
Real + Virtual = Clever

Thoughts on Programming Smart Environments

Mads Haahr1, Vinny Cahill1, and Eric Jul2

1 Department of Computer Science, Trinity College, Dublin 2, Ireland

fMads.Haahr,Vinny.Cahillg@cs.tcd.ie
2 Department of Computer Science, University of Copenhagen, Universitetsparken 1,

DK-2100 K�benhavn �, Denmark

eric@diku.dk

Abstract. Event-based communications has been used successfully in

many application domains, one of which is virtual environments. Events

are a useful concept in this context because they embody the notion

of something happening in an environment, be it real or virtual. We

claim that the notion of events is not only a suitable communications

paradigm to model purely virtual environments but that it can also be

used to interface an area in a real environment with a corresponding

area in a virtual environment by relaying events in both directions. This

idea, in turn, could turn out useful as a programming model for smart

environments. As part of our recent work in distributed event systems

for virtual world support, we have implemented an event model called

ECO and used it to build a virtual model of a real world environment. In

this position paper, we describe how such a virtual environment can be

interfaced to its real world counterpart. We argue that this technology is

promising as a way of programming smart environments because it maps

naturally onto the application domain and simpli�es the programming

of such environments. To support this view, we present some examples

of functionality often found in smart environments and explain how they

can be programmed with the technology presented in this paper.

1 Introduction

Event-based communications has been used successfully in many application

domains, one of which is virtual world support [5]. Events are a useful concept in

this context because they embody the notion of something happening in a world,

be it real or virtual. We claim that the notion of events is not only a suitable

communications paradigm to model purely virtual worlds but that it can also

be used to interface one or more areas in the real world with a corresponding

area in a virtual world by relaying events in both directions. This idea, in turn,

could turn out useful as a programming model for smart environments.

This position paper describes how event-mapping can be done and presents

an application which can map a single type of event between a real and a virtual

environment. We argue that this technology is promising as a way of program-

ming smart environments because it seems to map naturally onto the application

domain and make the programming of such environments simpler. To support

this view, we present some examples of functionality often found in smart en-

vironments and explain how they can be programmed with the technology pre-

sented in this paper.

2 The ECO Model

The ECO Model is an event model developed for distributed virtual world sup-

port. It was used in the Moonlight [4] project (a distributed 3D video games

project) and, as event models go, it is relatively simple. It has only three central

concepts and its application programmer interface (API) contains only three op-

erations. The intent of the model is that it is applied to a given host language and

extends that language's syntax and facilities so as to support the ECO concepts.

Though the ECO model has traditionally been used in a virtual world context

[8, 6], the model itself is generic, and can easily be used in other domains where

event-based communication applies. This section describes the ECO concepts

and operations.

2.1 Events, Constraints and Objects

The acronym ECO stands for events, constraints, and objects|the three central

concepts in the event model:

Objects in the ECO model are much like objects in a standard object-oriented

language. However, instead of invoking other objects for communication

ECO objects communicate with other ECO objects via events and con-

straints as explained below. ECO objects are often implemented as pro-

gramming language objects but not all programming language objects are

necessarily ECO objects. In order to distinguish the two, ECO objects are

often referred to as entities. Entities have identi�ers that are unique within

an ECO world and they may contain threads of control.

Events are the only means of communication in the model. Entities do not

invoke each other's methods directly but instead raise events which may, or

may not, lead to other entities' methods being invoked. Any entity can raise

an event. Events are typed and have parameters, and they are propagated

asynchronously and anonymously to the receiving entities in no particular

order. The type of events is usually speci�ed using the type system of the

underlying language.
Constraints make it possible for entities to impose restrictions upon which

events they actually receive. The ECO model speci�es several types of con-

straints: pre, post, synchronisation, and notify constraints. Notify constraints

(known as �lters in some event models) can be used by an entity to specify

what events it is interested in receiving noti�cation about.

