local proxy component [36]. This generic proxy component can also be dynamically
created in an unanticipated manner. This proxy in turn can request a rule-based deci-
sion making component, which can incorporate an event service, to either perform
the invocation, or change parameters and forward the request to either its original
destination or a different destination.

A prototype is described whereby the Quality Objects (QuO) framework [2],
an aspect-oriented QoS adaptation framework for CORBA ORBs, was used with
a CORBA-compliant ORB, to support completely unanticipated runtime aspect
weaving in the ORB. A number of management interfaces were also provided to
manage the runtime registration of new rule-based dynamic interceptors, and the
addition of new rules to these interceptors.

Correlate

Presented by the DistriNet research group in Katholieke Universiteit Leuven, Cor-
relate [16, 33, 34, 40], is a concurrent object-oriented language based on C++

[19:20 2006/2/24 4663-Ch-015.tex] Ref: 4663 BELLAVISTA: Mobile Middleware Page: 334 331-350

Typeset by: CEPHA Imaging Pvt. Ltd., INDIA

Techniques for Dynamic Adaptation of Mobile Services ™ 335

(and later Java) to support mobile agents. It has a flexible runtime engine to support
migration and location independent inter-object communication. Each agent object
has an associated meta object that can intercept creation, deletion, and all invocation
messages for the object. This system allows non-functional aspects of the applica-
tion to be separated from the application object. The non-functional behaviors are
designed to be largely application independent; however, independent policy objects
can be defined to contain application-specific information to assist in the operation of
these meta-level non-functional behaviors. The meta-level system was initially used
to implement non-functional concerns such as real-time operation, load-balancing,
security, and fault tolerance. Later this system was used to customize ORBs, using
application-specific requirements, as an adaptable graph of meta-level components
that could be extended or adapted at runtime.

The application-independent non-functional behaviors are implemented as meta
object classes, which can interact with the base program to adapt its operation using a
message-based MOP. These meta object classes define a set of possible property values
in a policy template. Each application class has an associated singleton policy-class
object, which is an instantiation of these templates and contains application-specific
information. These singleton policy-class objects are consulted by the meta-level
before performing the non-functional behaviors of the application, allowing the
operation to be customized in an application-specific manner.

However, this policy system is limited since policy templates are imposed at the
time the meta program is written. These templates, written in a declarative language,
must fully define what possible customizations an application may require at a later
stage. The policies, also written in the same declarative manner, select values for
template properties according to the application class with which they are associated.
These templates cannot be changed, so adaptation in response to unanticipated
requirements cannot be fully handled. Policies are written before runtime by a system
integrator, and these policies are then translated to code and compiled with the
application and so cannot be changed at runtime. Unanticipated forms of dynamic
adaptation cannot be achieved in this architecture as the meta-level programmer
and template designer needs complete a priori knowledge of the possible changes in
context values that may occur, and also the set of customizations from which the
meta-level can choose is fixed at compile time.

Discussion

The use of reflective mechanisms for adaptable middleware is an old yet active research
area. The main issue with reflection for the adaptation of middleware lies not with
the use of reflection to adapt the structure, behavior, or architecture of middleware
but rather with how the application of those adaptations are controlled and managed.
This issue is of particular importance if the adaptation is required in response to an

[19:20 2006/2/24 4663-Ch-015.tex] Ref: 4663 BELLAVISTA: Mobile Middleware Page: 335 331-350

Typeset by: CEPHA Imaging Pvt. Ltd., INDIA

336 MW Mobile Middleware

unanticipated change in the state, requirements, or context of the users, applications,
or environment.

Aspect-Oriented Approaches to Dynamic Adaptation
Principals and Key Ideas
Aspect-oriented programming (AOP) [13, 21] is a programming methodology that

allows cross-cutting concerns to be declared as “aspects”. A cross-cutting concern is a
property or function of a system that cannot be cleanly declared in terms of individual
components, because the application of the cross-cutting concern must be scattered
or distributed across otherwise unrelated components. Aspect] [42], the de-facto
standard for AOD, introduced the concept of an aspect as a language construct,
used to specify a modular unit to encapsulate a cross-cutting concern, which is then
“woven” into the application code at compile time. An aspect is defined in terms of
“pointcuts” (a collection of “join point” locations within the application code where
the aspect should be “woven”, and conditional contextual values at those join points),
“advice” (code executed before, after, or around a join point when it is reached), and
“introductions” (Java code to be introduced into base classes) [42].

AQOP supports the production of these aspects in a manner that is separate or
“oblivious” [13] to the application components, into which the aspects are later
incorporated or woven at a specified or quantified set of join points. “Obliviousness”,
one of the key components of AOD, refers to the degree of separation between
the aspects of the system and how they can be developed independently without
preparation, cooperation, or anticipation. Most AOP systems support weaving before
runtime, but newer dynamic AOP systems (e.g., Wool and PROSE) described in
this section allow aspects to be woven at load-time or runtime, thereby allowing the
incorporation of aspects into base programs to remain unanticipated until load-time
or runtime.

Case Studies of Dynamic Aspect-Oriented Systems

Wool

Wool [38] is a dynamic AOP framework that uses a hybrid aspect weaving approach
by using both the Java Platform Debugger Architecture (JPDA), and the Java
HotSwap mechanism [39]. Since JPDA supports remote activation of breakpoints
at runtime, join point hooks in the form of debugging breakpoints can be dynam-
ically set from outside of the application. A pointcut may be made up of a number
of these hooks. Each aspect specifies a pointcut, and a set of advices to be exe-
cuted when one of the pointcut’s join points (represented as breakpoints) is reached.

