
IEEE TRANSACTIONS ON RELIABILITY, VOL. 46, NO. 2, 1997 JUNE 165 

Reliability Assessment froim Fatigue Micro-Crack Data 

Simon P. Wilson 

David Taylor 
Trinity College, Dublin 

Trinity College, Dublin 

Key Words - Bayes inference, Coalescence, Fatigue, Gibb’tr 
sampling, Hierarchical model, Kernel density estimate, Micro- 
crack, Propagation 

Summary & Conclusions - Micro-cracks are generally defmetl 
to be cracks less than 1 mm in length, which propagate under cyclic: 
stresses until they grow large and cause failure in an item (eg, corn,. 

ponent or structure). This paper proposes a method of using data 
on ‘fatigue micro-crack growth in a material’ to predict its reliabili- 
ty. It is increasingly important to model such cracks effectively. 
Their growth properties, which differ in several respects from 
larger cracks, are discussed. 

The paper develops a hierarchical model for the propagation 
of micro-cracks in a material. This stochastic model attempts to 
model the dependence of growth on local conditions, varying 
throughout the material, that causes variation in growth rates across 
the specimen. Given the model, data on micro-crack growth are 
used to compute posterior distributions of model parameters, from 
which a predictive distribution for reliability can be calculated. 
Computation of the posterior distributions is by Gibb’s sampling: 
and kernel density estimation. The methodology is illustrated with 
two data sets, one simulated and the other from a cast-iron 
specimen. Some possibilities for further work are presented. 

1. INTRODUCTION & OVERVIEW 

ACrOny” 

MCMC Monte Carlo Markov chain. 

When a metal item (eg, structure or component) is subject 
to a cyclic load, it generally fails eventually2. Thus it is im- 
portant - from a safety, legal, financial, and academic perspec 
tive - to predict when this fatigue failure is likely to occur. 
Fatigue failure of a metallic item occurs because cracks pro- 
pagate through it, and this propagation is a function of several 
internal & external factors: eg, size of load, microstructural pro- 
perties of the material, temperature, humidity. 

Broadly speaking, crack propagation has 5 phases. 

1. Dormant. There are no cracks in the material. 
2. Nucleation. The crack is initially formed. 
3. Micro-crack growth. The crack grows rather haphazard-. 

ly up to about 1 mm in length. 

’The singular & plural of an acronym are always spelled the same. 
’Some ferrous materials appear to have a fatigue limit, below which 
the item does not fail. 

4. Macro-crack growth. The crack continues to propagate 
before its growth rate finally increases dramatically. 

5 .  Failure. The component fails; this occurs very quickly, 
relative to the other phases, and can be ignored as a factor in 
determining reliability. 4 

Out of the many cracks that nucleate and become micro- 
cracks in a specimen, usually there is only one that becomes 
dominant and causes failure. The fact that only one macro-crack 
is important makes the modeling of phase #4 rather easier than 
the others. There are many situations in which the macro-crack 
phase #4 is the longest phase in the specimen life. Thus, most 
of the considerable body of work on crack propagation is 
devoted to macro-cracks. 

Nevertheless, the micro-crack phase can form a very 
sizeable proportion of the failure time - 60 % is typical for some 
materials - particularly in situations of relatively low stress 
levels where lifetimes are long. Figure 1 [ 11 shows this for two 
specimens of a molybdenum steel. Such situations are very com- 
mon where, for example, components have been designed to 
withstand stresses considerably above those that they actually 
encounter. Because the reliability of many components is im- 
proving, micro-crack behavior is becoming a critical factor in 
determining reliability, So in terms of quantifying component 
lifetime and as a factor to be considered in the design process, 
models for the micro-crack phase are increasingly important. 

