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1. Abstract

Prostacyclin synthase and thromboxane synttmigraling via arachidonic acid
metabolism affects a number of tumor cell survigpathways such as cell proliferation,
apoptosis, tumor cell invasion and metastasis, arglogenesis. However, the effects of
these respective synthases differ considerably wepect to the pathways described.
While prostacyclin synthase is generally beliewe8ée pro-tumor, an anti-carcinogenic role
for thromboxane synthase has been demonstratedvamiety of cancers. The balance of
oppositely acting COX-derived prostanoids influehamany processes throughout the
body, such as blood pressure regulation, clot@mgl inflammation. The P@TXA ratio
is of particular interesn-vivo, with the corresponding synthases shown to bereifttially
regulated in a variety of disease states. Pharmgioall inhibition of thromboxane synthase
has been shown to significantly inhibit tumor cghlowth, invasion, metastasis and
angiogenesis in a range of experimental modelslirgct contrast, prostacyclin synthase
over-expression has been shown to be chemopreienitata murine model of the disease,
suggesting that the expression and activity of #mgyme may protect against tumor

development.

In this review, we discuss the aberrant exgoes and known functions of both
prostacyclin synthase and thromboxane synthasaricet. We discuss the effects of these
enzymes on a range of tumor cell survival pathwaysh as tumor cell proliferation,
induction of apoptosis, invasion and metastasisjy &mor cell angiogenesis. As
downstream signaling pathways of these enzymes ke been implicated in cancer

states, we examine the role of downstream effe@bi3GIS and TXS activity in tumor
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growth and progression. Finally, we discuss currdrmdrapeutic strategies aimed at

targeting these enzymes for the prevention/treatmfecancer.
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2. Introduction

Cancer causes seven million deaths annualtgoumting for 12.5% of deaths
worldwide. It is the second leading cause of d@athe developed world and is among the
three leading causes of death for adults in deeel@ountries. It is estimated that, by 2020
there will be 16 million new cases every year, espnting a 50% increase in cancer

incidence [1].

The arachidonic acid pathway is responsibletiie@ generation of a wide variety of
bioactive metabolites. These metabolites, otherkisewn as eicosanoids, have been
shown to be involved in many different pathologies|uding inflammation and cancer [2].
Arachidonic acid can be metabolised into the biiglally active eicosanoids via the action
of three separate groups of enzymes: cyclooxygen@®X), lipoxygenases (LOX), and
epoxygenases (cyctochroni50). The COX enzymes catalyse the first step & th
synthesis of prostanoids from arachidonic acid X was shown to exist as two distinct
isoforms in the early 1990’s. These included thestitutively expressed COX-1 and the
inducible form of COX-2, associated with inflamnaeti[4]. A third COX isoform has also
recently been identified, known as COX-3 [5]. Howe\t has since been shown to have
no COX activity and is therefore unlikely to haveogtaglandin-producing activity in
human tissues [6]. COX-derived prostanoids, prdatatins and thromboxanes, are
biologically active lipid mediators involved in ade range of physiological processes such
as modulation of vascular tone, the inflammatorgpomse and gastric cytoprotection.
Prostanoids have also been implicated in variogeadie states such as arthritis, heart

disease and pulmonary hypertension [7].
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The development of cancer in both humans aqerenental animals is consistently
linked to an imbalance in COX signaling [8, 9]. Tédias been a significant interest in
COX-2 and its role in the development and progoessif cancer over the past number of
years, with a number of clinical trials examinirglextive COX-2 inhibition as a potential
therapeutic strategy [10-13]. COX-2 expression hesn associated with a poor prognosis
in a variety of cancer states [14-16]. A numberclaiical trials have been carried out to
examine the role of COX-2 inhibition in lung cancéemoprevention [17-20], with further
human trials ongoing. However, conflicting studamed at examining the role of non-
specific COX or selective COX-2 inhibition will ldao difficulty interpreting these results.
An inhibition in mouse lung tumorigenesis has bekserved in studies using non-selective
COX inhibitors [21, 22]. However, selective COX+zhibition with celecoxib resulted in
reduced pulmonary inflammation, but no differencesumor multiplicity and an increase
in tumor size in an initiator promoter lung tumoouse model [23]. In addition to these
observations, chronic administration of selectiv@Xz2 inhibitors at high concentrations
has been associated with an increased risk of masicular events, such as thrombosis,
stroke, and myocardial infarction [24-26]. The mawism whereby these drugs contribute
to cardiac complications is thought to be throughisauption in the fine balance between
PGk and TXA, which regulates blood clotting. The role of thesgpective prostanoids in
the regulation of coagulation has been demonstragdg a rat model of pulmonary
hypertension [27]. It was demonstrated that COXepesthdant PGlformation limits the
pulmonary hypertensive response to hypori&ivo, partly through attenuation of TXA
dependant platelet activation and deposition. Théservations were later confirmed in a

COX-gene disrupted mouse model of pulmonary hypemensj28]. This model
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demonstrated tha@OX-2 gene deletion exacerbated the pulmonary hypevenssponse
to hypoxia, an effect mediated at least in parduilgh enhanced sensitivity to TXAand a

resulting increase in intravascular thrombosis.

The effects of COX expression in cancer hasnbproposed to be related to the
expression profile down-stream COX-derived pros@gsmdiowever, the relationship of the
prostanoid profile to cancer growth is not yet ctetgly understood [29]. Recently,
increased COX-2 expression has been associatedimdtbased levels of downstream
enzymes required for prostanoid synthesis, suggestiat the tumor-promoting effects of
COX-2 overexpression may be attributable to sped@wnstream products of arachidonic
acid metabolism [30]. The past number of yearsdegs considerable interest in targeting
downstream effectors of the cyclooxygenase siggalmathway in cancer. Selective
targeting of these downstream effectors could h#we potential of avoiding the
cardiovascular effects associated with selectiveX@Qnhibition, while maintaining anti-
cancer properties. Previous studies have proposad the prostaglandin biosynthesis
profile of malignant cells may differ from that ofiormal tissue [31, 32].
Immunohistochemical examination of expression pesfiof the COX enzymes and
downstream enzymes of COX metabolism in lung casbemwed that COX-2 and TXS
expression was abundant in lung cancer, but thaiSP&pression was absent [30].
Furthermore, endothelial cells of vessels foundhinior near the tumor showed extensive
expression of COX-2 and TXS, while endothelial €elf normal lung specimens expressed

COX-1 and PGIS. It was concluded that the expresgaitern of these enzymes is altered
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in lung cancer tissue, compared to normal, an effesich may impact on tumor

progression.