[19:20 2006/2/24 4663-Ch-015.tex] Ref: 4663 BELLAVISTA: Mobile Middleware Page: 336 331-350

Typeset by: CEPHA Imaging Pvt. Ltd., INDIA

Techniques for Dynamic Adaptation of Mobile Services ® 337

New aspects can be serialized and sent to the target JVM for weaving at any pointcut.
In one approach, when a join point is encountered, the inserted breakpoint redirects
the operation to the Wool runtime component in a manner similar to a debugger,
where advices are then executed. The alternative approach allows the advice to be
hotswapped into the application class thereby improving performance if the join
point is encountered repeatedly. This is achieved by using Javassist [7] to rewrite
the class, without access to its source code, and have the adapted class replace the
original application class using the Java HotSwap mechanism. This also removes the
breakpoint, so calls to the debugger are removed. However, this mechanism means
that all objects of the woven class will have the adaptation incorporated, and so indi-
vidual objects cannot be adapted. Currently the aspect programmer must specify
in the aspect’s source code whether the advice should be woven by the HotSwap
mechanism or by the debug interface, so in order to achieve good performance, the
aspect writer should anticipate the access patterns of the aspect’s pointcut. Wool does
not support adding introductions but a proposed solution is provided.

PROSE

PROSE [26, 29] is another dynamic AOP framework for Java that supports runtime
aspect weaving. PROSE was originally intended as a framework for debugging or
rapid prototyping of AOP systems, which could later be completed using compile-
time or load-time aspect weaving [29]. This was mainly due to its use of the Java
Virtual Machine Debug Interface (JVMDI) [39], which resulted in a large per-
formance penalty. A later version of PROSE [26] was implemented by modifying
an open source JVM, greatly improving its performance. In both versions, new
aspects can be to dynamically woven, with support for these aspects to define new
join points, for which new interception hooks are created at weave time, thereby
allowing PROSE to be used to support dynamic adaptation by weaving additional
non-functional behaviors into the code at runtime.A number of graphical user inter-
faces are included to manage the unanticipated weaving of new aspects at runtime.
However, like Wool above, PROSE only supports weaving at a class level; therefore
individual objects cannot be adapted individually.

MIDAS [27], implemented as a Spontaneous Container [28], is a middleware
for the management of PROSE extensions which provides a distributed event-based
system for the dissemination and management of aspects from a central server to
mobile computers based on their location.

TRAP/]

TRAP/J [37] is a prototype unanticipated dynamic adaptation framework for Java.
It combines compile-time aspect weaving using Aspect] [42] and unanticipated

[19:20 2006/2/24 4663-Ch-015.tex] Ref: 4663 BELLAVISTA: Mobile Middleware Page: 337 331-350

Typeset by: CEPHA Imaging Pvt. Ltd., INDIA

338 W Mobile Middleware

dynamic adaptation with wrapper classes and delegate classes. At compile time
the programmer selects a subset of application classes that will be adaptable. The
TRAP/]J system then automatically creates Aspect] code to replace all instantiations
of the selected classes with wrapper class instantiations. Java code for each wrapper
class and a meta object class for that wrapper class is also automatically created.
At runtime, each instantiated wrapper object has an instance of the original wrapped
object and a meta object bound to it. These wrapper objects redirect all method calls
to their meta object, which in turn act as placeholders for a set of delegate objects that
may handle the invocation of the method, or adjust its parameters prior to execution
by the original wrapped object. New, dynamically created delegates can be added or
removed at runtime via an RMI [39] interface using a management console. These
delegates can be added on a per object basis since the meta objects can supply a name
for each instance and register it in an RMI registry.

This framework was used to demonstrate the dynamic adaptation of a network-
enabled application by replacing instances of the java.net. MulticastSocket class with
instances of an adaptable socket class MetaSocket [18]. The TRAP/] framework how-
ever does not support completely unanticipated dynamic adaptation. The adaptation,
its intelligent and controlled dynamic application, and the timing of its application
all remain unanticipated until runtime, but the possible locations for the adapta-
tions are specified in the application source code, since the version of Aspect] used
requires access to the application source code. Despite improving the performance
of the TRAP/J framework, this restriction greatly limits the nature of the unantici-
pated dynamic adaptations that can be applied. No information is provided about
whether the generated meta object class code can be modified prior to compilation
and weaving.

In addition, TRAP/J seems to delegate the invocation of the method to only one
delegate; the first one it finds implementing the method, but this ordering of delegates
can be configured. This means that only one adaptation can be applied at a time since
adaptation behaviors are not automatically composed. In addition, TRAP /] does not
seem to allow the user to apply an easily recognizable name to the base object being
adapted, and so may make it difficult for the user to identify the object to which
adaptations should be dynamically applied. From the documentation TRAP/J does
not seem to support applying dynamic adaptations via new delegates on a structured
class-wide or interface-wide basis since RMI registry lookups are at a per meta object
basis. Unlike Wool and PROSE above, which only support the adaptation of classes,
TRAP/] only supports the adaptation of individual objects at any one time.