Once a crack has attained a certain threshold size, failure 
occurs very rapidly. So, to determine component reliability, a 
model for crack propagation is proposed and used to calculate 
when the length of the largest crack exceeds the threshold. 
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3 :  Micro-crack 
4/5: Macro-crack Xr; i failure 

Figure 1. Time Spent in Phases of Crack Growth 
[for two specimens of molybdenum alloy] 

Three properties of micro-cracks make macro-crack 
models inappropriate: 

1. The usual models for macro-cracks cannot accommodate 
the various features of micro-crack growth. Section 2 proposes 
a modification of the usual macro-crack model that accounts 
for these differences. 

2. There are many micro-cracks in the specimen that must 
be modeled collectively, as opposed to one dominant 
macro-crack. 
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3.  Micro-crack growth is a function of varying local con- 
ditions in the material. 4 

Section 3 argues that a stochastic hierarchical model is a 
good first step in modeling the randomness & s-dependencies 
between the collection of micro-cracks. Section 4 describes how 
statistical inference and reliability prediction can be conducted 
using MCMC, and provides two illustrations using data on 
micro-crack growth. 

Notation 

a ,  a ( t )  crack length at time t 
AK stress intensity range 
C, n ,  Q 
ACT stress range 
a0 initial crack length 
d diameter of a grain in the material microstructure 
D distance from the point of crack nucleation to where 

the crack encounters the first grain boundary 
N number of micro-cracks in a specimen 
f ( a , d ;  0) empirical function of a ,  d ,  and parameter 0 
m, q5 grain boundary specific constants, 0 5 $ 5 1 
I index for cracks; i= 1,2,. . . ,N unless otherwise 

specified 
.i index for times; j =  1,2,. . . ,k unless otherwise specified 
mi, q5i [m,  41 for crack i 

aij observed crack length for crack i at t ime j  
A , ( t )  length of crack i at time t ,  a r.v. 
A {a. 11’ ,. i = 1 ,  ..., N ;  j = l ,  ... k } .  

Other, standard notation is given in “Information for Readers 
& Authors” at the rear of each issue. 

material specific constants 

logit(q5i) log(+;) - log(l-4i) 

can be smooth but can involve periods of stationarity and the 
possibility of being stopped altogether. This can be observed 
by plotting crack-growth vs crack-length for a set of cracks in 
a metal; figure 2 [3]  is a typical plot. This widely observed 
phenomenon is caused by the crack encountering a boundary 
between grains in the material microstructure; at such a boun- 
dary, growth rate is slowed by a factor that depends on local 
conditions. In this way, some micro-cracks propagate to become 
macro-cracks with hardly any delay while others are held back 
for some time or even stopped altogether. The difference in the 
length at which cracks slow down is due to the different distance 
that the cracks progress before hitting a grain boundary. 
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Figure 2. Typical Growth Behavior of Micro-Cracks 

The general approach to modeling the effect of a grain 
boundary is to take the Paris-Erdogan equation and multiply 
the r.h.s by a factor that accounts for the local conditions at 
the first grain boundary: 

da 

2. MICRO-CRACK PROPAGATION: WORK TO DATE dt 
~ = C- ( A K ) n - f ( a , d ;  e ) ,  (3) 

Thef( a,d; 19) is usually increasing in the distance from the first 
grain boundary. A variety of forms for f have been proposed 
that empirically capture this property; eg, Miller et al simply 
propose [4]: 

2.1 Previous Work 

The usual model for large macro-crack growth is the Paris- 
Erdogan equation [2: chapter 11 which defines: 

a ( 0 )  = ao. 

where, usually, 

(1) 

( 2 )  

f = a - d ,  for a < d ,  

while Plumtree & Schafer suggest [5 ]  : 

f = 1 - 4 -  ( ( d - a ) / d ) ’ ,  for a constant 4. 

However, there is no consensus on the best form forf: it ap- 
pears to vary for different materials. 

To solve (1) uniquely, a. is needed. This model has been used 
successfully to describe the observed propagation of a domi- 
nant macro-crack in many experiments and the values of C & 
n have been established for a wide range of materials. 