Prostacyclin synthase (PGIS) and thromboxagathase (TXS) enzymes act
downstream of COX-signaling to catalyse the forpratf prostanoids prostacyclin (P51
and thromboxane A(TXA,) respectively. These prostanoids exert directlyosing effects
on the vasculature. While PG$ a vasodilator, which activates platelets amamtes their
aggregation, TXA has the opposite effects. In cancer states, tkaggmes and their
corresponding prostanoids have been shown to henkaudy contrasting effects. PGls a
potent anti-mitogenic and anti-metastatic agemaincer [33], and has been implicated as a
potential chemopreventative agent in NSCLC [34, Bb]contrast, thromboxane synthase
and its product TXA have been shown to promote proliferation, invasioetastasis and
angiogenesis in a variety of cancers [36-40]. Thestacyclin-thromboxane ratio is
considered to be of relevangevivo, with a number of studies showing the correspamndin
synthases to be differentially regulated [41]. Ambalance in the generation of BGind
TXA> has also been implicated in disease states, suphlmonary hypertension [27, 28,
42]. This ratio is of particular importance in tbardiovascular system, where the balance
between PGI production in vascular endothelial cells and TXgoduction in platelets
may maintain cardiovascular homeostasis [43]. A®seh prostanoids and their
corresponding synthases appear to have directlgsapg roles in cancer development and
progression, the ratio in their respective expmsdevels of may also be of significant

importance in the disease.
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In recent years, there has been a signifigaatin the number of reports examining the
fractional roles of arachidonic acid-derived prosids and their corresponding synthases
in the development and progression of cancer. Abmurof studies have also examined the
prostanoid synthases as potential targets for cheswention or therapeutic intervention.
In this review, we will discuss the current stat&mowledge regarding the individual roles
of prostacyclin synthase and thromboxane synthasleel development and progression of
cancer. We will examine the involvement of thesatlsgses and downstream signaling
pathways in a range of tumor cell survival pathwaysh as tumor cell proliferation,
programmed cell death or apoptosis, coagulaticotbosis, invasion and metastatic
spread of tumors, and finally, tumor angiogendsisally, we will also assess a potential
role for these enzymes as potential targets farréuthemoprevention or treatment of the
disease, which may be used either alone, or in cwtibn with other agents and/or

conventional therapies.
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3. Arachidonic Acid Metabolism: Generation and Classification of

Arachidonic Acid Derived Prostanoids.

Under normal conditions, free arachidonic a¢AlA.) is virtually undetectable.
However, A.A. can be mobilized from the plasma menb in response to a variety of
growth factors, cytokines, and hormones, and cdasdleto a range of bioactive lipids,
otherwise known as eicosanoids, via cycclooxygeri@szX), lipoxygenase (LOX) or P-
450 epoxygenase pathways. The key regulatory stépei COX-signaling pathway is the
enzymatic conversion of arachidonate to BG®hich is then reduced to an unstable
endoperoxide intermediate, P@HPGH is then catalytically converted to the various
prostanoids via reduction, rearrangement, or ismagon by the terminal synthase
enzymes (prostaglandin-E-synthase, prostaglandsysithase, prostaglandin-F-synthase,
prostacyclin synthase and thromboxane synthase). (Ei. The resulting prostanoid

products are unstable compounds and are therefpidly metaboliseth-vivo [44].

Following COX activation, prostanoids are rigadenerated by a number of cell types.
Platelets, mast cells and monocytes/macrophagésesipe TXA, PGD, PGE and PGE,
while endothelium is the major source of P@5]. The prostanoids exert their cellular
functions by binding to cell surface receptors hglog to a family of seven
transmembrane domain G-protein-coupled receptd@}s Fhese cell surface receptors are
designated IP for the P&lreceptor and TP for the TXAreceptor. In some cases,
prostanoids and their metabolites bind their nuclesceptors such as peroxisome

proliferator-activated receptors (PPARS) [47].

10
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Selective coupling of the cyclooxygenase isof®o with the prostanoid synthases is a
major event in the cyclooxygenase signaling cascadhch can have important down-
stream effects. Recently, it has become clear ¢bapling of COX-2/PGIS is the major
event leading to sustained BG¢lease, both into the circulation and the sulm#raium,
particularly in activated endothelial cells [48JO&-2/PGIS coupling occurs at the nuclear
envelope and endoplasmic reticulum, but also insi@enbrane microdomains, known as
caveolae, where both PGIS and COX-2 have been tddtdd9, 50]. PGIS therefore
produces PGlas soon as COX-2 is induced and inserted intoataggnuclear envelope,
or endoplasmic reticulum. COX-2 and PGIS may bectionally inter-connected, both
participating to signal transduction events conedd the regulation of processes such as
angiogenesis and apoptosis. An inhibitory effectaiécoxib on PGIS activity has been
reported in human umbilical vein endothelial celisd in PGIS-enriched bovine aortic
microsomal fractions, an effect which was not obsdrusing other anti-inflammatory

compounds [48].

4. Prostacyclin Synthase and Thromboxane Synthase Pathways

4.1 Prostacyclin Synthase

Prostacyclin synthase cDNA is composed of 1m€leotides, coding for a 500 amino
acid protein. PGIS was purified from bovine aoryaitamunoaffininty chromatography in
the late 1980’'s, and was reported to be a haemprb&tonging to the cytochrome P-450
family, with a molecular mass of approximately 92ak[48]. PGIS co-localises with COX
in the endoplasmic reticulum, plasma membrane actear membrane [51]. Expression of

this enzyme is abundant in human tissues, partlgulaascular endothelial cells and

11
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smooth muscle cells, as well as non-vascular seltf as neurons [52]. Its expression can
be induced by TNé[53, 54], and other inflammatory cytokines suchlas [55] and IL-6
[56, 57]. Transcriptional regulation of the PGlShgehas not been reported frequently in
the literature. PGIS mRNA and protein expressiomdseased in response to mechanical
cyclical stretch in both uterine myometrial andngpiligament cells [58, 59]. In addition,
synchronized upregulation of PGIS and COX-2 has lmdserved in human umbilical vein

endothelial cells treated with a thromboxane ansdgO0].

The PGIS product, prostacyclin (BfGlvas first discovered in 1976 using the cascade
tissue perfusion technique [61]. BGlas many important biologic functions. It is thesn
important endogenous inhibitor of platelet aggriegatliscovered to date, and also causes
vascular relaxation [62]. P&is also anti-mitogenic and inhibits DNA synthesismooth
muscle cells [63]. The presence of PGIS at theaan@nd endoplasmic reticular membrane
suggests multiple signaling pathways for this ergyma PGL generation, involving both
cell surface and nuclear receptors. However, tHalaesignaling initiated by this class of
compounds is probably the least understood ofhall grimary prostanoids [64]. It has
recently been established that there are two migmakng pathways for prostacyclin
following its production through PGIS activity. Therst pathway is through the
prostacyclin (IP) receptor, and the second is atrniliclear membrane via the peroxisome-

proliferator activated receptors (PPARS) [65].

The IP is a cell-membrane specific, sevenstreambrane domain G-protein coupled

receptor. Activation of IP by P&lresults in G protein and adenylyl cyclase activation,

12
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leading to the generation of cCAMP and subsequerA Bgtivation [66]. Elevated cAMP
levels and subsequent PKA activation potently iitkithe MAP kinase pathway [64] (Fig.
2A). Consistent with a major role forsGn IP signaling, the PGlanalogue, lloprost
inhibited LPS-induced p42/p44 MAP kinase as wellp@8 MAP kinase activation in
mouse RAW 264.7 macrophages [67]. In addition, ;P&lalogues were also found to
attenuate the thromboxane receptor agonist-indpd@dd4 MAP kinase activation. This
study was a good example of the ability of P®I modulate TXA activity, as the smooth
muscle hypertrophy induced by the thromboxane teceggonist was also reversed by the
PGk analogues [68]. In addition tosGactivation of G and G proteins by IP has also been
reported, with G-dependant PGlsignaling through the PKC pathway frequently obedr
[69]. The signaling pathways activated by P@hd subsequent IP activation are shown in

Fig. 2A.