The three concepts are illustrated in �gure 1 which shows two ECO entities

communicating. Entity A raises an event which may, or may not, reach entity B

Event

Entity A C
onstraint C EE

Entity B

Event

Certain event propagation
Possible event propagation

Fig. 1. The Three ECO Concepts in Relation

because of the constraint C. The constraint is imposed by entity B. The raising

of an event can be thought of as an announcement to the rest of the ECO world

that the event has occurred. A notify constraint can be thought of as a �lter

that decides whether or not a given entity is to receive the event, and receiving

an event can be thought of as invoking an appropriate method (called an event

handler) of an entity in response to the event. When an entity uses a notify

constraint to enable it to receive certain events, we say that it subscribes to

those events. An entity can subscribe multiple times to the same events using

di�erent constraints and handlers. It is also possible to subscribe without using

a constraint, in which case no �ltering is performed.

2.2 The ECO Model's API

The ECO model's API contains three operations which are used by entities to

communicate:

Subscribe(event-type(notify-constraint), event-handler) is used by en-

tities to register interest in events. An entity that subscribes to a certain type

of event will receive an invocation of one of its methods when a matching

event is raised. The event is passed as a parameter to the handler. When an

entity performs a subscription, it can also choose to specify a constraint. An

event must be of the right type and must match the constraint (if any) to

be delivered to a particular subscriber.
Raise(event) is used by an entity to announce the occurrence of an event. The

event is delivered to all entities subscribing to events of that type, subject

to �ltering against their respective constraints.
Unsubscribe(event-type(notify-constraint), event-handler) is used by

an entity to cancel an existing subscription.

3 The Real and the Virtual Environment

As mentioned in section 1, our environment consists of a real and a virtual part.

This section presents the two halves of this environment and the next discusses

how events can be mapped between them.

3.1 The Real Environment

The real environment is a series of research laboratories found at the University

of Cambridge. The laboratories are equipped with specialised hardware called an

active badge system. The badge system consists of a number of infrared sensors

(called stations) placed in the rooms and hallways of the university buildings.

The stations pick up signals emitted by battery-driven badges worn by personnel

in the labs. When a station detects the presence of a badge, it raises a so-called

sighting event to announce that this particular badge has been seen in that

particular location. Stations are grouped into networks, each being a part of

a particular laboratory. Each badge carries a unique badge identi�er which is

picked up by the sensors.

Because we do not have access to the actual badge system, the events raised

in the virtual environment are replays of events that happened at an earlier point

in time. The data we have obtained from the system consists of 35,811 sighting

events collected over period of almost 21 hours by 118 stations distributed over 12

networks. It is worth noting that the virtual environment is run as a simulation

(i.e., using previously collected data rather than real-time data) only because we

do not have access to the data-generating hardware. Given the required hard-

ware, the virtual environment could easily be maintained in real-time. For each

sighting, the following information is available:

Location Identi�er identi�es a physical location in the environment. The lo-

cation identi�er consists of a network (a symbolic name) specifying an area

of the building and a station (an integer) specifying a location within that

area. Assuming there is only one station in each physical location, the loca-

tion identi�er can be mapped uniquely to a location in the virtual world.

Badge Identi�er identi�es the sighted badge by a sequence of six eight-bit

hexadecimal numbers separated by dashes. This identi�er can be mapped to

the real name of the badge owner.

Time Stamp identi�es the moment when the sighting was made in seconds

and microseconds, since 00:00:00 UTC, January 1, 1970, as returned by the

time(3) Unix system call.

3.2 The Virtual Environment

The virtual environment is a model of the real environment and forms a shadow

world where events happening in the real world are echoed. For each station in

the real laboratories there is a corresponding location in the virtual environment

and for each badge identi�er there is an entity in the virtual environment rep-

resenting that person. The entities are moved between locations in the virtual

environment as sighting events are raised by the stations.

The station entities in the virtual environment represent physical pieces of

equipment and echo real events by raising virtual (ECO) events. In addition

to the station entities, the virtual environment also contains entities with no

physical counterparts. These entities can interact with each other and the rest

of the virtual environment by using the three ECO operations to subscribe to

events (such as those raised by the station entities) and raise events of their own.

Below is a description of a series of such entities.

Location entities implement rooms in the virtual environment. For each station

there is a corresponding location entity keeping track of which entities are

currently in that location. This location entity subscribes to all sighting

events from the corresponding station in order to detect arrivals of new

entities. Entities are assumed to remain in the location where they were last

sighted until they are sighted elsewhere. For this reason, a given location

entity also subscribes to all sighting events featuring badge identi�ers which

are currently in its own location. A location entity can be queried (using an

ordinary non-ECO invocation) as to who is currently in that location.

