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Abstract—In the literature on statistical inference in software reliability, the assumptions of parametric models and random sampling

of bugs have been pervasive. We argue that both assumptions are problematic, the first because of robustness concerns and the

second due to logical and practical difficulties. These considerations motivate the approach taken in this paper. We propose a

nonparametric software reliability model based on the order-statistic paradigm. The objective of the work is to estimate, from data on

discovery times observed within a type I censoring framework, both the underlying distribution F from which discovery times are

generated and N, the unknown number of bugs in the software. The estimates are used to predict the next time to failure. The

approach makes use of Bayesian nonparametric inference methods, in particular, the beta-Stacy process. The proposed methodology

is illustrated on both real and simulated data.

Index Terms—Beta-Stacy process, order statistics, reliability, testing strategies, nonparametric statistics, survival analysis.
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1 INTRODUCTION

SOFTWARE reliability models have received a lot of
attention in recent decades, as software systems have

become more pervasive and vital to the operation of many
important aspects of modern life. These models attempt to
describe the process of bug discovery in software, typically
in the prerelease stage of software development, when the
software is tested to ensure that it meets its specification
and to remove errors. Among their important purposes is
predicting the total number of errors that will be discovered
in the code and optimizing the software development
process, for example, deciding on optimal testing strategies
and when to release software for use.

The data usually take the form of times between bug

discoveries or counts of discovered bugs at known times.

The structure of the data, and so a reasonable model for

them, is very dependent on the type of software, the use to

which the software is put, and the circumstances under

which the data were collected. Because of this, a plethora of

parametric models, based on many different modeling

approaches and ideas about the structure of the data, have

arisen that work well for certain data but lack robustness.
In this paper, we investigate one common class of

software reliability model—the order-statistic model—and,

in doing so, attempt to address the problem of achieving a

better flexibility in the modeling approach. We also point

out a deficiency in the sampling scheme that most software

reliability models assume and offer a more reasonable

alternative. We consider a nonparametric approach on the
basis that this provides the desired robustness in
modeling. Bayesian inference is developed that infers
the posterior distribution of the discovery time distribu-
tions and the number of bugs and is illustrated on real
and simulated data. Once this is done, we show how the
estimates may be used to predict next time to failure. As
well as describing methodology for this class of models,
we believe that it is an interesting extension of Bayesian
nonparametric approaches.

Order-statistic models assume that there are an un-
known number of bugs N in the software. Bugs are labeled
i ¼ 1; . . . ; N and their discovery times are independent,
specified by distribution functions G1; G2; . . . ; Gn. The
observed sequence of discovery times are the order
statistics of the Gi. The earliest order-statistic model for
software reliability is the Jelinski-Moranda model [1], which
assumes that the Gi are independent and identically
distributed exponential random variables, although the
authors did not categorize the model as of that type. The
order-statistic model approach was first defined for use in
software reliability in [2], although the idea was implicit in
the earlier work of [3]. Here, the Gi were exponential
(making the work of [1] a special case) but not necessarily
identically distributed, equivalent to assuming that each
bug failed as an independent Poisson process. There had
been some work on order-statistic models in general
reliability theory beforehand; see [4]. A more general
order-statistic model, that moved beyond the exponential
assumption was proposed in [5].

A feature of all these papers is that a parametric form for
the Gi is assumed. Our work attempts to generalize to a
nonparametric form for the Gi. However, in order to make
inference practical, we work with a special case, where the
Gi are identical; we explain why in Section 2. The work of [6]
is the closest that we have found to our approach, where the
general order-statistic model is treated nonparametrically.
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When N is assumed known, inference for an order-
statistic model is typically straightforward. When N is
unknown, as is the case with software testing data, the
inference is a type of “how many kinds are there” problem,
well-known in the literature on estimating numbers of
distinct species. It is pointed out in [7] that, in some cases,
the data contain little information about N ; thus, inference
can be more difficult. In this regard, a Bayesian approach
has the advantage that it can make use of any prior
knowledge about N to aid the inference. In [8], a Bayesian
approach was described for an example of an exponential
order-statistic model. For the general order-statistic model,
inference procedures are described in [9] and [5], while [10]
is an example of Bayesian inference.

There have been previous applications of Bayesian
nonparametric methods in software reliability, but they
have been restricted to a hierarchical semiparametric
approach, where a parametric model for the discovery
times is assumed, and a nonparametric model is assigned
for the prior on a model parameter; see [11] and [12]. The
approach is also related to work in warranty analysis,
where the failure of systems under warranty is analyzed;
see [13].