PG} and its analogues have also been shown to bedkgan peroxisomal-proliferator-
activated receptors (PPAR) [70]. PPARs belong te thuclear hormone receptor
superfamily of regulated transcription factors aoasist of three isoforms. These include
PPARy, PPAR/, and PPAR-which all bind to specific DNA sequences as heateners
with the retinoic acid X-receptors to regulate g&aascription [71]. PGlhas been shown
to upregulate PPAR indicating a novel signaling mechanism for thiegtanoid [72].
Furthermore, PPAR has been shown to be overexpressed in colorectatec, an
expression that is colocalised with COX-2 withie tiumor [65]. PGIS and Pglhave also
been shown to affect PPARactivity. An almost two-fold induction in PPARexpression

has been reported following lung-specific PGIS emgpression [35]. It was recently

13
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observed that endogenous P@éneration by co-expression of COX-2 and PGISddad
transcriptional activation of PPARINn contrast, co-expression of COX-1 and PGISrdit
lead to any significant P&lgeneration and subsequent transcriptional RPA&ivation
[65]. These findings suggest that COX-2/PGIS coupleads to PGlgeneration and that
this PG} subsequently uses PPAR:s its receptor. In support of these observatioos,
overexpression of COX-2 and PPARas been reported in endometrial adenocarcinoma
[73]. However, the mechanism by which the PGIS/PPARthway promotes tumor

development and progression remains to be eluddate

4.2 Thromboxane Synthase

Thromboxane Asynthase (TXS) also belongs to the cytochrome @Pfakily [74].
The human gene for TXS was first characterised®®41 The TXS gene contains 13 exons
and is 193 kb long, the largest gene ever to Hatexd TXS mRNA has been shown to be
widely expressed in human tissues, with particatarndance observed in peripheral blood
leukocytes, spleen, lung and liver [75]. The TX&yme is a 60 kDa haemprotein that is
distributed in platelets, monoyctes, and severagrotell types and is associated with the
endoplasmic reticulum [74, 76, 77]. TXS activity svirst demonstrated in platelets, and
subsequently in other tissues [78]. TXS catalysiisere the conversion of PGHto
thromboxane A (TXA;) by an isomerase reaction, or the formation of HHP-L-
hydroxy-5, 8, 10-heptadecatrienoic acid), and madilmidehyde (MDA) by a fragmentation
reaction in a 1:1:1 ratio (TXA HHT: MDA). The biological functions of MDA and HH
are unknown. However, MDA can form adducts withingsresidues of proteins or with
amine head groups of phospholipids [79]. MDA adduttave been detected in

atherosclerotic lesions of human aorta. It has &sen shown to participate in the

14
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formation of an endogenous DNA adduct, which mayehianportance in the etiology of

human genetic diseases or cancer [80].

TXA, is a potent vasoconstrictor, bronchoconstrictand gpromoter of platelet
aggregation [81, 82]. As it is rather labile, TX& rapidly hydrolyzed in aqueous solution
(with a half-life of about 30 s) to form the biologlly inactive product, thromboxane, B
(TXB2). The human TXA receptor, TP, was the first eicosanoid receptdrdcaloned in
1991 and is a member of the seven transmembraneot&ispcoupled receptor super-
family [83]. TPs are widely distributed in a vagiaif organs and are localized to both the
cell membrane and intracellular structures. Twerabtively spliced variants of human TP
have been identified; TPand TH [84]. No differences have been observed in ligand
binding and coupling of the TP receptoandp splice variants [64]. TP mRNAs are widely
expressed in the lung, liver, heart, kidney, uteand vascular cells [85]. TP receptors are
functionally coupled to the heterotrimerig, @rotein. G protein binding leads to a subset
of signaling cascades, which include phospholigagELC) activation and the subsequent
release of calcium and of protein kinase C actwatiThis signaling cascade is central to
TXA,/TP signaling, as leads to vasoconstriction andef@ta aggregation [86]. However,
the a-isoform can also couple tos@nd thef isoform to G leading to opposing actions on
CAMP synthesis [47]. The signaling cascades a@d/dbllowing thromboxane receptor

activation are illustrated in Fig. 2B.
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4.3 The Thromboxane Synthase/Prostacyclin Synthase Balance in Health
and Disease

The balance of oppositely-acting prostanoiasipced by tissues has a major influence
many processes throughout the body, such as bloesbyre regulation, clotting, sleep,
labour, and inflammatory responses [41]. The badretween circulating P&and TXA
levels is considered to be the most important eqgulof vascular haemostasis. The
prostacyclin-thromboxane ratio is thought to bepafticular importancen-vivo, with
several studies showing the corresponding synthades differentially regulated [41]. The
relationship between prostacyclin and thromboxane was initially proposed when
prostacyclin was first discovered in 1976 [76] amas since been confirmed in several
experimental models [27, 28, 87]. An imbalance hie PG}-TXA; ratio is thought to
underlie many pathological conditions, such as puany hypertension [42], and the
pregnancy-associated disorder, pre-eclampsia [8&]. these prostanoids and their
corresponding synthases have been shown to hasetlgdiopposing roles in a variety of
cancer states, the balance in the expression ggadfil these synthases/prostnaoids may be
of critical importance in the development and pesgion of cancer (Fig. 3). While
numerous studies have examined the fractional rolebese prostanoid synthases (and
their downstream signaling pathways) in cancerretifeve been no specific studies to
examine the hypothesis that an imbalance in theessmpn levels of these enzymes may
underlie tumor growth. The opposing roles of thgsestanoid synthases and their

downstream signaling pathways will be further dgs®md throughout this review.

16
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5. The Role of Prostacyclin Synthase and Thromboxane Synthase in

Cancer

5.1 PGISand TXS expression in normal and malignant tissue

Prostacyclin Synthase

A number of studies have demonstrated thet@mogl biosynthesis profile of malignant
cells to be different to from that of normal tis4@&, 32]. A dramatic loss in PGIS mRNA
levels was observed in primary human lung tumor@as) relative to matched normal
controls [89]. These findings are in agreement whitse of a previous report of decreased
PGIS mRNA and immunohistochemical protein expressie well as very low levels of
PGR, (the stable metabolite of P£lin lung tumors compared to normal surrounding
tissue [90]. Gene expression analysis of NSCLC &loavloss of PGIS content in human
lung adenocarcinoma samples. However, a small sobseenocarcinoma patients whose
lung tumors retained PGIS expression were founabie significantly enhanced survival.
A statistically significant correlation was alsoselved between positive PGIS staining of
lung tumor tissue and patient survival. It was ¢fere suggested that the detection of PGIS
in tissue samples had strong prognostic value edipting patient survival [91]. While the
PGIS product, PGJ is one of the most abundant prostanoids in notoay, it is only
produced in very small amounts by human non-sn@llleng cancers [32]. Comparative
immunohistochemical analyses of non-small cell laagcer (NSCLC) and normal human
lung tissue have shown that, while tumors werecslhy positive for TXS expression,
PGIS expression was undetectable [30]. In contmasmoderate PGIS expression was

observed in endothelial cells from pulmonary vessal corresponding normal tissue.

17
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Studies carried out in our lab showed that PGISemoexpression was significantly
reduced or lost in NSCLC protein samples, relatoveénatched normal controls (Fig. 4A,;
unpublished data), suggesting that expression & ¢éimzyme may be important for

chemoprevention.