Ghost entities implement people in the virtual environment who have no phys-

ical counterparts in the real environment and therefore do not cause the

sensors to raise sighting events. A ghost entity is controlled remotely by a

user using a text-based command line interface. Ghost entities interact with

location entities in order to move around and to present their remote users

with views of their current locations in the form of a textual descriptions.

CCTV (closed circuit television) entities implement security cameras in the vir-

tual environment. A CCTV entity subscribes to all sighting events occurring

within a particular network and in this way monitors a small area of the

entire virtual environment.

4 Interfacing the Real and the Virtual Environment

This section discusses a possible mapping of events between the two environ-

ments by looking at how one type of event, the sighting event, can be mapped

in both directions. In general, it is important to distinguish between the rep-

resentation and the presentation of a virtual environment. The former is the

way the environment is structured and stored in the computers' memory and is

independent of any input/output devices individual users may have. The latter

is the way the environment is presented to individual users and is therefore de-

pendent on such hardware. In particular, it is possible to have the same virtual

environment presented di�erently to di�erent users.

There are many ways of presenting virtual environments to users, ranging

from simple text-based interfaces as those used in MOOs (Multi-User Environ-

ments, Object-Oriented) [1] over �rst person perspective 3D graphics commonly

used in popular games such as Quake, to full-blown virtual reality equipment

such as stereoscopic VR goggles or even CAVE theaters [3].

For the purposes of this paper, we use the simplest possible presentation: a

text-based interface akin to that used in MOOs. It is important to stress, how-

ever, that the ideas discussed here are general and will be usable with other pre-

sentation techniques. It should also be noted that researchers from the Computer

Laboratory at the University of Cambridge are doing work which is somewhat

related to that presented here. Their approach is to use the active badge system

to maintain a VRML2 representation of the labs. This enables users to interact

with the environment using a graphical rather than a text-based interface [2].

It should also be noted that this is work in progress and most of our e�ort

so far has been to implement an application that can map real to virtual sight-

ing events. Therefore, the discussion of real-to-virtual event mapping is more

thorough than that of virtual-to-real mapping.

4.1 Example

The following is an example of a purely virtual user interacting with the envi-

ronment. At the user's location is another virtual user, John, and a real person,

Jane. Jane herself is physically present at the corresponding location in the real

environment whereas the two virtual users are only present at the virtual lo-

cation. User commands issued by the virtual user from whom the transcript is

taken are preceded by a prompt (>) character.

You are on the 3rd floor of the Research Laboratory.

A sign on the wall reads, `Area 8.' A sensor in the ceiling is marked, `11.'

John (virtual) is here.

>look at john

John is transparent and has no badge identifier.

Jane (real) arrives.

>look at jane

Jane's badge identifier is 0-0-0-0-10-14.

There are several things to note about this example. First, John and Jane are

marked as virtual and real mainly for reasons of clarity. Distinguishing between

users in this way is not a strict necessity. Second, John has no badge (he is purely

virtual) and therefore no badge identi�er. Third, this scenario is limited because

it features only one type of event: the sighting event. Though this event enables

users to see each other and move around (by being sighted in di�erent places) it

o�ers few possibilities of interaction.

4.2 Sighting Events

In the example, the location entity keeps track of any real and virtual users

present at the location. When Jane arrives physically at the location, the signal

emitted by her infrared badge is picked up by the sensor in the ceiling and a

sighting event is raised. This event is detected by the location entity because it

subscribes to all sighting events raised by that sensor. Hence, Jane's arrival in

the physical location of the real environment triggers her virtual arrival in the

corresponding location of the virtual environment. This is e�ectively a mapping

from a real to a virtual sighting event.

For sighting events, the purpose of a virtual-to-real mapping is to let Jane in

the real location obtain a sighting of a virtual person in the virtual location. (If

the person is real rather than virtual, we assume Jane will be able to see him

with her own eyes.) This is a presentation issue and can be adressed in many

di�erent ways. In case the location is Jane's o�ce and she has a terminal on her

desk, a simple terminal window could be used to inform her about the presence

of virtual users in her virtual o�ce. If the location is a hallway or meeting

room, a screen (possibly
at and wall-mounted to take up as little space as

possible) could be placed in the location and messages about the presence of

virtual entities could be either printed (MOO-style) or drawn (as images) on

the screen. More ambitious approaches could use more advanced hardware to

give a more lifelike presentation of events in the virtual world. For example, a

holographic projection of each virtual entity would be ideal but is hardly feasible

with current technology. Comparable results, however, might be achieved by

equipping Jane with a wearable rendering computer and a pair of transparent

VR goggles where an image of the virtual environment is superimposed that of

the real environment. Regardless of whether a low- or a high-tech approach is

adopted, the presentation would let Jane observe events happening in the virtual

world. Analogously, Jane's badge would let virtual people see her. Together, these

two mappings constitute a full mapping of sighting events in both directions

between the environments.