The paper is organized as follows: In Section 2, we define
the order-statistic model and demonstrate the problems that
can arise for inference when a parametric form of the model
is assumed. In Section 3, we define the nonparametric form
of the order-statistic model and describe a Bayesian
inference procedure for the distribution function from
which the discovery time distribution is defined and N ,
the number of bugs. Section 4 discusses how to present the
inference and how to apply it to prediction. Section 5 gives
examples using simulated and real data. In Section 6, we
close with some concluding remarks.

2 A NONPARAMETRIC ORDER-STATISTIC MODEL

We assume that software has an unknown number N of
bugs and is being tested. We denote the bug discovery
times as T1; . . . ; Tn and they are the order statistics of a set of
N independent random variables with distribution func-
tions G1; . . . ; GN . Defining the distribution functions of the
Ti to be FiðtÞ, standard order-statistic theory defines the
FiðtÞ in terms of the GiðtÞ and N ; see [14]. For example,
letting GiðtÞ ¼ 1� e��t, t � 0, 8i, it is shown in [2] that we
have the well-known Jelinski-Moranda model [1], where

Fiðt j �;NÞ ¼ 1� expð�ðN � iþ 1Þ�tÞ: ð1Þ

The model that we define and explore in this paper is a
general order-statistic model, but the Gi are not defined
parametrically. It is a very flexible extension to the Jelinski-
Moranda model; the Gi are identical but are not given any
parametric form. We let GiðtÞ ¼ F ðtÞ, 8i; hence, our model
is defined by F ðtÞ and N .

Assuming a common F is a simplifying approximation,
but we argue that the model is still useful—when the data
model is in an appropriate neighborhood of the Jelinski-
Moranda model, for example—and is a stepping stone to
thinking about more complex nonparametric models.
Indeed, without some assumption to link the Gi, a
nonparametric analysis is a hopeless proposition. The

assumption of identical Gi allows us to implement an
MCMC scheme for Bayesian inference. So, our work can be
considered as a nonparametric generalization of the
Jelinski-Moranda model or as a general order-statistic
model with identical nonparametric discovery time dis-
tribution. We note that the nonparametric distribution can
be multimodal, allowing one to think of the bugs as coming
from separate subpopulations.

2.1 The Random Sampling Scheme

The usual assumption is that data consist of a set of

k independent interdiscovery times t1; . . . ; tk, where k is

fixed, having likelihood

Lð�;N j t1; . . . ; tkÞ ¼
Yk
i¼1

fiðti jN; �Þ;

where fiðti jN; �Þ ¼ F 0i ðti jN; �Þ is the density function of the

ith interdiscovery time, parameterized by �. We observe

that a fixed and predetermined choice of k implies that one

has assumed that N � k. This assumption is, in general,

both risky and impossible to justify and runs counter to the

experimenter’s natural inclination to sample as many bugs

as possible, both because so doing improves the software,

through the removal/repair of the discovered bugs, and

because the precision of one’s estimates of model para-

meters tends to improve as the sample size increases.
Because of the tenuous nature of the “fixed k” assump-

tion, we propose a type I censoring framework, where the

software is observed for a fixed predetermined amount of

time T �. The protocol for bug discovery and removal is the

same as that discussed above. A consequence of this

alternative model is that the number k of bugs discovered

in the time interval ð0; T �Þ is a nonnegative random

variable. While k can take on the value zero with positive

probability, this probability is negligibly small in most

applications of interest. This leads to N � k discovery times

to be right-censored at T �.
This is a more appropriate and realistic framework for

sampling software bugs than the fixed sample-size ap-

proach. Assume that the discovery times are independent

with distribution function F and density f . We view our

data to consist of both k and t1; . . . ; tk. Given N and F , the

number of discovery times k before T � is binomial with

probability parameter F ðT �Þ. Given k and T � , the order-

statistic model gives the distribution of t1; . . . ; tk to be the

joint order statistics distribution of a sample of size k from

F , given that ti < T �. Given this, we arrive at the likelihood

for these data:

LðF;NjT �; k; t1; . . . ; tkÞ
¼ P ðt1; . . . ; tk; k jT �; N; F Þ

¼ P ðt1; . . . ; tk jT �; k;N; F ÞP ðk jT �; N; F Þ

¼ k!
Yk
i¼1

fðtiÞ
F ðT �Þ

� �" #
N

k

� �
F ðT �Þkð1� F ðT �ÞÞN�k

� �

¼ N !

ðN � kÞ! ð1� F ðT
�ÞÞN�k

Yk
i¼1

fðtiÞ;

t1 � t2 � � � � � tk � T �: ð2Þ
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2.2 Parametric Models

Parametric models for bug counting schemes have been
shown to have some undesirable properties and can lack
robustness. In particular, most of the models assume
reliability growth, and if the data do not clearly demon-
strate this, then maximum likelihood estimates of N can
become infinite; see [15]. The problems that can occur with
the Jelinski-Moranda model in this regard are described
in [16].