The precise mechanisms responsible for thendegulation of PGIS in cancer are
unclear, although several potential mechanisms baee investigated. Using transcription
reporter assays, it was observed that single ntidéeepolymorphisms in the PGIS promoter
can affect transcriptional activity in human lurancer [92]. PGIS expression was silenced
in several lung cancer cell lines by CpG methylafisites were mapped across the variable
number of tandem repeats in the promoter and Cpi@snwintron and exon 1). FISH
analysis demonstrated that lung cancer cell limes tesssues do not exhibit a loss of the
PGIS genomic region, but have multiple copies. €hebservations suggest that an
individuals PGIS promoter haplotype may have a i@mt impact on a patient’s
predisposition for lung cancer. They also suggeseigenetic mechanism, namely CpG

methylation, which may be responsible for the daoegulation in PGIS expression.

Little is known regarding the expression pattef the prostacyclin receptor (IP) in
cancer. Real-time analysis of 62 colorectal tumamnsl adjacent normal tissue (n=48)
revealed overall IP expression to be significamdguced in tumor samples, relative to
normal [93]. In support of these observations, I[th@ene was not expressed at detectable
levels in NSCLC cells, suggesting that expressiothis receptor is not essential for tumor

development and progression [89]. It has been dstraied that PGlcould serve as a

18
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ligand for PPAR. mRNA expression of this nuclear receptor wasdased in colorectal
tumor samples, relative to matched normal contf@S]. However, the functional

consequence of this increase in PBARRpression is still unclear.

Thromboxane Synthase

An overall increase in TXS expression has baeserved in tumor tissues, relative to
normal, suggesting a potential role for this enzym&imorigenesis and/or progression of
cancer. In normal lung tissue, TXS was found tonmlerately expressed in bronchial
epithelial cells and weakly expressed in vascutawath muscle cells [30]. Overexpression
of TXS has been observed in a variety of cancesluding papillary thyroid carcinoma
[36], prostate cancer [39, 94], colorectal can@t],[and renal carcinoma [38]. Increased
TXS expression at mRNA level has been reported enalr cell carcinoma, breast
carcinoma, prostate cancer and uterine cancer ahm@pared with matched normal tissues
[39]. In a cancer profiling array, TXS mRNA levei®re increased in 12 out of 14 cases of
renal carcinoma, 7 out of 9 cases of breast cam@)@ out of 3 cases of prostate cancer,
and 5 out of 7 cases of uterine cancer, suggeathote for this enzyme in the development
and progression of cancer [95]. Recent observationsur laboratory have found TXS
expression to be increased in NSCLC protein sampdéstive to matched normal controls
(Fig. 4B; unpublished data), suggesting that thisysne may be a therapeutic target in the
disease. The observed overexpression of TXS ireth&CLC samples, in the face of a
loss of PGIS expression may also be of clinicahificance in the disease. As far as we are
aware, this is the first observation of a loss Gl® expression in tumor protein samples,
with a corresponding increase in TXS expressionil&\the PGIS/TXS balance has been

implicated in a range of disease states, it may lés of significant importance in cancer.
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This relative expression patterns and roles of ghepposing synthases and their

corresponding prostanoids in cancer therefore redurther investigation.

In bladder cancer patients, overexpressiod X% was associated with a significant
reduction in survival [38]. TXS expression was gased in tumor specimens of advanced
stage and grade in prostate cancer, and partigutadreas of perineural invasion. It was
suggested that the activity of thromboxane syntiedependent on COX-2 and, to a lesser
extent, COX-1 to supply the substrate PGB9, 94]. A recent study in breast cancer
patients demonstrated TXS to be expressed at signify low levels in high grade tumors
and in patients with a predicted poor clinical ame. In contrast, TP expression was
commonly observed in breast tumors, particularlgggressive tumors. TP levels were also
negatively associated with disease-free survivaljcating that this receptor, and not its
corresponding synthase, may be a prognostic factitbre disease [96]. TP expression was
significantly increased in colorectal tumor samplegative to matched normal controls,
lending support to previous observations in breasicer [93]. However, expression was
not linked to tumor stage or tumor cell differetiba, suggesting that expression of this
receptor is not prognostic in colorectal cancerréieecently, studies were undertaken to
determine the individual contributions of the thimwrane receptors in bladder cancer.
Significant overexpression of TP-was observed in the epithelial and stromal
compartments of bladder cancer tissue, relativeotatrol tissue, without a concomitant
significant overexpression of T&{97]. TP{§ overexpression was also correlated with a

significantly poorer overall patient survivgdq0.005). Therefore, while expression of TXS
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appears to be increased in a variety of canceesstahe role of this enxyme and its

corresponding receptor in patient survival remaibé completely elucidated.

Levels of the TXA metabolite, TXB, were significantly increased in tumor tissues,
relative to non-tumor controls. Of particular irgst, TXB concentration was higher in
samples from patients that smoked, when compar#dtbse that did not smoke, suggesting
that cigarette smoking influences the generatiothisf metabolite in lung cancer [98]. In
support of these observations, smoking was prekjiosisown to significantly increase
TXB; production in both gastric and lung tissues [99¢reased TXB generation has also
been observed in peri-tumoral tissue of laryngeaicer patients, compared to healthy
mucosa. In the same patient group, the ratio betweéB, and 6-keto-PGE generation
was found to be almost two-fold higher in tumostis, peritumor tissue, and metastatic
and non-metastatic lymph nodes relative to conisslue, lending support to the notion of
an imbalance between TXBind 6-keto-PGE generation in cancer, promoting metastatic

spread [100].

5.2 Effect of PGISand TXS signaling on tumor growth

One of the main hallmarks of cancer stateshé acquisition of limitless cellular
replicative potential, or increased (and unoppogediferation of tumor cells. It has been
hypothesized that changes in prostanoid profilecaftcancer growth. This theory was
tested in a colon cancer mouse model, where calenacrarcinoma cells overexpressing
either PGIS or TXS were inoculated into BALB/c micBumors derived from TXS
transformants grew at a significantly faster ratereas tumors derived from PGIS

transformants demonstrated opposing effects. Thefdects were reversed by the
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administration of specific PGIS and TXAeceptor inhibitors [101]. These observations
suggest that PGIS and its prostanoid P&€ anti-cancer, while TXS and its prostanoid
TXA, are pro-cancer in these cells. These findings kEad support to the theory that
tumor growth and progression may be controlled Hy balance in expression of these
enzymes and respective prostanoids (Fig. 3). P@#s-@xpression protected against lung
cancer development in a variety of murine tumoregs models, including tobacco smoke
exposure. In the carcinogenesis models used fos RP&rexpressing animals, an increase
in PGL production was consistently required for chemopnéon to occur [34, 35].
Expression of PPAR is increased in lung cancerresdbeen proposed to play a key role in
malignant transformation [102]. Eicosanoids sucHP&d, have been shown to modulate
PPAR activity. PGJ analogues can activate the PRARceptor and have been shown to
inhibit the growth of the A-549 NSCLC cell line [3D Both PGIS and PGIlmay also
modulate PPAR activity with an almost two-fold induction in PPARXpression observed
following lung-specific PGIS overexpression (Keghal., 2004). Ligand-activated PPAR
expression also results in growth arrest of hum&CNC cell lines [104], and growth
inhibition in-vitro andin-vivo in gastric cancer [105]. In contrast, treatmenthafse cells
with a PPAR agonist did not affect the growth of these caligygesting that the effects of

PPAR activation on tumor growth are not universaldil receptor types and cancers.