Discussion

Dynamic AOP technologies would appear to be a promising area of research for
dynamically adaptable middleware. Not only can aspects be used to implement

[19:20 2006/2/24 4663-Ch-015.tex] Ref: 4663 BELLAVISTA: Mobile Middleware Page: 338 331-350

Typeset by: CEPHA Imaging Pvt. Ltd., INDIA

Techniques for Dynamic Adaptation of Mobile Services ® 339

non-functional concerns within the middleware but also to adapt or augment the
functional behavior of the middleware [21]. This ability to dynamically adapt func-
tionality or inject new functionality at clearly defined join points is of particular
importance to middleware for mobile computing since dynamic and possibly unan-
ticipated adaptation requirements are typical for mobile computing. The “separation
of concerns” model of aspects reduces the difficulty of incorporating adaptations into
complex middleware frameworks since the introduced cross-cutting concerns can be
targeted correctly to the location requiring adaptation.

However, current dynamic AOP methodologies such as Wool, PROSE, and
TRAP/] are lacking a structured mechanism to dynamically specify these locations
for dynamic adaptation, and how these adaptations should be applied, after the target
software has started execution in a manner that incorporates user, application, and
environmental context at runtime. Despite this, this area of dynamic AOP based
dynamic adaptation of middleware is proving to be an active area of research and
should quickly provide a number of solutions to this issue.

Policy-Based Management of Dynamic Adaptation
Principals and Key Ideas

Many traditional adaptable systems are composed of a single adaptation manager
that is responsible for the entire adaptation process; i.e. monitoring, adaptation
selection intelligence and performing the actual adapration. Since the intelligence
to select appropriate adaptations and the mechanism to perform these adaprations
are embedded directly within the adapration manager, this type of system becomes
inflexible and inappropriate for general use. By decoupling the adaptation mecha-
nism from the adaptation manager, and removing the intelligence mechanism that
selects or triggers adaptations, the adaptation manager becomes more scalable and
flexible. Policy specifications maintain a very clean separation of concerns between
the adaptations available, the adaptation mechanism itself, and the decision process
that determines when these adaptations are performed.

Policy specification documents are usually persistent text-based declarative rep-
resentations of policy rules that ideally can be read, understood, and generated by
users, programmers, and applications. A policy rule is defined as a rule governing the
choices in behavior of a managed system [8]. Informally, a policy rule can be regarded
as an instruction or authority for a manager to execute actions on a managed target
to achieve an objective or execute a change.

An adaptation policy rule is usually made up of an event specification that triggers
the rule, which is often fired as a result of a monitoring operation; an action to perform
in response to the trigger; and a target object that is part of the managed system upon
which that action is performed [8]. Many policies will also contain some restrictions

[19:20 2006/2/24 4663-Ch-015.tex] Ref: 4663 BELLAVISTA: Mobile Middleware Page: 339 331-350

Typeset by: CEPHA Imaging Pvt. Ltd., INDIA

340 W Mobile Middleware

or guards confining the rule action to appropriate occasions. This event-condition-
action (ECA) format is standard for rule-based adapration systems [4, 5, 6, 8, 9, 16,
19, 33, 34, 35, 36, 40], where an adaptation management system is responsible for
monitoring these events, evaluating the conditions and initiating the management
action on the targeted managed object. In a policy-based dynamic adaptation system
it should be possible to edit the rule set and have them re-interpreted to support the
dynamic addition of new rules or changes in policy.

Case Studies of Policy-Based Middleware

This section discusses two systems that employ policy-based management techniques
to manage dynamic adaptation of middleware, but additionally the ACT, TRAP/J,
and Correlate systems could also be described in terms of their use of policy rule-
based techniques. A number of mechanisms discussed in other chapters could also
be discussed in terms of their use of rule-based management mechanisms.

RAM

RAM (Reflection for Adaptable Mobility) [4, 9] from Ecole des Mines de Nantes,
takes the approach of completely separating functional and non-functional aspects of
an application in a manner related to aspect oriented programming (AOP). Using this
separation of concerns approach, only the core application functionality is inserted
into the application code, with all middleware services represented as non-functional
concerns. Container meta objects wrap each application, and supports the compo-
sitions of other meta object which implement these non-functional concerns. The
wrapping of application objects with Conzainers occurs at either load-time using
Javassist [7] in [4] or at compile-time using Aspect] [42] in [9]. These meta objects
provide the middleware services by selecting appropriate RoleProvider objects for each
service, i.e., the meta objects that provide the actual implementations of the services.
Adaptation can occur by adding, removing, or reordering these RoleProviders.

RAM also provides a resource manager, whereby the system maintains a tree of
MonitoredResource objects, which describe a contextual resource or group of resources.
These MonitoredResource objects are updated by probe objects that actively monitor
the environment. MonitoredResource objects can be queried explicitly or alternatively
by requesting change notifications to signal the adaptation engine when an interesting
resource change occurs. The Conminer meta objects, that wrap each application
component, can also expose the MonitoredResource interface, supporting queries of
application context as resources, thereby exploiting application-specific knowledge
in the adaptation process.