To illustrate this lack of robustness of the parametric bug
counting model, we fit the Jelinski-Moranda model to a
simulated data set of k ¼ 80 discovery times, with T � ¼ 6:7
(t80 ¼ 6:63 being the final discovery time) from a Weibull
order-statistic model with N ¼ 100 and

F ðtÞ ¼ 1� expð�0:1t1:5Þ;

thus, FiðtÞ ¼ 1� expð�0:1ð101� iÞt1:5Þ. The data are dis-
played in Fig. 1a. The maximum likelihood estimate for the
Jelinski-Moranda model, for which F ðtÞ ¼ 1� expð��tÞ, is
found numerically to be ðN̂; �̂Þ ¼ ð137; 0:13Þ. The estimated
F ðtÞ ¼ 1� expð�0:13tÞ is plotted in Fig. 1b, along with the
true F , and we see that the true F has been very badly
estimated, even though this particular Weibull is only
modestly different from the Jelinski-Moranda model, where
F is an exponential distribution.

3 BAYESIAN NONPARAMETRIC ANALYSIS

In this section, we describe a Bayesian inference procedure
that computes the posterior distribution of F and N from
discovery time data under the type I censoring scheme of
Section 2.

A Bayesian analysis requires a likelihood and prior
distribution for F and N . Given our model in terms of F
and N , application of the expression for the likelihood in (2)
gives us a likelihood

LðF;N j t1; . . . ; tk; T
�Þ

¼ N !

ðN � kÞ! ð1�F ðT
�ÞÞN�k

Yk
i¼1

ðF ðtiÞ � F ðti�ÞÞ;
ð3Þ

where we have replaced the probability density fðtiÞ with
the term F ðtiÞ � F ðti�Þ, referring to the limit from the left,
appropriate where there is a point mass at ti.

For a prior distribution, we assume that N and F are
independent a priori. This is principally for mathematical
convenience. However, a priori dependence between N and
F may be desirable since, if N increases as the expected
value of F increases, we may model the same beliefs about
the discovery times. Thus, positive dependence between N
and the expected value of F may be appropriate. In
practice, we will assume rather flat, noninformative priors
that we show have little effect on the posterior distribution.

3.1 Prior Specification for N

Several techniques have been proposed for specifying a
prior for N in the context of bug counting, for example, the
use of software metrics [17] or the use of elicitation
techniques [18]. In these cases, analysis of the sensitivity
of the posterior to the prior on N will be essential. One
might also use noninformative proper priors, such as
discrete uniform on a finite range f0; . . . ; Nmaxg, where
Nmax is a suitably chosen upper bound, such as the number
of characters in the code.

3.2 Prior Specification for F

The usual prior distribution on the set of possible distribu-
tion functions is the Dirichlet process prior [19]. It is a
distribution over the set of all discrete distribution functions
and is defined by a finite measure � on the sample space,
which is the expected value of the prior. The expected
distribution has measure �=�ðIRÞ. If the data x1; . . . ; xn are
uncensored, then the posterior distribution is also a
Dirichlet process prior, but the measure � changes to have
point masses at the observed points x1; . . . ; xn. The size of
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Fig. 1. (a) The discovery times of the simulated Weibull data set. (b) The estimated F using MLE for the exponential case (dashed line) with the true

Weibull F used to generate the data (solid line).

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 1, 2009 at 09:20 from IEEE Xplore.  Restrictions apply. 



�ðIRÞ controls the relative importance that is placed on the
prior; by making this small, the posterior will be dominated
by the data.

Inspired by the Jelinski-Moranda model, we assume that
the mean of the prior model is the exponential distribution
with failure rate �; thus, �ðtÞ ¼ Be��t, for B > 0, where B ¼
�ðIRÞ is the prior weight. We may then specify a hyperprior
distribution for � or assign it a value. Here, we adopt an
empirical Bayes approach and specify � to be the MLE of the
Jelinski-Moranda model. In our experience, the inference is
not sensitive to the choice of � if one keeps the prior weight
B small relative to k.

3.3 The Posterior Distribution of ðN;F Þ
The objective of the Bayesian analysis is to compute the
posterior distribution of F and N given t1; . . . ; tk; T

�. This
is done by simulating values of F and N using Gibbs
sampling. That is to say, we simulate a distribution
function F from P ðF jN; t1; . . . ; tk; T

�Þ and then a value
of N from P ðN jF; t1; . . . ; tk; T

�Þ. After repeated alternate
sampling of F and N from these distributions, the
sampled F and N are from P ðF;N j t1; . . . ; tk; T

�Þ. Below,
we describe how to sample from the two full conditional
distributions.