While one study has shown that the IP recdptoot involved in colon-tumor formation
in AOM-treated mice [106], there is little else kwmo about the role of P&land its
corresponding receptor in the disease. Overexmmessi PGIS provided equal protection

against Carcinogen-induced lung tumor incidenceice lacking IP, in mice heterozygous
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for IP expression or in mice expressing IP, sugggdhat the protective effects of PGire
not mediated through IP activation [107]. In themeastudy, lloprost, a stable BGI
analogue, activated PPARN non-transformed bronchial epithelial cells eamdubset of
NSCLC cell lines. Transgenic mice overexpressin\RP also developed fewer lung
tumors. These findings suggest that PRARay be a critical target for P&inediated lung
cancer chemoprevention. This study is in accordavitie earlier observations that ligand
activation of PPAR suppressed botim-vitro andin-vivo gastric cancer growth [105]. In
addition to PPAR, PGh-mediated activation of PPARhas also been shown to play a role
in the negative growth of lung cancer cell line®3JL However, these studies are in
contrast to that carried out in colorectal cellghw Gk shown to activate PPARIeading

to a subsequent acceleration in intestinal tumowgr in Apc*"™*

mice [108]. Therefore,
while the PGJ-mediated PPAR activation has been clearly impdidan the regulation of
tumor growth, the roles of the individual PPAR sgiats in cancer is still unclear and

requires further investigation.

The role of thromboxane synthase expressidantor growth has been investigated in a
variety of tumor states [37, 38, 101, 109]. Inhdntof TXS protein expression using an
antisense oligonucleotide inhibited proliferatidrcolorectal cancer cells. This effect could
be rescued by direct addition of a stable thrombex& analogue [37]. In bladder cancer,
treatment of two cell lines with both TXS inhibisoand TP antagonists significantly
reduced tumor cell growth [38]. In addition, molkuinhibition of TXS expression by
siRNA resulted in a significant reduction in tunuall growth in bladder cancer cell lines,

leading support to previous observations [109].dRéstudies carried out in our laboratory
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demonstrated a significanp<0.05) reduction in tumor cell growth of two NSClgell
lines following 24 h treatment with the selectivES inhibitor, ozagrel (Fig. 5), suggesting

that this enzyme may be a survival factor in treedse.

The thromboxane Aeceptor (TP) has been shown to induce cell gn@itfon in several
cell lines. A recent report has shown that TP atiiwm by its agonist I-BOP, induced
expression of Nurrl, stimulating human lung carel proliferation [110]. Nurrl is an
orphan nuclear receptor, which has been impliceteell proliferation, differentiation, and
apoptosis. These observations therefore providengtevidence that this receptor may
mediate TP-agonist induced proliferation in lungasx cells. In bladder cancer cells, fP-
receptor expression, but not tPeromoted a significant increase in cellular growdie
[97]. In contrast to these observations, disruptibthe TP receptor was not found to affect
colon formation in AOM-treated mice [106], suggegtithat the role of TXS signaling in

cancer growth is some-what contradictory and reguurther investigation.

5.3 Regulation of tumor cell death by PGIS and TXS pathways

Early tumor growth is dependant on the balahetween increased tumor cell
proliferation and decreased cell death. A secoriihbek of cancer required for sustained
tumor growth, involves the evasion of apoptosiprmgrammed cell death. Apoptosis may
be defined as an active, energy-dependant, walhetkfprocess whereby cells commit
suicide. It is a physiological process by which anted or damaged cells are eliminated
during tissue development and haemostasis [111jaied apoptosis is thought to be a
crucial step in tumor growth. Insufficient apoptscan confer multiple selective

advantages on tumor cells, allowing them to pemist hostile environment, escape death,
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and evolve into more aggressive clones. Many artcer agents, including radiation,
induce apoptosis as a mechanism of killing tumdisgd 12, 113]. A functional link
between the induction of apoptosis and interferemith the eicosanoid biosynthesis
pathway has been established. In support of tims,a the most widely investigated and
supported potential mechanisms for the anti-netipla$fects of COX-2 inhibition is the
induction of tumor cell apoptosis [114].

Very few studies have been carried out to émanthe role of PGIS in apoptosis,
particularly tumor cell apoptosis. The PGIS-deriygdstanoid, PGJ has been shown to
use PPAR to modulate apoptotic processes. IntracellularnPi@Gimed by expressing PGIS
in human embryonic kidney 293 cells has been shtwmpromote apoptosis through
PPARb activation. In contrast, treatment of these oslth extra-cellular PGlor dibutyryl
cAMP resulted in the opposite effects [115]. PRBA&tivation promotes keratinocyte
differentiation in response to inflammatory stimulhile activated PPAR in the skin
appears to regulate genes associated with apodtdst. PGh-mediated activation of
PPARS leads to binding of activated PPARD specific PPAR response elements (PPRE)
of target genes. One of the genes upregulated ByRPRas recently been identified &
3-3epsilon. An increase in cytosolic 14-3-3epsilon proteirpression has been shown to
enhance sequestration of the pro-apoptotic Bactiorathereby regulating apoptosis [117].
PGL expression was found to prevent nitric oxide-indLiogegakaryocyte apoptosis. This
effect was inhibited when adenylyl cyclase activitgs suppressed and partially reversed
following protein kinase A inhibition [118]. Furthelownstream of PG| activation of the

PGk ligand, PPAR, has been associated with an upregulation in popi@tic genedad
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and p53, and downregulation of anti-apoptotic geret, and bcl-xl, suggesting a link

between PPAR activation and induction of apoptd€$s].

The role of TXS in tumor cell apoptosis hagrbenore extensively studied. Treatment
of human glioma cells with the specific TXS inhditfuregulate led to caspase activation,
DNA fragmentation, subsequent cell death, providiag rationale for therapeutic
intervention. The data provided suggested thatagh@ptosis induced by TXS inhibition
may predominantly involve a mitochondrial pathwafich may also explain the extended
incubation time before cell death [119]. Specifi€ST inhibition in these cells also had a
synergistic effect on apoptosis induction by cartigoin [120]. More recently, treatment
of bladder cancer cells with the TXS inhibitors g or furegulate induced an apoptotic
effect, determined by an increase in caspase-8adicin and subsequent cell death and
decreased survivin expression [109]. Moreover, plaaological and molecular inhibition
of TXS increased tumor cell sensitivity to the cloginerapeutic agents, cisplatin and
paclitaxel. TXS inhibitors have also been showriniduce apoptosis in human vascular
endothelial cells (HUVEC), as demonstrated by DNAagmentation assay [121]. Recent
studies carried out in our laboratory have shovat Helective TXS inhibition leads to an
increase in tumor cell apoptosis in NSCLC cell $in@his was demonstrated by High
Content Screening (HCS) following 24 h selective STihibition with ozagrel. This
observation was further validated by two separatéADfragmentation assays; DNA
laddering and cell death detection ELISA (data staiwn). Selective TXS inhibition has
been shown to significantly induce apoptosis in CNC cell line and a small cell lung

carcinoma (SCLC) cell line, lending support to observations. This effect was associated

26



Prostacyclin Synthase, Thromboxane Synthase ande€Can

with an elevation in nuclear p27, an atypical tunsuppressor, which is normally
sequestered in the nucleus [122]. Downstream of ,T8ckade of TXA production
enhances cisplatin-induced apoptosis in NSCLCligedb by up-regulating the expression

of proteins Ice and Ced-3 homolog (ICH-1L) [123].