The growth of a macro-crack is as smooth as the use of 
such a differential equation model implies. This is in stark con- 
trast to what we observe for micro-cracks, whose progression 

2.2 Micro-Crack Model with an Exponential Local Term 

One model of the form in (3) is: 

= C. (AK)’-[1 - +-exp(-m. ( u - D ) ~ ) ] ,  (4) 
da ( t )  

dt 
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D is a function of d. 

Eq (4) & (5 )  for da/dt is the Paris-Erdogan rule multiplied by 
the local factor: 

The size of the slowdown in growth at the grain boundary is 
governed by 6: 

If 4 = O  then there is no local effect and the crack moves ac- 

If 4 = 1 then when U = D (when the crack hits the first grain 
cording to Paris-Erdogan. 

boundary), du( t ) /d t=O and the crack is stopped. 

The m is a scaling factor that controls how far away from the 
boundary the local effect is important: 

If m is small, then the crack slows down a long distance from 

If m is large, then the crack slows down a short distance from 
the boundary. 

the boundary. 

The use of an exponential measure of distance forf(a, d;  
6) is new. The advantage of such a measure is that it is increas- 
ing but bounded in the distance from D. Thus, as a progresses 
beyond D, the exp(--m- ( a  - D) 2 ,  becomes smaller and 
du ( t )  /dt becomes closer & closer to the usual Paris-Erdogan 
equation for macro-cracks. However it remains empirical and, 
like all proposed forms forf, has not been derived by consider- 
ing more fundamental processes of crack growth. 

A solution for a(t) is not available in closed form but can 
be efficiently obtained with a second order finite difference ap- 
proximation. The solution is shown in figure 3 for: 

5 values of 4 = 0.6 (the fastest growing), 0.7, 0.8, 0.9, 1 

C = 0.2, Au = 10, n = 1, m = 0.02, Q = 1, D = 80. 

The crack growth does indeed slow around the value of D, with 
the extent of the slowdown, depending on the size of 4. 

(the slowest growing) 

3 .  EXTENDING TO A RANDOM MODEL 
FOR MANY MICRO-CRACKS 

There has been some work on random models for micro-. 
crack propagation, although the work is small compared withi 
that for macro-cracks. Cox & Morris define a model through1 
a growth-control parameter that evolves as a Markov chain [ 6 ] .  
Taylor has introduced the concept of a P-a plot to describe the: 
probability of growth of a crack in a given number cycles as 
a function of crack length [7]. Our approach treats the 
parameters of the deterministic model as r.v. This concept has 
been used for macro-crack models, such as the work of Paluszny 
& Nicholls on a model for crack growth in ceramics [8]. Tcr 
our knowledge, the idea has not been applied to micro-crack. 
models. 

I / 

0 2000 4000 6000 8000 
N 

Solutioin for a ( t )  vs + Figure 3. 

3.1 General 
We have established a deterministic model for a single 

micro-crack in terms of parameters: C, n, m, 4, . . . . Stage #2 
of the modeling process is to extend the model to many cracks, 
growing broadly in the same manner but with variations accor- 
ding to local conditions. A simple tractable form for such a col- 
lection of similar entities is a hierarchical model, which 
describes the cracks as a set of random, exchangeable objects, 
conditionally s-indlependent of each other, given local condi- 
tions around each crack. 

Assumptions 
1. N is a constant for a given specimen. 
2. n, C, ACT, are known. 
3 .  The local conditions at each crack are described by the 

4. Conditional on the local parameters, 
a. each crack is s-independent. 
b. the deterministic model of (5) gives a solution for a, ( t ) .  
5. A, ( t )  has a Gaussian distribution with mean a, ( t )  and 

standard deviation a-a, ( t )  . 
6. The use of multiplicative error for A, ( t )  is necessary 

because crack lengths vary over several orders of magnitude 
with time. 

7a. The local parameters are r.v. that come from some 
underlying common probability distribution. 

7b. The log (m,)  are s-independent and have a Gaussian 
distribution with mean M and standard deviation a,. 