3.4 Sampling from the Posterior Distribution of
F Given N

The key to being able to simulate a realization of F given
N is to consider the data as purely observations from F .
As we observed when defining (3), if N is known, then
the order-statistic model that we propose allows us to
interpret our data as k observations t1; . . . ; tk from F and
N � k observations right-censored at T �. The presence of
right-censored data means that the posterior distribution is
no longer represented by a Dirichlet process but is of a more
general form defined through a stochastic process called the
beta-Stacy process; Walker et al. [20] discuss beta-Stacy
processes in detail, and we refer the reader to that paper for
a comprehensive description.

For our purposes, it is sufficient to know that the
posterior of F can be written as F ðtÞ ¼ 1� expð�ZðtÞÞ,
where ZðtÞ is a beta-Stacy process. Such processes have
countably many points of discontinuity and can be written
as the sum of independent increments W1;W2; . . . at those
discontinuity points and a continuous component. It is
shown in [21] that, with a Dirichlet prior having measure
�ðtÞ and data observed at x1; x2; . . . , some of which may
be right censored, the posterior for F can be written
F ðtÞ ¼ 1� expð�ZðtÞÞ, where

ZðtÞ ¼ ZcðtÞ þ
X

i:xiuncensored

Iðxi < tÞWi; ð4Þ

where I is the indicator function, ZcðtÞ is a continuous Levy
process which they define (also see [21]), the jumps Wi have
density function

fiðwÞ / ð1� e�wÞNfxig�1

� exp �w �ðxiÞ þ
X
j

Iðxj � xiÞ �Nfxig
" # !

;
ð5Þ

and where Nfxig is the number of exact (noncensored)

observations at xi.
Our goal is to sample from this process. We will see that,

to sample N , it is sufficient to compute F at the ti,

i ¼ 1; . . . ; k, and T �. Therefore, we sample the jumps

W1; . . . ;Wk that occur at t1; . . . ; tk—there is no jump at T �

because there is no uncensored observation—and sample Zc
between successive observations, e.g.,

Zcðt1Þ; Zcðt2Þ � Zcðt1Þ; . . . ; ZcðtkÞ � Zcðtk�1Þ

and ZcðT �Þ � ZcðtkÞ, from which

ZcðtiÞ ¼ Zcðt1Þ þ
Xi
j¼2

½ZcðtjÞ � Zcðtj�1Þ�:

Then, F ðti�Þ and F ðtiÞ are given by

F ðti�Þ ¼ 1� expð�Zðti�ÞÞ

¼ 1� exp �ZcðtiÞ �
Xi�1

j¼1

Wj

 !
ð6Þ

and

F ðtiÞ ¼ 1� expð�ZðtiÞÞ

¼ 1� exp �ZcðtiÞ �
Xi
j¼1

Wj

 !
:

ð7Þ

To sample the jumps, it is easy to sample from the

distribution in (5). In most cases, all the t1; . . . ; tk are

distinct, so Nftig ¼ 1 and the Wi are exponentially

distributed with a mean ½�ðtiÞ þN � i��1. The sampling

of the continuous component is more complex, but

follows exactly the developments in [21]. A Markov

chain Monte Carlo method is needed; in fact, two chains

are required for each sample of ZcðtiÞ � Zcðti�1Þ. For the

reader’s convenience, the sampling method is described

in Appendix A.

3.5 Sampling from the Posterior Distribution of
N Given F

Given F , the full conditional distribution of N is by

Bayes’ law:

P ðN jF; t1; . . . ; tk; T
�Þ / LðF;N j t1; . . . ; tk; T

�ÞP ðNÞ

¼ N !

ðN � kÞ! ð1� F ðT
�ÞÞN�k

Yk
i¼1

ðF ðtiÞ � F ðti�ÞÞ
 !

P ðNÞ

/ N !

ðN � kÞ! ð1� F ðT
�ÞÞNP ðNÞ; ð8Þ

for N � k, with

1� F ðT �Þ ¼ exp �ZcðT �Þ �
Xk
i¼1

Wi

 !

¼ exp

�
ð�Zcðt1Þ � ðZcðT �Þ � ZcðtkÞÞ

�
Xk
i¼2

ðZcðtiÞ � Zcðti�1ÞÞ �
Xk
i¼1

Wi

�
;
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hence, to sample N it is sufficient to have sampled the Wi

and Zc between successive discovery times and from tk to
T �, as described in the last Section 3.4.