Increased TXB levels were associated with increased lipid pefation and BGI
expression, suggesting that TXBeneration may promote tumor formation and inhibit
apoptosis in lung cancer and also suggesting a an&ah for the pro-carcinogenic effects

of TXA, expression [98].

5.4 PGIS, TXS, coagulation and cancer

Thrombosis is one of the most common compbaatin cancer, representing a frequent
cause of cancer-associated mortality [124]. Thrasitaepresents the second most
common cause of death in cancer patients [125{eletaabnormality and thromboembolic
disorders affect 15-20% of all cancer patients,levipiatelet activation and aggregation
have been shown to facilitate tumor angiogenesisraetastasis [126, 127]. Furthermore,
post-mortem studies have revealed an incidencdarofribosis in nearly 50% of cancer
patients [128]. Until recently, cancer and the tiremt of cancer were merely assumed to
be proximate causes of the increased risk for thamis, while thrombosis itself was not
considered a molecular event in oncogenesis [128Jvever, more recently, evidence has
been presented linking cancer development, tumagiogenesis and metastasis to
thrombosis formation. Up-regulation of thrombosss@ciated gene®Al-1 (plasminogen
activator inhibitor type-1) an@OX-2 have been associated with the development of liver

cancer [130], while expression of tissue factor)(h&s been proposed to be an important

27



Prostacyclin Synthase, Thromboxane Synthase ande€Can

effector of the tumorigenic and angiogenic phenetyp colorectal cancer cells [131].
Alterations in the expression profiles of down-atre effectors of COX metabolism
(particularly those regulating thrombosis) may Issomiated with cancer states. An
imbalance in the PGITXA ratio in favour of TXA production, may promote an increase

in thrombosis, which has been implicated in theetlgyment and progression of cancer.

Targeting of clotting intermediates in canoeay therefore be a unique approach to
future treatment of cancer. Numerous cell-signalicgscades are triggered by the
generation of these pro-coagulant molecules, whighthought to influence tumor cell
migration, adhesion, cell-cell interaction, replioa, and angiogenesis [129].
Anticoagulant therapy is both safe and effective gmphylaxis and treatment of venous
thromboembolism (VTE; includes both deep vein thvosis (DVT) and pulmonary
embolism (PE)) in cancer patients. Of the availasidcoagulants, low-molecular weight
heparins (LMWH) are the preferred treatment opt@mrprophylaxis and treatment of VTE.
LMWHSs were developed to overcome some of the litigites associated with both warfarin
and UFH [133]. The results of the MALT (malignanayd low-molecular weight heparin
therapy) trial have indicated that LMWH therapy nfayourably prolong survival [134].
Similar observations were made with the FAMOUS dimin advanced malignancy
outcome study) trial [135]. Additionally, LMWH hdseen shown to enhance the efficacy

of chemotherapeutic drugs in both lung cancer [E3@] pancreatic cancer [137].

Recently, the relationship between cancettedlahrombosis and biomarkers has been

examined. Among the biomarkers showing promise ragligtive factors of thrombosis
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included markers of platelet activation [138]. Thixed TXS inhibitor/receptor antagonist,
BM-567 effectively reduced tumor cell-induced plateaggregation (TCIPA) in osteogenic
sarcoma cells [139]. In addition to selective TXfibition, broad-spectrum coagulation
inhibitors have been tested in large clinical gjalisplaying the ability not only to prevent
clotting disorders associated with cancer, but alaocer itself [140, 141]. Recently,
treatment of a NSCLC cell line (A-549) with daltepaa type of LMWH, was shown to
dose and time-dependantly inhibit cell viabilityal2parin also caused arrest of the cells in
G1 phase, inducing them to early apoptosis [142h keparate study in our lab, treatment
of a NSCLC cell line with un-fractionated hepariomch-regulated TXS protein expression
(Fig. 6; unpublished result), implicating TXS asaeget of these inhibitors and supporting
the hypothesis that targeting of this pro-coagukmtyme may be a potential therapeutic

strategy for the treatment of cancer.

Investigation of platelet activation in pulnawyg cancer revealed serum TxXRvels to
be significantly increased in patients, relative natched controls, indicatingi-vivo
platelet activation in these patients [143]. Thisservation implicates thromboxane in
cancer-associated thrombosis, and provides fughielence that targeting of this clotting
intermediate may also negatively impact on cancewth (via its effects on proliferation,
apoptosis, angiogenesis, invasion and metastasislisaussed in other sections of this

review).
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5.5 Regulation of tumor cell angiogenesis by PGIS and TXS pathways

Angiogenesis may be defined as the prockgererating new capillaries from a pre-
existing blood supply. Although indispensable invelepment, angiogenesis is highly
regulated, and persistence of angiogenesis in saadaltusually linked with disease,
including cancer, chronic inflammatory disease diabetic retinopathy [144, 145]. The
induction of angiogenesis is necessary for the lsupipoxygen and nutrients to tumors >2
mm in diameter, and is therefore essential for esgftil tumor growth [146]. In order to
grow and metastasize, solid tumors secrete a rahge-angiogenic factors, which tip the
delicate balance in favour of angiogenesis [14H prostanoids and their corresponding
synthases can contribute, at least in part, to tudevelopmentvia their role in the

regulation of angiogenesis.

Gene transfer oFXS andPGIS has been shown to alter tumor angiogenesis andrtum
growth in a murine colon-cancer model. While tumdrem TXS transformants
demonstrated an increased growth rate and moredabtinasculature, tumors from PGIS
transformants presented with the opposite efféidigs study provides further evidence to
support the theory that an imbalance in the express these synthases and corresponding
prostanoids may underlie tumor growth and progoes¢Fig. 3). The authors suggested
that the profile of downstream COX-derived prostdaoin tumor cells may be a

determinant for tumor development [101].

PG} has been shown to induce pro-angiogenic VEGF sgme in rat intestinal

epithelial cells. Correspondingly, P&dxpression, as well as PGIS expression was induced
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by Ha-Ras(V-12), suggesting a siganlling mechanfsmPGL and subsequent VEGF
production [148]. The recent discovery of the PBARclear receptor for P@suggests a

significant new role for this prostanoid. PP&Rctivation has been implicated in the
control of endothelial cell functions [149]. Prastalin generation by PGIS leads to
angiogenesis through the activation of the PRA&ceptor [65]. It has previously been
reported that COX-2-derived prostacyclin promotesbeyo implantation in the mouse

uterus via PPARreceptor activation [150].

Thromboxane synthase inhibitors strongly iitkeib capillary tube formation in human
vascular endothelial cells [121]. Both the numb&ibranches from nodal areas and the
length of tube-like structures decreased followimgatment with the selective TXS
inhibitor, in a dose dependant manner. EvidenceHerrole of TXA in angiogenesis is
some-what contradictory, with both inhibition andduction of angiogenesis being
documented. The thromboxane, Animetic, U-46619 has been shown to stimulate
endothelial cell migration. Inhibition of TXAsynthesis, which was stimulated by basic
fibroblast growth factor or VEGF, reduced endothletiell migration, implicating TXAin
angiogenesis [40]. The TXAreceptor antagonist SQ29548 was shown to inhiRiXe
dependent microvascular endothelial cell migratiamd corneal angiogenesis [151].
However, anti-angiogenic roles for thromboxane halso been described, including
induction of endothelial cell apoptosis, inhibitiohmigration, vascular tube formation and

intercellular communication [152-154].
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Pharmacological inhibition of COX-2 inhibitedXA, generation, endothelial cell
migration, and fibroblast growth factor-induced reeal angiogenesis. Both of these
paramaters were also inhibited by treatment wifPaantagonist. U-46619, a TP agonist
was shown to restore both migration and angiogenessponses invoked by COX-2
inhibition [151]. TXA; has been shown to act as a potent stimulator gibganesis, both
directly, and by inducing VEGF (vascular endotHejjpowth factor) and PDGF (platelet-

derived growth factor) secretion from plateletddaing aggregation [155, 156].