The set of meta objects (aspects) to use in each Container is adapted at
runtime by means of an adaptation engine that uses both an application policy

[19:20 2006/2/24 4663-Ch-015.tex] Ref: 4663 BELLAVISTA: Mobile Middleware Page: 340 331-350

Typeset by: CEPHA Imaging Pvt. Ltd., INDIA

Techniques for Dynamic Adaptation of Mobile Services M 341

and a system policy, both written in a declarative Scheme-like language, and which
are both passed to the adaptation engine when the application is started. The appli-
cation policy defines pointcuts (a dynamic set of join points, i.e., Container objects)
in the application, and the named non-functional aspects to be used at these point-
cuts, in an application-aware but resource-independent manner. The set of rules
that determine which join points make up a pointcut is also specified in the appli-
cation policy, but these rules are dynamically evaluated, so this set of join points
can change dynamically. The non-functional aspects woven at these pointcuts are
defined in the system policy in an adaptive Condition-Action model, where sets of
application-independent but resource-aware conditions are dynamically evaluated
to decide which meta objects will implement the non-functional aspect. When the
conditions are dynamically evaluated, the bindings of meta objects can be changed,
in a manner similar to dynamic aspect weaving. Therefore, the set of join points that
make up a pointcut, and the set of meta objects that implement an aspect can both
be dynamically specified according to the rules in the policies. The current system
does not support dynamic changes to the policies, and so cannot support unantic-
ipated adaptation management logic; however this is planned for future versions.
In most cases where Aspect] is used, access to the source code of the application is
also required. A version of RAM suggests using a configuration file to specify the
set of join points that can be used, and use Aspect] to create these join points at
compile time rather than have Containers wrap every application object [11]. This
means, however, that all possible locations for adaptation must be anticipated at
compile time, and requiring access to the source code of the application. Preliminary
designs for an adaptation framework extending RAM, which would possibly support
completely unanticipated adaptation by allowing dynamic specification of policies
and dynamic selection of adaptation locations, is presented in [10], but this system
has yet to be implemented.

CARISMA

Research carried out at University College London on the CARISMA project
[5, 6] presents a design for peer-to-peer middleware based on service provision.
Each node can export services and possible different behaviors or implementations
for those services. Services can be selected according to user and application con-
text information, as specified in an “Application Profile”, an XML policy document.
Embedded in this application profile is the application-specific information that the
middleware uses when binding to these services, e.g., which service behavior to use
in response to changes in the execution context. The middleware is responsible for
maintaining a view of the system environment by directly querying the underlying
network-enabled operating system. Applications may request to view and change

[19:20 2006/2/24 4663-Ch-015.tex] Ref: 4663 BELLAVISTA: Mobile Middleware Page: 341 331-350

Typeset by: CEPHA Imaging Pvt. Ltd., INDIA

342 W Mobile Middleware

their profiles at runtime, thereby adapting the middleware as application-specific
and user-specific requirements of change dynamically.

This system also provides the ability for the application to be informed by the
middleware of changes in specific execution conditions, supporting the development
of resource-aware applications. This system is based on the provision of multiple
implementations of the same service with different behaviors, in a manner similar to
the Strategy Design Pattern rather than adapting the service itself. The primary con-
tribution of this work focuses on the identification and resolution of profile conflicts
[6], and not on the actual provision of an adaptable middleware implementation.
No information is provided about how the services are implemented, if they can
be dynamically loaded, how they implement their different strategies, or if these
strategies can be expanded at runtime. However, it should be noted that the appli-
cation profile that controls how the system adapts, and the mechanism for profile
conflicts, can both be adapted at runtime in an unanticipated manner. XMIDDLE
[23], which appears to form the basis for CARISMA, is a peer-to-peer data sharing
middleware for mobile computing. In XMIDDLE, data is replicated as XML trees
pending disconnections, with these trees reconciled when possible in a policy-based
manner according to application specific conflict resolution data embedded in the
shared data structures.

Benefits of Policy-Based Management of Dynamic Adaptations

An adaprable system that has its adaptation logic encoded directly into it cannot opet-
ate in a general-purpose manner or adapt in response to unanticipated changes, as
often arises with an enabling technology such as middleware operating in an environ-
ment where the operating context changes erratically, as seen in a mobile computing
environment. The use of a policy-based control model allows the clean decou-
pling of adaprtation logic from the adaptation mechanism used by the adaptation
framework.

The control logic to manage the dynamic application of an adaptation must be
capable of specifying what adaptation should be applied, where and when it should be
applied, and conditions to restrict the application of the adaptation if necessary. Since
many dynamic adaptations are necessarily required because some state, resource, or
requirement has changed for the user, application, or execution environment, this
dynamically specified control logic must also support the querying of this runtime
context. Using dynamic loading and interpretation of policy directives can also be
used to support the management of new unanticipated adaptations, by allowing
those new adaptations to be referred to dynamically, along with where they should
be applied and what management logic should be used to control how and when
those adaptations are applied.

[19:20 2006/2/24 4663-Ch-015.tex] Ref: 4663 BELLAVISTA: Mobile Middleware Page: 342 331-350

Typeset by: CEPHA Imaging Pvt. Ltd., INDIA

Techniques for Dynamic Adaptation of Mobile Services ® 343

Chisel and ALICE: A Policy-Based Reflective
Middleware for Mobile Computing

This section describes the Chisel Dynamic adaptation framework, and how it can
be used with ALICE, a middleware for mobile computing, to create a dynamically
adaptable middleware, which can be used to adapt a standard network application
in an unanticipated manner to operate in a mobile computing environment.