7c. The logit($,) have a Gaussian distribution with mean 
$ and standard deviation u4. 

8. Statistical inference is Bayes3. Thus prior degrees-of- 
4 

local parameters m,, Di, 4,. 

belief on M, a i  +, ui,  d, a2 are required. 

'Bayes theory uses probability as degree-of-belief, and has no rela- 
tion to probability as relative frequency. 

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 2, 2009 at 04:03 from IEEE Xplore.  Restrictions apply. 



168 IEEE TRANSACTIONS ON RELIABILITY. VOL. 46, NO. 2, 1997 JUNE 

The distribution of the D, can be obtained from 
geometrical considerations and is a function of grain diameter 
d The evaluation of this distribution is addressed in section 3 2. 
This hierarchical model is often visualized as a directed graph 

their influences on each other. Each node represents one part 

100000 Samples 

(D 

0 

0 
0 which represents all the quantities of interest in the model and 

of the model and is s-independent of all other nodes in the graph, 
conditional on its parents (the nodes that point directly to it). 
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ditionally s-independent given their parents, 4 
Figure 5. Simulated Density of D 

[d= 1 ,  circular grains] Figure 4 is the directed graph that represents this model. 

Figure 4. Directed-Graph Representation of the Hierarchical 
Model 

The strengths of the hierarchical model are not only in its 
tractability. The cracks are unconditionally s-dependent, but the 
similarity between each crack is maintained since the marginal 
distribution of Ai ( t )  is the same for all i (a result of assump- 
tions #4a, #5, #7a). 

3.2 Prior Distribution for D 

D = --R.cos(O - $) + [%d2 - R2.sin2(8-$)]”, (6)  

In the absence of more specific information for this exam- 
ple, assume that R, 19. $ are uniformly distributed r.v. over their 
possible values, then one can generate values from the distribu- 
tion of D by direct simulation. Figure 5 is a histogram of the 

4 

More generally, d itself varies; indeed, the distribution of 
grain diameters is easily observed and has been quantified for 
many materials. This generalization presents no problem to the 
direct simulation of the distribution of D. 

Other, perhaps more realistic, geometries for the grains 
could be used, e g ,  Voronoi tessellations. Direct simulation of 
a distribution for D is available, although more complex. The 
problem can be considered in all 3 dimensions, and used with 
spheres or 3-dimensional Voronoi tessellations, However, since 
crack growth often occurs in one direction, perpendicular to 
the stress axis, a 2-dimensional geometry is usually sufficient. 
We are interested only in a prior distribution for D that is up- 
dated, given our data on crack growth, the use of the simpler 
prior from an assumption of circular grains might be all that 
is needed. 

resulting values of D when d is fixed at 1. 

4. STATISTICAL INFERENCE 
AND RELIABILITY ASSESSMENT 

A very simple example shows how we find our prior 
Assumptions degree-of-belief. 

Examp le 
9. We have data on N cracks. The length of each crack 

is observed at times tl,t2, ..., tk 

There are 2 dimensions, and the grains are circular with 

tion ( R ,  0) in polar co-ordinates. It then proceeds at an angle 
$ (clockwise from the positive x-axis) until it hits the boundary 
of the circle. The length of the line from nucleation point to 
circle perimeter is D. Thus (by the cosine rule): 

10. To simplify, ai,l = a. of the crack, as required to 
4 a diameter d. A crack nucleates at a point in the circle at a posi- solve (5) .  

* 
40ne could of course allow U, to be a r.v. and incorporate it into the 
inference. 
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Given the data, the statistical analysis has 3 objectives: 

Estimate model parameters. Because we adopted Bayes in- 
ference, the goal is to obtain posterior distributions of the 
parameters, conditional on A .  
Predict the progression of cracks in other specimens of the 
same material. 
Predict the future propagation of the observed cracks. This 
is important because it can be used to predict the reliability, 

4 

To conduct s-inference with this model, obtaining posterioi- 

or time to failure, of the specimen. 

distributions of parameters and predictive distributions, is a com- 
putational challenge. Recent advances in stochastic simulation 
techniques - in particular, MCMC - meet the challenge, 
s-inference is quite feasible using a machine of moderate com. 
putational power, eg,  the results in section 4.3 took a few hours 
on a Pentium PC. 