5 Smart Environments

The previous sections have described a real and a virtual environment and ex-

plained how they could be closely interfaced by mapping events in both direc-

tions. So, the next question is, in what way is this technology useful for smart

environments research? A smart environment can be seen as an `ordinary' real

environment with certain extra functionality that enables it to monitor its own

state and to modify that state. When a smart building detects the presence of

a disabled person in front a door, the detection is a result of the building mon-

itoring its own state. (We here assume people in the building to be part of the

environment.) When the building opens the door to let the person through, it is

modifying that state.

Sections 3 and 4 argued that such state can be naturally represented as a

virtual environment mirroring the the real environment and that events can

be used to keep the two environments synchronised. In fact, event mapping is

just another word for monitoring and modifying the real environment's state.

When events are mapped from real to virtual, the real environment's state is

being monitored. When they are mapped from virtual to real, the state is being

modi�ed.

The section 4.1 example used an extremely simple environment, featuring

only surveillance-type functionality and using only a few types of entities and

one type of events. Surveillance is only one area in which this technology can be

applied. In the following, we discuss this and two other areas known from smart

environments, namely planning- and action-type applications. The example from

section 4.1 is extended to illustrate the points, and actual C++ code with ECO

statements is used to explain how the events are used. It is worth noting that

this section is work in progress and because the ideas are largely untested, the

discussion is somewhat speculative. The code given in this section assumes the

existence of a sighting event class along the lines of that given below.

class SightingEvent : public Event {

string badge_id; // The badge seen.

string network; // Location identifier:

int station; // (network, station).

};

5.1 Monitoring and Surveillance

Many `dumb' buildings are equipped with security cameras to monitor areas

which are deemed sensitive for one reason or another. Such cameras generally

have the disadvantage that they have to be monitored by people rather than

software because detailed digital image analysis is not only extremely di�cult

but also very time-consuming. Consequently, the information that can be gath-

ered from such cameras is in practice rather limited. Areas are often monitored

only for security purposes; other information, such as the movement patterns of

(legitimate) users, is not recorded.

Smart environments can incorporate user tracking, for example via active

badges as those described in section 3.1. This makes it easy to analyse the

movement patterns of the users of the environment. The CCTV camera from

section 3.2 is an example of a simple analysis tool, monitoring a small area of

the complete environment. The following C++ code with ECO statements shows

how a simple CCTV camera could be implemented; it subscribes to all sightings

in a particular area and logs them to standard output. Recall that the network

and station constitute a location identi�er and that a network consists of a series

of (related) locations. Asterisks (�) denote wildcards, i.e., �elds matching any

value.

class CCTV {

string network;

int station;

CCTV(string nw) : network(nw) {

// Detect all users in this area (`network') of the building.

Subscribe(SightingEvent(*, network, *), &EventHandler);

}

~CCTV() {

// Cancel subscription.

Unsubscribe(SightingEvent(*, network, *), &EventHandler);

}

void EventHandler(SightingEvent se) {

// Log the sighting to stdout.

cout << "Badge " << se.badge_id << " seen.\n";

}

};

Entities like this CCTV camera are useful because the complete event
ow

through any sizable smart environment will be large and di�cult to comprehend.

Entities such as this can be used to provide meaningful views of this event

ow by dynamically extracting events according to certain patterns, and in this

way make it easier for humans to monitor the system at runtime. The CCTV

camera extracts sightings on the basis of their location but other entities could

for example monitor certain users, or use a combination of the two.

Using smart environments with user tracking doubtlessly has its advantages

but also raises serious ethical issues about privacy. It is easy to picture technology

like that described here being used to implement surveillance of Orwellian [7]

proportions on the grounds that it is for the users' own good.