Chisel

The Chisel dynamic adaptation framework [19], developed in Trinity College
Dublin, supports the application of arbitrary completely unanticipated dynamic
adaptations to compiled Java software, as it runs. An adaptation is “completely
unanticipated” if the behavioral change contained in the adaptation, the location at
which that adaptation is to be applied, the time when that adaptation will be applied,
and the control logic that controls the application of the adaptation, can all remain
unanticipated until after the target software has started execution [19].

The adaptations are achieved by dynamically associating Iguana/] metatypes
[31, 32] with any application object or class and so changing their behavior on
the fly, without regard to the type of the object or class, and indeed without access to
its source code. The metatype of a class or object represents some coherent internal
behavior change from its original source code behavior [31], i.e., a behavioral change
associated with the class or object. In Iguana/] metatypes are implemented using cus-
tom MOPs, i.e., by deciding which parts of the object model to reify, writing a set
of meta object classes for these reifications to implement the new metatype behav-
ior, then associating that metatype implementation with an object or class. In the
Iguana literature, the terms “metatype association” and “MOP selection” are similar
and refer to this association of MOP implementations to objects and classes. This
association mechanism is performed using runtime behavioral reflection techniques,
whereby selected parts of application objects and classes are reified and intercepted,
and the new metatype behavior inserted at this interception point. Iguana/J supplies
the framework to instantiate these meta objects to reify the object model, and cor-
rectly order metatypes if more than one is selected. Iguana/] provides a mechanism
to associate new metatypes with objects and classes at runtime, thereby changing the
behavior to the system on the fly.

The execution of a new behavior embedded in the meta level can then occur
alongside or around the original behavior of the target object, by wrapping the
behavior of the target object and adapting or tailoring the intercepted operation, or
by introducing the new behavior before, after, or instead of the intercepted operation.
New metatypes can be defined at any time and compiled offline using the Iguana/J
metatype compiler, even as a target application is running. In this way the adaptations

[19:20 2006/2/24 4663-Ch-015.tex] Ref: 4663 BELLAVISTA: Mobile Middleware Page: 343 331-350

Typeset by: CEPHA Imaging Pvt. Ltd., INDIA

344 W Mobile Middleware

to be applied can remain unprepared and unanticipated until it is needed. When a
metatype is associated with a class the behaviors that are changed are both the “static”
behaviors of the class, the behaviors of each current and future instance of the class,
and the behavior of all subclasses and their current and future instances. Here static
refers to the behavior and data embedded in a class, instead of in each of its instances.
For example, static methods, static data fields, and class initialization procedures,
implemented using the static keyword in Java and C4+.

The dynamic associations of these metatypes are driven by a dynamically speci-
fied and interpreted policy script. Using this policy script, the user can specify which
classes or named objects should be adapted, either in a proactive manner, or in a
reactive event-based manner. The Chisel policy language, described in detail in [19],
also supports the dynamic definition of new event types for use in reactive rules.
In addition, the Chisel policy language allows events to be dynamically fired by
other rules or in response to changes in dynamically specified contextual conditions.
In this manner, the timing and control logic for any dynamic metatype associa-
tion can remain unspecified until during runtime, and so remain unanticipated. By
dynamically creating a new policy, specifying which class or object to adapt, and
specifying which named metatype to associate, the location of the adaptation can
also remain unanticipated until during runtime.

Together, this use of runtime behavioral reflection and runtime specification
and interpretation of adaptation policies, allows the Chisel framework to support
the completely unanticipated dynamic adaptation of any running Java application,
without stopping it, and without access to its source code.

ALICE

ALICE [3, 15, 41], also developed in Trinity College Dublin, is an architectural
middleware framework that supports network connectivity in a mobile comput-
ing environment by providing a range of client/server protocols (Figure 15.1). In
ALICE, “mobile hosts” are mobile devices, which may interact with fixed computers

Application Application
11OP |Java RMI IIOP |Java RMI
Mobility layer Mobility layer
yay Y& 15! Network connection
Network connection Network connection ;Jl—>

Mobile Host (MH) Mobility Gateway (MG) Fixed Host (FH)

~—— Actual flow of network packets
oooooenenones * |Logical flow of network packets

Figure 15.1 Overview of the ALICE middleware framework.

[19:20 2006/2/24 4663-Ch-015.tex] Ref: 4663 BELLAVISTA: Mobile Middleware Page: 344 331-350

Typeset by: CEPHA Imaging Pvt. Ltd., INDIA

Techniques for Dynamic Adaptation of Mobile Services ® 345

called “fixed hosts”. These connections are tunneled through “mobility gateways”,
which are also fixed computers. The mobile host can become disconnected from
a mobility gateway and later become reconnected to a different mobility gateway
without interfering with the virtual connection to the fixed host.

The ALICE mobility layer handles communications between devices by overriding
socket functions while hiding which communication interface is being used for the
connection. The mobility layer tracks available connections and picks one using
a reconfigurable selection algorithm. When a disconnection occurs, the ALICE
mobility layer will synchronously queue unsent data between the mobile host and
the mobility gateway until a connection is re-established.

For this case study a full Java implementation of the ALICE mobility layer was
completed, based on the work presented in [41]. It provides a class MASocket
that contains the ALICE connection behavior, which implements a socket inter-
face similar to the standard Java socket class, java.net.Socket. When the
MASocket class is used instead of the standard Java socket, all messages from a
mobile host to a fixed host are redirected via a mobility gateway. When the con-
nection between the mobile host and the mobility gateway breaks, all network data
is cached at the mobile host and the mobility gateway for later reconnection. This
disconnection and reconnection happens without the application being made aware
of the disconnection.