The thromboxane receptor (TP) has been foonthftuence angiogenesis in a lung
tumor model of the disease, possibly by affectingathelial cell migration [40]. More
recently, it was reported that the sustained attimaof TP, or its blockade significantly
inhibited prostate tumor cell migration. [157]. DU&XS/TP inhibitors have been shown to
dose-dependantly inhibit endothelial cell migratiorchemotaxis assays. In addition, pre-
treatment of endothelial cells with these origidahl inhibitors significantly attenuated TP
agonist-induced intracellular €apool mobilization, suggesting a mechanistic lisvieen

TXS/TP inhibition and reduced endothelial cell naigon [158].

5.6 The role of PGIS and TXS signaling in tumor cell invason and
metastasis

Tumor invasion is initiated by receptor-medditadhesion of tumor cells to matrix
proteins, followed by a second phase of matrixkaean by tumor-secreted proteases.
This process creates an intra-cellular space idtictwinvading cells can migrate [159].
Tumor spread from the primary site to distant osg# the most clinically important

property of malignant tumors and is known as matast Metastasis allows the cancer to
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survive surgical excision of the primary tumor, aadesponsible for increases in tumor
burden and increasing difficulty in its clinical megement [160]. Tumor cell invasion is
essential for the dissemination of metastatic @dl®ss extracellular matrices and spread to
distant organ sites. Tumor cell metastasis has leglicated in most cancer deaths [147].
The higher the microvessel count is in areas dfidsyvessel density, the lower the overall
survival rate of the patients [161]. Studies suggdmt the prostanoids and their

corresponding synthases can play distinct rolesriror progression and metastasis [95].

Alterations in the PGITXA ratio (via the activity of the corresponding syaghs) has
been hypothesized to play an important role inaasing the metastatic potential of the
tumor [162]. Prostacyclin has been shown to sigaiftly reduce metastasis formation in a
lewis lung carcinoma injected murine model. Treatmsith PG} significantly reduced
initial lewis lung carcinoma cell density. In addit, lung weight was reduced by over 50%
and the number of visible metastatic nodes by 8@é6 (p<0.05) [163]. PGlhas also been

shown to reduce the growth of lung micrometastfise4).

Thromboxane synthase inhibition resulted isigmificant reduction (60% reduction in
migration compared to vehicle controls) in enda#iatell migration in HUVECin-vitro
[121]. Specific TXS inhibition has been shown t@gress growth and reduce invasion and
migration of bladder cancer cells [38]. Glioma caiigration was blocked following
treatment with specific TXS inhibitors. A concommitaeduction in TXB generation was
also reported here, implicating the TXS pathwayaasimportant regulator of glioma

motility [165].
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The role of thromboxane synthase in tumor stetes has been well studied [38, 96,
119, 121, 165, 166]. TXS expression was associaitdincreased micro-vessel density (a
prognostic factor, predictive of metastasis andrpmgvival) and metastasis in patients
presenting with NSCLC [167]. A TXS inhibitor has dme shown to block colorectal
carcinoma metastasis in anvivo model of the disease [168]. TXS has also been show
be involved with renal cell carcinoma metastasalyEn-vivo studies with TXS inhibitors
have failed to report any beneficial effects on ast&tsis or spread to the lymph nodes
[169]. However, when used in combination with adrPagonist, TXS inhibitors have been
found to inhibit metastasis formation from tail weinjected Bl6a cells, as well as
spontaneous metastasis formation from subcutanBdgs and Lewis lung carcinoma
tumors [162]. Several other studies have demomstrat potential role for TXS in
promoting tumor invasion and metastasis [37, 39,194]. Increased TXS expression was
associated with an increase in tumor cell invadimran astrocytoma cell line [170].
Furthermore, other studies have shown that inlaibitif TXA, generation can inhibit tumor

cell migration as well as trefoil peptide-stimulhteimor cell invasion [39, 171].

A potential role for the thromboxane receptotumor cell invasion and metastasis has
also recently been examined. In prostate cancés, eeigration was significantly inhibited
by either sustained activation of TP or by inhdaitiof TP activation, suggesting that TP
activation is tightly controlled during cell migran [157]. More recently again, it was
observed that TPB-receptor expression, but not tRncreased the migratory and invasive
capacity of bladder cancer cells, suggesting a failethis receptor subtype in bladder

cancer [97]. The observations of these studiesesigpat the contribution of this receptor
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to tumor cell invasion and metastasis is unclearthiér studies are therefore required to

clarify the contribution of TP to this cell surviyaathway.

5.7 PGISand TXSas Potential Targetsfor Future Targeted
Ther apies/Chemoprevention

There has been a significant interest in COXr2 its role in the development and
progression of cancer over the past number of yesith a number of clinical trials
examining selective COX-2 inhibition as a potentiarapeutic strategy. A number of
studies have shown a correlation between COX-2emsgwn and poor prognosis in NSCLC
[14-16]. In addition, COX-2 inhibitors have beenosim to modulate existing cancer
therapies in NSCLC [172]. However, selective COXrhibitors have recently been
associated with a potentially unfavourable sideafprofile [173]. In addition, data from
murine studies evaluating the role of non-selectiveselective COX-2 inhibition have
failed to yield overwhelmingly positive results. rusingly, COX-2 inhibition with
celecoxib leads to no change in tumor multipliciiyd an increase in tumor size in an
initiator-promoter model of lung tumorigenesis [23hcreased COX-2 expression is
associated with increased levels of downstreammagyrequired for prostanoid synthesis
[30]. The tumor-promoting effects of COX-2 overeggsion may therefore be attributable
to specific downstream products of arachidonic acgdabolism. The selective targeting of
downstream effectors of the cyclooxygenase siggalathway may therefore be a
promising approach for the treatment of cancerhwlte potential of avoiding the
cardiovascular effects associated with selectiveX@Qnhibition, while maintaining anti-

angiogenic and anti-cancer properties.
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Based on preclinical studies, a multicentarade-blind phasél study has been carried
out to investigate the use of lloprost (an orakpaoyclin analogue) for chemoprevention of
non-small cell lung cancer. Patients on the triatevassessed for the histologic progression
of endobronchial dysplasia. Former smokers who ivede iloprost demonstrated a
statistically significant improvement in histolodieng tissue measurements following six
months of treatment. Based on these observatibasauthors concluded that iloprost is a
promising agent for cancer chemoprevention, andams testing in a larger phadétrial
[174]. In addition to PG| PPAR/ activation is an alternative mechanism, which rbay

ready for future chemoprevention trials [107].

Specific thromboxane synthase inhibition haerb shown to suppress tumor cell
growth, and reduce migration and invasion in a nemtif cancer types [37-39]. More
recently, specific TXS inhibition has also beenwhdo induce apoptosis in bladder cancer
cells, with a concomitant activation of caspase¥d a reduction in survivin protein levels
[109]. Treatment of human glioma cells with thegfse TXS inhibitor furegulate lead to
caspase activation, DNA fragmentation, subsequelhtdeath, providing a rationale for
therapeutic intervention [119]. Therefore, simpdgducing TXS synthesis may have some

anti-proliferative effects in cancer cells.