5.2 Planning

Planning routes through buildings is a useful functionality for visitors and robots

and one that is often discussed in the context of smart environments. To make a

plan from one location to another, a building must be aware of its structure, e.g.,

must know the layout of
oors and the locations of lifts, stairs and doors. It must

also take into account the abilitites of the user (be it a visitor or a robot), e.g.,

whether he/she/it can use lifts and stairs and holds the right keys and access

codes to doors on the way. Even after a suitable plan has been laid out, a smart

building may still help the user follow it for example by displaying encouraging

messages on screens on the way.

Making the plan is an algorithmic problem and beyond the scope of this

paper. However, once a plan has been made, the environment can assist the

user in carrying it out. In the context of the section 4.1 example, this could be

implemented with virtual signpost entities placed in locations along the route.

Consider the following version of the example:

You are on the 3rd floor of the Research Laboratory.

A sign on the wall reads, `Area 8.' A sensor in the ceiling is marked, `11.'

Jane (real) arrives.

A green arrow bearing the name `Jane' in large, friendly letters suddenly

appears on the wall. It is pointing north.

Jane (real) goes north.

The green arrow vanishes.

This example features a signpost visible in the virtual world. Obviously, sign-

posts would also have to be visible in the real world, in order to be useful for real

users. For human users, they could be printed on displays in the various loca-

tions. For robots, they could be transmitted via short-range wireless links such

as infrared. Note that directions only appear when the user enters the location

and that they disappear when the user has left. This prevents an environment

with many visitors from becoming cluttered with messages. Also, in the case of

human users, chances are that the appearance of the message will attract the

user's attention at the right moment.

The following C++ code with ECO statements shows how signposts could

be implemented. A series of signposts could be created by a planning application

and placed in the environment along the projected route. The exact placement

of signposts is of course open to discussion; one could for example claim that

a user does not need signposts when following the projected path, only when

straying from it. However, for the purposes of this example, we will assume they

are placed in the locations on the path the user is expected to follow.

class SignPost {

string badge_id, network;

int station;

SignPost(string bid, string nw, int st)

: badge_id(bid), network(nw), station(st) {

// Start looking for our user in our location.

Subscribe(SightingEvent(badge_id, network, station), &Activate);

}

// Activation Handler.

void Activate(SightingEvent& se) {

// User is here; become visible (code not shown) and

// stop looking for the user in our location.

Unsubscribe(SightingEvent(badge_id, network, station), &Activate);

// Start looking for the user anywhere.

Subscribe(SightingEvent(badge_id, *, *), &Deactivate);

}

// Deactivation Handler.

void Deactivate(SightingEvent& se) {

if (se.station != station || se.network != network) {

// User is sighted somewhere else; stop looking.

Unsubscribe(SightingEvent(badge_id, *, *), &Deactivate);

// Destroy ourselves (code not shown).

}

}

};

During the lifetime of a signpost entity, each of the above methods will be

invoked once in the order of constructor, activation handler and deactivation

handler. The two handlers will be invoked when the appropriate sighting events

(matching the subscriptions) occur. The signpost example shows how a simple

guidance system can be implemented rather easily given a virtual representation

of the real environment and mapping of sighting events in both directions.

5.3 Action

Another function of smart environments is to perform certain actions automati-

cally and on user request. Common examples are calling lifts and opening/closing

doors in the environment. This type of functionality is useful for users with lim-

ited physical abilities, such as disabled people and robots, but also for users who

need to control certain aspects of the environment remotely.

Consider a smart environment with automatic doors that can be opened

by anybody with the right key. When opened, a door stays open for 30 sec-

onds whereafter it closes. In the virtual environment, doors are represented as

ECO entities and keys as strings. A door can be attempted opened by raising a

PleaseOpenDoorEvent in the virtual environment. This event contains the key

(placed there by the entity raising the event) and is received by the door en-

tity. If the key matches, the door opens. This is signalled by the door with a

DoorOpenEvent. When the door closes, it raises a DoorCloseEvent. Each door

has a unique identi�er in the form of a string. C++ code for the three event

types is given below.

// Raised by somebody who wants to open a door.

class PleaseOpenDoorEvent : public Event {

string door, key;

};

// Raised by the door when it opens.

class DoorOpenEvent : public Event {

string door;

};

// Raised by the door when it closes.

class DoorCloseEvent : public Event {

string door;

};

Note that ECO events are global; there is only one event space where all

events are raised. Hence, anybody can raise a PleaseOpenDoorEvent regardless

of their location; in particular, it is not necessary to be anywhere near the door.