Chisel and ALICE

To demonstrate the use of the Chisel dynamic adaptation framework, an off-the-
shelf application, “The Java Telnet Application/Applet” [17], was adapted to operate
in a mobile computing environment by dynamically adapting it to use the ALICE
mobility layer, all without stopping the application and without changing or requir-
ingaccess to the source code of the application in any way. The only initial assumption
made about the internal programming of the application was that a standard Java
socket, or a subclass of java.net .Socket, is used to connect the client and the
telnet server, a reasonable assumption for any network enabled Java application.

A metatype, DoAliceConnection was developed to intercept the creation
of the socket connection to the telnet server and replace the socket in use with
an instance of the ALICE MASocket. The metatype definition below speci-
fies that the reified creation of objects should be intercepted and handled by the
MetaObjectCreateALICEConn metaobject class.

protocol DoAliceConnection {
reify Creation: MetaObjectCreateALICEConn () ;
}

This redirection behavior was embedded in the meta object class
MetaObjectCreateALICEConn as shown below. This redirection behavior

[19:20 2006/2/24 4663-Ch-015.tex] Ref: 4663 BELLAVISTA: Mobile Middleware Page: 345 331-350

Typeset by: CEPHA Imaging Pvt. Ltd., INDIA

346 W Mobile Middleware

is achieved by intercepting the creation of all socket objects, and if the connection
is a not localhost connection or one used by ALICE, then by the use of the Java
reflective API the java .net . Socket constructor is replaced by the MASocket
constructor. The application would be completely unaware of the change since the
returned MASocket is extended from java . net . Socket and exposes the same
interface.

class MetaObjectCreateALICEConn extends ie.tcd.iguana.MCreate {
public Object create(Constructor cons, Object[] args) ... {
if(/*not a localhost connection, or a connection used by
ALICE */){
//Change the constructor, from java.net.Socket to MASocket
cons = (Class.forName (“MASocket”)).getConstructor (...);
}
Object result = proceed (cons, args); /* create the socket */
return result;// resultis either a normal socket or an MASocket
}
Y

This adaptation was then applied to the telnet application in a number of ways
using the Chisel policy language [19]. One method was to apply this adapta-
tion in a context-aware mannet, i.e., only perform the metatype association if the
application was being used in a mobile computing environment, where the net-
work connection was known to be intermittent. In the adaptation policy rules
seen below, the DoAliceConnection metatype is only associated with the
java.net.Socket class if the UsingDodgyNet event fires. When the con-
nection moves to a stable network connection the UsingGoodNet event is fired,
thereby re-enabling the use of standard Java sockets.

ON UsingDodgyNet java.net.Socket.DoAliceConnection
ON UsingGoodNet java.net.Socket.NullProtocol

The event UsingDodgyNet could be fired automatically by the Chisel event
manager using an automatic rule definition and trigger rule, or by the Chisel context
manager when a wireless connection was detected, or by the user using another event
manipulation policy rule, etc. Similarly, the UsingGoodNet event could be fired
when the network connection is deemed stable, or by another policy rule, by some
network monitoring code, or by the context manager. In [19], a number of meth-
ods are presented to describe how these events could be defined and automatically
triggered in an unanticipated manner.

Findings and Further Adaptations

This case study was fully implemented and functions as expected. This case study
demonstrates the use of the Chisel dynamic adaptation framework to adapt an

[19:20 2006/2/24 4663-Ch-015.tex] Ref: 4663 BELLAVISTA: Mobile Middleware Page: 346 331-350

Typeset by: CEPHA Imaging Pvt. Ltd., INDIA

Techniques for Dynamic Adaptation of Mobile Services ®m 347

arbitrary application in a context-aware manner for use in a mobile computing
environment, without accessing its source code. The telnet application was not
prepared in any way to have the particular adaptation applied. Only when the adap-
tation was deemed necessary did the user need to create a set of adaptation rules,
similar to the ones above, embedding any necessary context information. Only
when these rules triggered the application of the adaptation would the adaptation
be needed so it could be loaded and applied to the unprepared location deep inside
the compiled application, without any requirement to change, interrupt, or restart
the application. This case study also demonstrates how the operation of a complex
compiled application was changed dynamically according to the environment and
user’s needs.

Using the Chisel framework further adaptations are also made possible, to
both the application and the ALICE middleware framework. This mechanism
of dynamically redirecting Java socket connections to ALICE MASocket socket
connections could also be used to dynamically adapt the Java RMI middle-
ware model similar to the approach discussed in [3, 15], but in an unantic-
ipated manner. This possible approach could enable the adaptations described
in [3], by intercepting the instantiation of both the java.net.Socket and
sun.rmi.server.UnicastRef classes. Analternative approach could
intercept the operations of the java.rmi.server.RMISocketFactory
interface when it is requested to create the actual sockets used to perform remote
object invocations, as described in [41].

Although a mobile computing scenario was chosen to demonstrate the Chisel
dynamic adaptation framework, this case study equally applies to any environment or
operation mode where unanticipated dynamic adapration is required for satisfactory
operation. A mobile computing environment was seen as a perfect example since the
state, resources, and requirements of the application, the environment, and the user
can all change to extreme values in an unanticipated manner.