We directly compute the probabilities of (8) and sample
N by the inverse distribution function method.

3.6 MCMC Convergence

As with all MCMC methods, we must assess if the sampling
method has converged. Lack of convergence is usually
tested by plotting traces of the sampled quantities in F—the
Wi and the continuous components ZcðtiÞ � Zcðti�1Þ—and
N , by applying statistical tests for autocorrelations and
other signs of nonconvergence. However, here the issue is
complicated because each sampled component ZcðtiÞ �
Zcðti�1Þ is itself computed from the output of two MCMC
chains (see Appendix A). A possibility is that we judge F
and N to be sampled from a chain in equilibrium, but that
this is from unconverged chains for the ZcðtiÞ � Zcðti�1Þ.
Further, given that 2ðkþ 1Þ chains must be run to get each
sample of F , it is impractical to go through each of these
chains individually, looking for signs of nonconvergence.

We attempt to address this problem by running each of
the chains required for ZcðtiÞ � Zcðti�1Þ for a different
randomly chosen number of iterations. An example is given
in Appendix B, where the length of the first chain was
chosen uniformly between 7,000 and 25,000 iterations; this
pertains to a parameter that is denoted �. The second chain
samples a sequence of � values denoted by �1; . . . ; ��. This
chain was constructed by a uniformly random burn-in
period between 5,000 and 50,000 iterations, and the number
of iterations between each sample �j was uniformly chosen
between 2,000 and 15,000. Then the computed values of �
and ZcðtiÞ � Zcðti�1Þ are compared against the number of
iterations in the MCMC chain used to compute them. If the
chain lengths are sufficient, we should see no relationship
between number of iterations and the computed values. If
we see no evidence from this test of nonconvergence or bad
mixing, we proceed to look at the samples of F and N in the
usual way to test for nonconvergence.

4 DISPLAYING THE POSTERIOR OF F , MODEL FIT,

AND PREDICTING TIME TO NEXT DISCOVERY

In this section, we describe how to display the posterior
distribution in an informative manner, how to assess the
performance of the fitted model, and how to use the
posterior distribution of N and F that was simulated in
Section 3 to compute the distribution of the next time to
failure.

We assume that L samples of F ðtÞ and N have been
generated. Let ðF ðtÞðlÞ; NðlÞÞ be the lth sample from the
posterior distribution of F and N . For each observed time,
we estimate the posterior mean of F ðtiÞ and F ðti�Þ as the
mean of the sampled values of F ðtiÞ and F ðti�Þ, for i ¼
1; . . . ; k using (6) and (7). Estimates of F ðtÞ between
observation times are obtained by linear interpolation of
ZðtÞ. Similarly, taking high and low percentiles of the
F ðtiÞðlÞ gives upper and lower bounds to the posterior at
each observed time.

Model evaluation is done by comparing the observed
failure times with estimates of its distribution. The

ith observed discovery time ti is the ith order statistic

from an independent sample of size N with distribution F .

Hence,

FiðtÞ ¼
XN
j¼i

N

j

� �
F ðtÞjð1� F ðtÞÞN�j;

from which an obvious predicted value is the posterior

median. We compare this posterior median with ti. For each

sample of F ðtÞ and N , we compute its ith order statistic

distribution:

FiðtÞðlÞ ¼
XNðlÞ
j¼i

NðlÞ

j

� �
½F ðtÞðlÞ�jð1� F ðtÞðlÞÞN

ðlÞ�j:

By interpolating between the ti, any percentile of FiðtÞðlÞ can

be computed; we denote the 100� percentile as F
ðlÞ
i;�. The

posterior mean of the 100� percentile of the distribution of

the ith observed discovery time can be computed by

Fi;� 	
1

L

XL
l¼1

F
ðlÞ
i;�: ð9Þ

The median is calculated from (9) with � ¼ 0:5. A

prediction interval for the ith discovery time is then the

2.5 percent and 97.5 percent points of the posterior

distribution of FiðtÞ, again calculated by (9). Because of

the right censoring in the data, we may not estimate FiðtÞ
well in the right tail. This feature is quite familiar in

nonparametric estimation; for example, the Kaplan-Meier

estimator of an underlying survival function never attains

the value zero when the largest observation is a censored

failure time. This is particularly the case for i near k, and

more so if the posterior distribution of N places large

probability close to k.
The distribution of the discovery time of the next bug

is the ðkþ 1Þth order statistic, left-truncated at T � since

we did not observe it by this time. If N ¼ k, then there

are no more bugs to be discovered and Tkþ1 ¼ 1 with

probability 1. We define this in terms of the reliability

function �Fkþ1ðt jTkþ1 � T �Þ ¼ 1� Fkþ1ðt jTkþ1 � T �Þ:

�Fkþ1ðt jTkþ1 � T �Þ ¼
1� Fkþ1ðtÞ

1� Fkþ1ðT �Þ

¼

Pk

j¼0

N
jð ÞF ðtÞjð1�F ðtÞÞN�jPk

j¼0

N
jð ÞF ðT �Þjð1�F ðT �ÞÞN�j

if N � kþ 1;

1; if N ¼ k;

8><
>:

ð10Þ

for t � T �, which we compute in a similar way to the

computation of F ðtÞ. For the lth sample, we compute

�Fkþ1ðt jTkþ1 � T �ÞðlÞ ¼ 1

if NðlÞ ¼ k and

�Fkþ1ðt jTkþ1 � T �ÞðlÞ

¼
Pk

j¼0
N ðlÞ

j

� �
½F ðtÞðlÞ�jð1� F ðtÞðlÞÞN

ðlÞ�j

Pk
j¼0

N ðlÞ

j

� �
½F ðT �ÞðlÞ�jð1� F ðT �ÞðlÞÞNðlÞ�j
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if NðlÞ � kþ 1. We then take the mean of the �Fkþ1ðtÞðlÞ as our
estimate of �Fkþ1ðt jTkþ1 � T �Þ. Uncertainty in �Fkþ1ðtÞ is
described by looking at percentiles of the �Fkþ1ðtÞðlÞ, e.g., the
2.5th and 97.5th percentiles provides a 95 percent prob-
ability interval. Since �Fkþ1ðtÞ ¼ 1; 8t with probability
P ðN ¼ k j t1; . . . ; tk; T

�Þ, the 100� percentile of the posterior
distribution of Fkþ1ðtÞ will be 1,

8� � P ðN ¼ k j t1; . . . ; tk; T
�Þ:

In practice, we find the inference easier to interpret if we

report P ðN ¼ k j t1; . . . ; tk; T
�Þ and �Fkþ1ðtÞ conditional on

N � kþ 1, where we only consider samples for which

N ðlÞ > k, e.g., the posterior mean is

�Fkþ1ðt jTkþ1 � T �; N � kþ 1Þ

	 1

jfl jN ðlÞ > kgj
X

l:NðlÞ�kþ1

�Fkþ1ðt jTkþ1 � T �ÞðlÞ;

t � T �:
Note that, to estimate Fkþ1, we require samples of F ðtÞðlÞ for
t > T �. We only sampled values of F up to t ¼ T � in
Section 3, so to do this, we need to generate a sample of the
beta-Stacy process ZðtÞ for t > T �. Since the Gibbs sampler
of Section 3 gives us samples of ZðT �Þ and there are no
jumps in the beta-Stacy process for t > T �—they only occur
at t1; . . . ; tk—what is required is to simulate the continuous
part of the process from T � to t. This we do in the manner of
Section 3 for as many different values of t as we require.

5 EXAMPLES

5.1 Simulated Weibull Data

To see how well the inference procedure works, it is applied
to the simulated Weibull data described in Section 2.2 and
Fig. 1. The maximum likelihood estimate from the Jelinski-
Moranda model for these data is ð�̂; N̂Þ ¼ ð0:13; 137Þ. The
prior on F is therefore taken to be Dirichlet with mean as an
exponential distribution with � ¼ 0:13 and a small weight
B ¼ 1. A uniform prior on f0; 1; . . . ; 1;000g is placed on N .

Ten thousand samples of N and F were generated. The
convergence of the chains was assessed using the ideas of
Section 3.6. The assessment showed no signs of nonconver-
gence, and we determined adequate chain lengths for the
sampling of � to be 100,000 iterations, while for the �j, there
was a burn-in of 20,000 iterations, with successive �j taken
every 10,000 iterations. Details of how the chain lengths are
determined are in Appendix B.

Fig. 2 shows the sampled values and autocorrelation
function of F ðt1Þ and N , respectively. The chain for F ðt1Þ
shows good mixing and no sign of nonconvergence. It is
typical of those for other F ðtiÞ. However, the sampled
values for N are not as well behaved and show persistent
autocorrelation. This is due to the very long tail in the
distribution of N that the Gibbs sampler takes time to
explore. It is clear that the prior upper bound to N of 1,000
has truncated the posterior distribution.

Fig. 3 shows the posterior distribution of F , as described
in Section 4, and a histogram of the sampled values of N .
The plot of F also shows the Weibull distribution that
generated the data and the Kaplan-Meier estimate for F

given that we assume N ¼ 100 (the true value). We note

that the true F lies within the pointwise posterior

probability interval for F , although the posterior mean for

F is not close to the true F . However, we note that our

mean estimate for F is very close to the Kaplan-Meier

estimate, but that the latter is constructed given the true

value of N . The posterior median of N is 180 and the

posterior (2.5 percent, 97.5 percent) interval is (82, 913). The

posterior mean is estimated to be 281. The true value of N is

the 18th percentile of the sampled values.