TXS inhibitors impede the metabolic pathway$ @yclic endoperoxides into
thromboxane, which indirectly increases the fororatdf prostaglandins [121]. Inhibitors
of this pathway may interfere with migration anchder invasive cells susceptible to

apoptosis. TXS inhibitors, thromboxane receptolagonists, and drugs combining both
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properties have been developed by several pharrieaiegompanies since the early
1980’s. Several compounds have been launched ommdr&et and are under clinical
evaluation [175]. Among these, ozagrel (OKY-04§431H-imidazol-1-ylmethyl)phenyl]-
2E-propenic acid) is a 1-alkyl imidazole derivativéhich acts as a selective thromboxane
synthase inhibitor. While the precise mechanisnaatfon is unclear, this drug appears to
inhibit the enzyme by competing with the P&ddibstrate to sit on the coordinate site of the
haem moiety of the enzyme [176]. Ozagrel was tis¢ fiiromboxane modulator released in
the market (in Japan, 1992) for the treatment ohbhial asthma [177]. This selective TXS
inhibitor has also been studied in clinical tritds pre-eclampsia, cerebral vasospasm, and
cerebral infarction [178]. Ozagrel is therefore mteresting pharmacological tool to
evaluate the role of thromboxane synthase and ;TpiAduction in both physiologic and
pathologic states [175, 179]. A recent report haswahstrated that dual TXAnhibitors
(which display dual inhibitory activity of both TX@&nd TP) exhibit anti-angiogenic
properties in human endothelial cells, suggesthag this pathway may be an attractive
target for anti-angiogenic/anti-cancer therapies8][1In addition to this, TP antagonists
have been shown to sensitize non-small cell lumgeacells to cisplatin in several studies.
This effect may be partly explained by decreasetl N&+ -ATPase activity, leading to

reduced intracellular cisplatin accumulation inétifollowing treatment [180, 181].
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6. Summary/Conclusion

Extensive research has been carried out tmiexathe roles of prostacyclin synthase,
thromboxane synthase, and their corresponding lanigngathways in the development and
progression of cancer. Evidence from the literatsteggests that PGIS may be
chemopreventative in cancer. This theory is culyebeing investigated in the iloprost
chemoprevention trial. It is thought that PGIS npagtect against cancer development by
inhibiting tumor growth, angiogenesis, invasion andtastasis. These effects have been
proposed to be mediated through the PPAR recemthgugh this theory requires further

investigation.

While an abundance of studies have been daou¢ to examine the role of PGIS in
cancer, TXS has been far more extensively studidtiis disease. Research carried out to
date shows that TXS is over-expressed in a rangeaofer states, and implicates this
enzyme as a potential target for treatment of tlseage. TXS has been proposed to
contribute to tumor development and progressionutn its effect on a range of tumor
survival pathways such as growth, apoptosis inloibjt thrombosis, angiogenesis and
invasion and metastasis. The role of this enzynmibese cell survival pathways has been
well documented in the literature, suggesting thatay be a valuable target for therapeutic
intervention studies. To date there are no knovmical trials aimed at examining the
effects of TXS inhibition in cancer, either alor@, in combination with conventional
chemotherapy. In addition to TXS, a number of pging studies have been carried out

examining the role TP in the development and psiom of cancer. While the research
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into this novel therapeutic target is still faimgw, the results to date are promising and

warrant further investigation.

While PGIS and TXS appear to have very cotitrgsoles in cancer, it is possible that
the balance in the expression of these enzymes atsay have clinical relevance. The
balance in the expression of their respective prastls (PGl and TXAy) has been
implicated in a range of disease states. To daggethave been no studies carried out to
directly examine this theory, although overexpm@sif these enzymes has been shown to
have directly opposing effects on tumor growth amgdjiogenesis in colorectal cancer.
Recently in our lab, an overexpression of TXS waseoved in a panel of NSCLC tumor
protein samples, relative to matched normal costwith a concomitant reduction or loss
in PGIS expression in the same sample set. Iniaddihe ratio of PGIS/TXS expression
was found to be significantly lower in NSCLC patisamples, relative to matched normal
controls, suggesting that the balance in the esme&ctivity of these enzymes may of
clinical importance in the disease. This is a piadg significant hypothesis, which

warrants further investigation.

In conclusion, PGIS and TXS are promising chgravention agents/therapeutic targets
for cancer. In addition, as these enzymes appehate directly opposing roles in cancer
states, the ratio of their expression levels mag &k a determining factor for therapy and

patient survival.
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Figure Legend:

Fig. 1 Generation of the protanoids via the arachidonid g@athway. Arachidonic acid is
metabolized via one of three distinct signalinghpatys; the cyclooxygenase (COX), the
lipoxygenase (LOX), and the P-450 epoxygenase pmatbwThe COX-isoforms convert
arachidonic acid to unstable cyclic endoperoxidé&sPand PGH, which are then further

converted to the prostanoids via the activity df ggecific synthases.

Fig. 2 Downstream signaling pathways activated by prgstat and thromboxane AA)
Prostacyclin-activated signaling pathways. IP rémep@ctivation generally leads tosG
coupling, although gcan also be activateds Gctivation leads to downstream activation of
PKA, which subsequently inhibits activation of thiAP kinase pathway (indicated by the
red X) B) Thromboxane Aactivated signaling pathways. Activation of the fideeptors
generally leads to coupling withgGresulting in an increase in calcium release ak@ P
activation. In addition, thex-isoform can also couple tos@nd thep-isoform to G,
resulting in directly opposing effects on anderg/leyclase activity (indicated by the red X)

and subsequent contrasting actions on CAMP syrghesi

Fig. 3 It has been hypothesized that tumor developmehpargression may be modulated
by the balance in the expression and activity obfacyclin synthase, throboxane synthase,
and their down-stream prostanoid products. PGIShessn shown to be anti-tumor in a
variety of cancer types, while a pro-tumor role T10XS has been frequently identified.
Relative expression patterns of these enzymes ligmaat tissue provides further evidence

to support this theory.
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Fig. 4A Expression of PGIS in a retrospective panel of dmurtumor/normal matched
protein samples. PGIS expression was absent orifisggrly reduced in both
adenocarcinoma samples and squamous cell carcisamgles, relative to matched normal

controls (n=5/group).

Fig. 4B Expression of TXS in a retrospective panel of hanb@amor/normal matched
protein samples. TXS expression was generally asaé in adenocarcinoma samples and

squamous cell carcinoma samples, relative to mdtobamnal controls (n=5/group).

Fig. 5 The effect of selective TXS inhibition in tumorlicproliferation in NSCLC cell
lines. A significant reduction in tumor cell pra@mation/survival was observed in both
adenocarcinoma (A-549; Fig. 5A) and squamous eetticoma (SKMES-1; Fig. 5B) cell
lines following 24 h selective TXS inhibition witteagrel (* p<0.05ss control, # p<0.001

vs control; n=3).

Fig. 6 The effect of low-molecular weight heparin (LMWKR) TXS expression in A-549
cells. Treatment of A-549 cells with un-fractiordteMWH (concentration range: 0.25
U/mL, 0.5 U/mL, 1 U/mL) for 24 h led to a reductiam TXS expression, suggesting that

this enzyme is a target for this class of anti-ciagt drugs.
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