Conclusions

This chapter has presented a discussion of dynamic adaptation for mobile middle-
ware. The chapter began with a discussion of how unanticipated dynamic adaptation
of applications and middleware are required in a mobile computing environment.
A number of reflective and aspect-oriented techniques for dynamic adaptation were
discussed, paying particular attention to support for unanticipated dynamic adap-
tation. The chapter then discussed the use of policy-based management to control
unanticipated dynamic adaptation in a manner that was itself dynamically adaptable.
The chapter then continued with an introduction to the Chisel dynamic adaptation
framework. Chisel was then discussed in terms of how ALICE, a middleware for
mobile computing, could be used to adapt an off-the-shelf network application to
operate in a mobile computing environment in a completely unanticipated manner.

[19:20 2006/2/24 4663-Ch-015.tex] Ref: 4663 BELLAVISTA: Mobile Middleware Page: 347 331-350

Typeset by: CEPHA Imaging Pvt. Ltd., INDIA

348 W Mobile Middleware

References

[1] Aiken, R., ezal. Network Policy and Services: A Report of a Workshop on Middleware.
(RFC 2768) (http://www.ietf.org/rfc/rfc2768.txt). 2000, Internet Engineering Task
Force.

[2] BBN Technologies, Quality Objects (QuO) website (http://quo.bbn.com). 2002.

[3] Biegel, G., V. Cahill, and M. Haahr. A Dynamic Proxy-Based Architecture to
Support Distributed Java Objects in Mobile Environments. International Symposium
of Distributed Objects and Applications, (DOA 2002), (LNCS 2519). 2002. Irvine,
CA.: Springer-Verlag.

[4] Bouraqadi-Saidani, N., T. Ledoux, and M. Siidholt. A Reflective Infrastructure
for Coarse-Grained Strong Mobility and its Tool-Based Implementation (Technical
Report 01-7-INFO). 2001, Ecole des Mines de Nantes: Nantes, France.

[5] Capra, L. Reflective Mobile Middleware for Context-Aware Applications, Ph.D.
Thesis, Department of Computer Science. 2003. University College London,
University of London.

[6] Capra, L, W. Emmerich, and C. Mascolo. CARISMA: Context-Aware Reflec-
tive Middleware System for Mobile Applications. IEEE Transactions on Software
Engineering, 2003. 29(10): p. 929-945.

[7]1 Chiba, S. Load-time Structural Reflection in Java. Proceedings of the 14th European
Conference on Object-Oriented Programming (ECOOP 2000) (LNCS 1850). 2000.
Sophia Antipolis and Cannes, France: Springer-Verlag.

[8] Damianou, N., ez al. The Ponder Specification Language. Workshop on Policies for
Distributed Systems and Networks (Policy 2001). 2001. HP Labs, Bristol.

[9]1 David, P-C. and T. Ledoux. An Infrastructure for Adaptable Middleware. Proceeding
of the 2002 International Symposium on Distributed Objects and Applications (DOA
2002) (LNCS 2519). 2002. Irvine, California, USA: Springer-Verlag.

[10] David, P-C. and T. Ledoux. Towards a Framework for Self-Adaptive Component-
Based Applications. Proceedings of the 4th IFIP WG6.1 International Conference
on Distributed Applications and Interoperable Systems 2003, (DAIS 2003) (LNCS
2893). 2003. Paris, France: Springer-Verlag.

[11] David, P-C., T. Ledoux, and N.M. Bouraqadi-Saidani. Two-step Weaving with
Reflection using Aspect]. Proceedings of the Workshop on Advanced Separation of
Concerns in Object-Oriented Systems, at OOPSLA 2001. 2001. Tampa Bay, USA.

[12] Ferber, J. Computational reflection in class based object-oriented languages. Proceed-
ings of the Conference on Object Oriented Programming Systems Languages and
Applications (OOPSLA 1989). 1989. New Orleans, Louisiana, United States: ACM
Press.

[13] Filman, R. and D. Friedman. Aspect-Oriented Programming is Quantification and
Obliviousness. Workshop on Advanced Separation of Concerns, OOPSLA 2000.
2000. Minneapolis.

[14] Forman, G.H. and]. Zahorjan, The Challenges of Mobile Computing. 1994,
University of Washington.

[15] Haahr, M. Supporting Mobile Computing in Object-Oriented Middleware Archi-
tectures, Ph.D. Thesis, Department of Computer Science. 2003. Trinity College
Dublin: Dublin.

[19:20 2006/2/24 4663-Ch-015.tex] Ref: 4663 BELLAVISTA: Mobile Middleware Page: 348 331-350

Typeset by: CEPHA Imaging Pvt. Ltd., INDIA

Techniques for Dynamic Adaptation of Mobile Services ® 349

[16] Jorgensen, B.N., ¢z al. Customization of Object Request Brokers by Application
Specific Policies. Proceedings of Middleware 2000 (LNCS 1795). 2000. New York,
USA: Springer-Verlag.

[17] Jugel, M.L. and M. Meillner. The Java Telnet Application/Applet
(http://javatelnet.org): 2003.

[18] Kasten, E.P. and PK. McKinley. Adaptive Java: Refractive and Transmutative Support
for Adaptive Software. (Technical Report MSU-CSE-01-30). 2001, Department
of Computer Science and Engineering, Michigan State University: East Lansing,
Michigan, USA.