4.1 Parameter Estimation 

The model has many parameters: 

Each crack has 3 parameters - mi, Di, &. 
The global distributions of mi, Di, c$~ are described by 

4 
parameters M ,  0; d, a, G,$ 

The multiplicative error 02. 

Thus, for N cracks, there are 3N + 6 parameters. 
The parameters are partitioned in 2 groups: local andl 

global. On the local level, crack i is described by its 3 locall 
parameters; estimation of mi, Dj,  &, U* yields specific infor-. 
mation about the performance of each crack. On the global level, 
the distribution of the population of local parameters in the! 
specimen is estimated, ie, M ,  0; d, +, 0:. 

MCMC for simple hierarchical models is usually perform- 
ed with the Gibb’s sampler, and we use it here [9: and its; 
references]. The sampler does not require one to be able to Sam-. 
ple from the posterior distribution of each parameter, but rather 
thehll  conditionals for each parameter, or the distribution con-. 
ditional on the data and all other parameters. The full condi-. 
tional for any parameter can be obtained by looking at the joint 
distribution of data and parameters as a function of the parameter 
in question; in this paper, combining all the distributional and 
s-independence assumptions in section 3 (viz, assumptions #1, 
#2, #4, #5 ,  #7b, #7c, #8 - #lo), this joint distribution is: 

i = l ,  ..., N, j = l ,  ..., k;  U’, M ,  U; d, @, U;) 

1 

(7) 

a, ( tJ)  = solution to the model ( 5 )  with m,, D,, 9,, and a. = 

a form for f(  D, Id) is explained in section 3.1 

-.() denotes the prior distributions on hyper-parameters. 

%19 

A sample from each full conditional distribution is 
calculated differently. For the full conditionals of m,, D,, 4,, 
calculation of the pdf requires that a, ($1, for i = 1,. . . ,k ,  be 
computed; this is a slow process. Thus, for these parameters, 
the griddy Gibb’s sampler is used [lo], evaluating the full con- 
ditional at 5 points. For the hyper-parameters, the pdf‘s are of 
a form that is easy to evaluate, and a sampling is done from 
a discrete approximation to the continuous distribution. 

The output from the sampler is a set of values of each 
parameter that are random samples from the relevant posterior 
distribution. These: values can be used to estimate the posterior 
distribution, either by combining them into a histogram or by 
using one of the kernel density estimation techniques [9, 111, 
Predictive pdf‘s for future values of crack length can be ob- 
tained in a similar manner. 

4.2 Predicting Reliability 

Notation 

Ath a given threshold size 
T life-length of specimen 
G )  

L 
implies: sample j ,  j =  1,2,. . . ,L 
number of samples produced by Gibb’s sampler from 
posterior distributions of the local parameters. 

Assumption 

11. Specimen reliability is estimated by predicting the time 
at which the first crack reaches A,, conditional on A.  

Pr{T > t lA}  = l’r{maxi{Ai(t)} s AhIA} 

The conditional s-independence of the Ai are used to 
estimate the joint posterior distribution of all the crack lengths 
at any time t with the kernel estimate: 

n(m,  D, 4IA)i dm dD d4 
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ai(t) is the solution to (5) with parameters mp), D p ) ,  
+i(i). 

Use this approximation in (8); the reliability is: 

4.3 Application to Data 

Two sets of data are analyzed. In both cases, vague prior 
distributions were placed on the hyper-parameters: 

a Gaussian distribution with mean 0 and standard deviation 
1000 on M and a, 
inverse Gamma distributions with ‘scale parameter = 0.5’ 
and ‘shape parameter = 0.5’ for a’, ~7: and 0;. For the prior 
distribution of D ,  we assumed little prior information available 
on the grain diameters d, except that an upper bound to d 
was 500; thus (6) was used to form the prior distribution on 
each Di from a uniform distribution on [0, 2x1; where 0, J / ,  
R were chosen uniformly on [0,500]. 