In practice, the PleaseOpenDoorEvent could be raised either by actual users

(when standing in front of the door), by security personnel in remote locations

or by other parts of the building, such as the signpost entities described in

section 5.2. The code for the door entity is given below.

class Door {

string my_id, my_key;

bool open;

Door(string id, string key) : my_id(id), my_key(key) {

// Subscribe to all request to open us.

Subscribe(PleaseOpenDoorEvent(my_id, my_key), &Handler);

}

~Door() {

Unsubscribe(PleaseOpenDoorEvent(my_id, my_key), &Handler);

}

void Handler(PleaseOpenDoorEvent& ev) {

// Rudimentary security.

if (ev.key == my_key) {

// Physically open door (code not shown) and raise

// event to tell the environment it is now open.

Raise(DoorOpenEvent(my_id));

// Wait a while to let people pass through.

sleep(30);

// Physically close door (code not shown) and raise

// event to tell the environment it is now closed.

Raise(DoorCloseEvent(my_id));

}

}

};

This example shows how event-based programming combined with a vir-

tual representation of the environment gives a high degree of
exibility in con-

trolling and programming the building. For example, a remote control button

for the door is easily implemented as an entity that raises the appropriate

PleaseOpenDoorEvent. It can be placed anywhere in the building and even

moved at runtime.

6 Conclusions and Future Work

This paper has presented ideas for closely interfacing real and virtual environ-

ments by mapping events between the environments in both directions. We have

also described an ongoing implementation of these ideas which features only

a single type of event, the sighting event, and only the simplest possible pre-

sentation layer, a text-based interface. Despite these limitations, we claim that

the principles generalise and will remain valid in more complex scenarios with

many event types and multiple (and more advanced) presentation layers. We

have also brie
y described the ECO event model which the implementation uses

for event-based communication.

We have argued that this technology can be applied in the context of smart

environments by giving examples of some typical applications from the domain

and explained how they could be implemented with the technology. The exam-

ples suggested that at least some smart environment applications could be kept

quite simple even for large environments. Our conclusion is that closely inter-

faced real/virtual environments is a promising programming model for smart

environments and is worth investigating further.

Acknowledgements

The authors are very grateful to John Bates of AT&T Laboratories, Cambridge

for supplying the data from the active badge system.

References

1. R. A. Bartle. Interactive Multi-Player Computer Games. Technical report, MUSE

Ltd, Colchester, Essex, UK, 1990.

2. John Bates, Jean Bacon, Ken Moody, and Mark Spiteri. Using Events for the

Scalable Federation of Heterogeneous Components. In Proceedings of the Eighth

ACM SIGOPS European Workshop, September 1998.

3. C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, R. V. Kenyon, and J. C. Hart. The

CAVE: Audio Visual Experience Automatic Virtual Environment. Communications

of the ACM, 35(6):65{72, June 1992.

4. TCD Team Moonlight. VOID Shell Speci�cation. Project Deliverable Moonlight

Del-1.5.1, Distributed Systems Group, Department of Computer Science, Trinity

College, Dublin 2, Ireland, March 1995. Also technical report TCD-CS-95-??, Dept.

of Computer Science, Trinity College Dublin.

5. Karl O'Connell. System Support for Multi-User Distributed Virtual Worlds. PhD

thesis, Trinity College, Department of Computer Science, Dublin 2, Ireland, October

1997.

6. Karl O'Connell, Tom Dinneen, Steven Collins, Brendan Tangney, Neville Harris, and

Vinny Cahill. Techniques for Handling Scale and Distribution in Virtual Worlds.

In Proceedings of the Seventh ACM SIGOPS European Workshop, pages 17{24.

Association for Computing Machinery, September 1996.

7. George Orwell. 1984. New American Library, 1990. ISBN 0-451-52493-4.

8. Gradimir Starovic, Vinny Cahill, and Brendan Tangney. An Event Based Object

Model for Distributed Programming. In John Murphy and Brian Stone, editors,

Proceedings of the 1995 International Conference on Object Oriented Information

Systems, pages 72{86, London, December 1995. Dublin City University, Ireland,

Springer-Verlag.