[19] Keeney, J. Completely Unanticipated Dynamic Adaptation of Software, Ph.D. Thesis,
Department of Computer Science. 2004. Trinity College Dublin: Dublin.

[20] Kiczales, G.,]. des Rivieres, and D. Bobrow, The Art of the Metaobject Protocol.
1991: MIT Press.

[21] Kiczales, G., et al. Aspect-Oriented Programming, Proceedings of 11th European
Conference on Object-Oriented Programming. 1997, Springer-Verlag. p. 220-242.

[22] Maes, P Computational Reflection (Tecnical Report VUB Al-Lab TR-87-02),
PhD Thesis, Artificial Intelligence Laboratory. 1987. Vrije Universiteit: Brussels,
Belgium.

[23] Mascolo, C., ez al. XMIDDLE: A Data-Sharing Middleware for Mobile Computing.
Personal and Wireless Communications, Kluwer, 2001.

[24] Microsoft Corporation, COM+ (hetp://www.microsoft.com/com/tech/
COMPlus.asp). 1999.

[25] Object Management Group, Common Object Request Broker Architecture: Core
Specification (OMG Document formal/02-12-06). 2002.

[26] Popovici, A., G. Alonso, and T. Gross. Just-in-time aspects: efficient dynamic weav-
ing for Java. Proceedings of the 2nd International Conference on Aspect-Oriented
Software Development (AOSD 2003). 2003. Boston, Massachusetts: ACM Press.

[27] Popovici, A., A. Frei, and G. Alonso. A proactive middleware platform for mobile
computing. Proceedings of the 4th ACM/IFIP/USENIX International Middleware
Conference (Middleware 2003). 2003. Rio de Janeiro, Brazil.

[28] Popovici, A., G. Alonso, and T. Gross. Spontaneous Container Services. Proceedings
of the 17th Europeean Conference for Object-Oriented Programming (ECOOP
2003) (LNCS 2743). 2003. Darmstadt, Germany.

[29] Popovici, A., T. Gross, and G. Alonso. Dynamic weaving for aspect oriented program-
ming. Proceedings of the 1st International Conference on Aspect-Oriented Software
Development (AOSD 2002). 2002. Enschede, The Netherlands: ACM Press.

[30] Prakash:, R. Education: Mobile Computing. IEEE Distributed Systems Online,
2001. 2(6).

[31] Redmond, B. Supporting Unanticipated Dynamic Adaptation of Object-Oriented
Software, Ph.D. Thesis, Department of Computer Science. 2003. Trinity College
Dublin: Dublin.

[32] Redmond, B. and V. Cahill. Supporting Unanticipated Dynamic Adaptation of
Application Behaviour. Proceedings of the 16th European Conference on Object-
Oriented Programming (ECOOP 2002) (LNCS 2374). 2002. Malaga, Spain:
Springer-Verlag.

[19:20 2006/2/24 4663-Ch-015.tex] Ref: 4663 BELLAVISTA: Mobile Middleware Page: 349 331-350

Typeset by: CEPHA Imaging Pvt. Ltd., INDIA

350 W Mobile Middleware

[33] Robben, B., er a/. Building a Meta-level architecture for distributed applications
(Technical Report CW 265). 1998, Department of Computer Science, Katholieke
Universiteit Leuven: Leuven. p. 17.

[34] Robben, B., ez al. Non-Functional Policies. Proceedings of the Second International
Conference on Metalevel Architectures and Reflection. 1999. Saint-Malo, France:
Springer-Verlag.

[35] Sadjadi, S.M. and PK. McKinley. ACT: An adaptive CORBA template to support
unanticipated adaptation. Proceedings of the 24th IEEE International Conference
on Distributed Computing Systems (ICDCS’04). 2004. Tokyo, Japan.

[36] Sadjadi, S.M. and PK. McKinley. Transparent self-optimization in existing CORBA
applications. Proceedings of the International Conference on Autonomic Computing
(ICAC04). 2004. New York, NY.

[37] Sadjadi, S.M., er al. TRAP: Transparent reflective aspect programming. (Technical
Report MSU-CSE-03-31). 2003, Computer Science and Engineering, Michigan
State University: East Lansing, Michigan, USA.

[38] Sato, Y., S. Chiba, and M. Tatsubori. A Selective, Just-in-Time Aspect Weaver.
Proceedings of the 2nd International Conference on Generative Programming and
Component Engineering, (GPCE 2003), (LNCS 2830). 2003. Erfurt, Germany:
Springer-Verlag.

[39] Sun Microsystems, Java 2 Platform, Standard Edition (J2SE)
(http://java.sun.com/j2se/). 2002.

[40] Truyen, E., B. Vanhaute, and W. Joosen. Integrating flexible middleware
solutions with applications through non-functional policies. Proceedings of
OOPSLA Workshop on Reflection and Software Engineering (OORaSE *99). 1999.
Denver, USA.

[41] Wall, T. Mobility and Java RMI, M.Sc. Thesis, Department of Computing Science.
2000. Trinity College Dublin: Dublin.

[42] Xerox PARC, The Aspect] Project (http://aspectj.org). 2004.

[19:20 2006/2/24 4663-Ch-015.tex] Ref: 4663 BELLAVISTA: Mobile Middleware Page: 350 331-350