Further, in Fig. 4a, we compare the observed values with

the predicted, and we see that the model has made good

predictions of the observed values. In Fig. 4b is the prediction

for the reliability function of the time to next failure,

R81ðtÞ ¼ ð1� F ðtÞÞN�80, conditional on N � 81. In this case,

we estimate P ðN ¼ 80 j dataÞ ¼ 0:008. This plot also shows

the lower and upper 10th percentile of R81ðtÞ, the true

Weibull reliability function from which the data were

generated and the Jelinski-Moranda F (the prior). We see

that the estimated function overestimates the true reliability
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Fig. 2. (a) The sampled values of F ðt1Þ. (b) Their autocorrelation

function for the simulated Weibull order-statistic model data. (c) The

sampled values of N. (d) Their autocorrelation function.
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from the simulated model R81ðtÞ ¼ expð�1:5t1:5Þ, which is

mainly due to the underestimation of N , but that the true

function lies well within the prediction bounds.

We also assessed the robustness of the posterior of F to

the value of �. Setting � ¼ 1:0, we saw that, in spite of the

large misspecification, the posterior of F was not different.

The small value of B has ensured that the results are

insensitive to the choice of prior distribution parameter.
This example shows that the model has fitted the data

well (Fig. 4a); in particular, we have estimated F to be close

to the Kaplan-Meier estimate given the true N . There is high

posterior variance in both F and N (Fig. 3), the price that
one pays for adopting such a general model. The posterior
distribution ofN is sensitive to the choice of prior. However,
experimentation showed that the model fit and reliability
prediction (as in Fig. 4) were not sensitive to the upper
bounds on the uniform prior that were higher than 1,000.

5.2 The NTDS Data

The Naval Tactical Data System was a large software
project for the US Navy. Data on the times of bugs
detected in the testing phase of one of the modules form
the NTDS data set, which originally appeared in [1].
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Fig. 3. Analysis of the Weibull order-statistic simulated data. (a) The true and posterior F ðtÞ: pointwise posterior mean (thick solid line), pointwise

posterior 2.5 and 97.5 percentiles (thin solid lines) and true F (dashed line) and the Kaplan-Meier estimate of F ðtÞ given the true value N ¼ 100

(dotted line). (b) A relative histogram of posterior samples of N (grouped in intervals of 20).

Fig. 4. (a) Observed bug discovery times of the Weibull order-statistic model data plotted with the posterior median of the median discovery time

(solid line), and the posterior mean of the 10th and 90th percentiles (dotted lines). (b) The posterior reliability function of the 196th time to failure

given N � 196: pointwise posterior mean (solid line), pointwise posterior 2.5th and 97.5th percentiles (dashed lines), and the true reliability function

(dotted line).
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Fig. 5 displays the first k ¼ 31 discovery times in the data,
with T � ¼ 600 (t31 ¼ 540:0 being the final discovery time).
The MLE in this case is ðN̂; �̂Þ ¼ ð31; 0:0064Þ. The prior on F
is assumed to be a Dirichlet process with exponential
distribution mean having � ¼ 0:0064, and a small weight
B ¼ 1. A uniform prior on f0; 1; . . . ; 200g was placed on N .

The MCMC was run for 10,000 iterations. Fig 6a shows
the estimated posterior of F along with the prior, which is
also the MLE estimate from the JM model. The prior and the
posterior agree quite closely. Fig. 6b shows the sampled
values of N . The posterior median of N is 31, and the
(2.5 percent, 97.5 percent) probability interval is (31, 32). The
posterior mean is 31.1. Moving to model assessment, Fig. 7a
shows the predicted discovery times with the observed, as
described in Section 4. It shows that, once again, the
posterior distribution function has predicted well the
observed discovery times.

Fig. 7b shows the posterior reliability function

R32ðtÞ ¼ 1� F32ðtÞ ¼ ð1� F ðtÞÞN�31:

The posterior probability that N ¼ 31 (that is, that there are
no further failures) is 0.94. The distribution compares well
with the most recently observed discovery times and, in this
case, agrees well with the reliability fitted from the JM
model. Again, we see that the mean estimate for RKþ1ðtÞ
performs well, although there is considerable uncertainty in
the estimate. The MLE from the JM model is N̂ ¼ k ¼ 31, so
it predicts that there are no new failures.