4.3.1 Data Set #1 

This is a simulated set of lengths from N = 10 cracks, taken 
from a solution to (5 ) .  The crack lengths were observed at k 
= 10 time points. Figure 6 shows the 10 cracks with the 
observed-lengths marked. 

0 in r 

0 0 
h r  z 
m 1 

0 

1000 2000 3000 4000 5000 
N 

Figure 6. Simulated Data 

The data were analyzed using the Gibb’s sampler; lo3 
samples from all the posterior distributions were generated. The 
first 300 were ignored and the results calculated using the re- 
maining 700 samples. With N =  10, there are 36 parameters to 
be estimated from 100 data points, so that the posterior distribu- 
tions for the crack specific parameters m, D, q5 were not very 
informative. Figure 7 shows the kernel pdf estimates of the 

posterior distributions of the mean & variance of log@) and 
logit(q5). Figure 8 shows the estimate of the future reliability, 
with &=1000, of the specimen to be fairly precise, with 
failure predicted to occur “almost certainly” between t= 14 and 
t= 16. 

Figure 7.  Kernel Posterior pdf Estimates for 4 Global 
Parameters 
[given the data from the simulated specimen with 10 
micro-cracks] 
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a b  
0 

N 
0 

0 
0 

12000 13000 14000 15000 16000 17000 18000 
N 

Figure 8. Estimated Reliability of Simulated Specimen 
[with: 10 micro-cracks, At,,= 10001 

4.3.2 Data Set #2 

This is an experiment on a specimen of cast iron. The 
specimen was subjected to a cyclic load at a constant AU and 
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the growth of cracks measured with the aid of a microscope. 
Figure 9 shows the observed lengths of 190 micro-cracks in 
the specimen. The lengths were observed at only 4 points; thurs 
our model is over-parameterized as regards estimation of in- 
dividual crack properties (since there are 3 parameters per 
crack). So we concentrate on the 6 global parameters and the 
reliability prediction. Figure 10 shows the predicted reliabili- 
ty, with Ath= 1000. 

0 0 m 

- 0  z:: 

0 
? 

1500 2000 2500 3000 3500 4000 
N (~1000) 

[from a cast-iron specimen] 
Figure 9. Micro-Crack Data 

--_\ 

\ 
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\ 

8000 10000 12000 14000 16000 

N (xl000) 

Figure 10. Estimated Reliability of Cast-Iron Specimen 
[with: At,,= lOOO] 

Figure 9 shows that there is one dominant crack that is 
larger than the others; thus, in contrast to the simulated data, 
the reliability prediction is almost entirely dependent on the 
predicted growth of this crack alone. 

5 .  CLOSING REMARKS 

One important aspect of micro-crack growth has been ig- 
nored in this approach: there is often a large spatial-dependence 
between micro-cracks. For example, neighboring cracks can 
coalesce, and the presence of a large crack can inhibit growth 
of cracks nearby. In some materials the main cause of growth 
in the micro-crack phase is coalescence. Coalescence occurred 
in some of the cracks of data set #2, and was resolved by con- 
sidering all the cracks that subsequently coalesced as one crack 
with length the sum of its constituents. This rather crude ap- 
proach can be improved upon, and presents an interesting 
modeling problem. 

A practical reason for not incorporating a spatial compo- 
nent into the model, apart from the prospect of computational 
problems, is that dhe data on micro-crack growth does not pro- 
vide any information on the location of each crack in the 
specimen. This reflects the difficulty of 1) observing such small 
objects, and 2) accurately measuring them on a specimen. Even 
locating the same crack that was measured previously can be 
a problem. However, improvements in experimental techniques 
mean that spatial data ought to become possible to collect, at 
which point a spatial model approach can be pursued. 
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