6 DISCUSSION

In this paper, we have presented a Bayesian nonparametric
approach to the treatment of bug discovery time data. We
have argued that the assumption of a parametric model
leaves the investigator vulnerable to the consequences of
model misspecification. For the same reasons that the
empirical distribution function or the Kaplan-Meier esti-
mator might be preferred to a parametric alternative, one
might well prefer a nonparametric analysis in assessing the
reliability of a piece of software. The model is a nonpara-
metric form of the order-statistic model. The inferential
approach presented here has the natural robustness of a
nonparametric analysis and has, as well, the ability to
incorporate, through the modeling of prior information,
pertinent intuition or expert knowledge that might be
available in the application of interest.

The approach we have taken has consciously eschewed
the “random sampling” assumption that is typical of
traditional treatments of the estimation problem under
study. Our developments assume, instead, that the software
being tested is subjected to such testing over a fixed and
predetermined interval of time. Under this type I censoring
scheme, the number of bugs found is a random variable, and
the inference developed is based on the random discovery
times between the (random) number of bugs found.
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Fig. 5. The NTDS data set.

Fig. 6. (a) The prior and posterior of F ðtÞ for the NTDS data. Lines are pointwise posterior mean (thick solid line), pointwise posterior 2.5th and

97.5th percentiles (thin solid lines), and prior mean (dashed line). (b) A relative histogram of posterior samples of N.
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The approach presented in Sections 3 through 5
requires that the tester specify a prior distribution for N
and a distribution function that is the mean of the prior
for F , and we have suggested how these can be defined.
The computation of the posterior distribution and pre-
sentation of results can be complicated, but we have
successfully demonstrated its feasibility in the examples
presented herein.

The strengths of this approach are the more realistic
sampling scheme and a more robust fitting procedure. The
disadvantages are a complicated computation process, and
the problem of evaluating convergence of the many
separate Markov chains in the simulation procedure. Other
criticisms are the assumption that the distributions gen-
erating the order statistics are identical and that we have
not modeled a priori dependence between F and N .

The former criticism is more difficult to address than the
latter. If one allowed each bug to have a possibly different F ,
then there would be one datum available to learn about each.
The success of the inference relies on being able to treat all the
observations as coming from one distribution F . Any model
that relaxed the identical distribution assumption and
wanted to make use of the method described here would
have to allow the data to be treated in this way. We also point
out that our modeling of F allows it to be multimodal and,
thus, describe a mixture of subpopulations of bugs.

Modeling dependence between N and F is more
straightforward; for example, one could allow the expected
value of the mean of F to depend on N . An obvious
extension of the work is a fully Bayesian approach, where
inference is also conducted on the parameters of the prior
mean of F . The problem is that it is difficult to write the
likelihood in terms of these parameters. Another extension
is to fit count data rather than discovery times, by using
data augmentation to sample times from a sample of F
conditional on the counts.

The developments in this paper provide a useful
stepping stone for facilitating further research on nonpara-
metric software reliability. As with any Bayesian analysis,

we should mention the need to tailor the analysis to the
intended application. A sensitivity analysis within any
given application, so as to determine the extent to which the
analysis is affected by the prior model, is important (see
chapter 6 of [22]). One can present a Bayesian analysis with
greater conviction when the inference is fairly stable over a
class of “reasonable” prior distributions than when it is
quite sensitive to the prior selected within such a class.

APPENDIX A

SAMPLING FROM ZcðtiÞ � Zcðti�1Þ
Let there be a Dirichlet process prior forF with measure �ðsÞ.
Our data consist of noncensored observations at t1; . . . ; tk
and N � k right-censored observations at T �. In [21], it is
shown that the posterior distribution for F can be written in
the form F ðtÞ ¼ 1� expð�ZðtÞÞ, where ZðtÞ is a beta-Stacy
process. As is described in Section 3, ZðtÞ can be written as
the sum of independent increments W1; . . . ;Wk at the
observed discovery times t1; . . . ; tk and a continuous
component ZcðtÞ. In this appendix, we describe how to
sample from ZcðtiÞ � Zcðti�1Þ, for i ¼ 1; . . . ; k, the change in
the continuous component between successive discovery
times. The description is also valid for sampling from
ZcðT �Þ � ZcðtkÞ. The beta-Stacy process has independent
increments, and so these increases in the continuous process
are independent.

Define �ðsÞ to be such that �ðsÞ ¼
R1
s d�ðuÞ. In this case,

we have defined�ðsÞ ¼ Be��s, from which d�ðsÞ ¼ B�e��s ds.
From [21], in our case, the continuous part of the posterior
process ZcðtÞ has Levy measure

Kðz; tÞ ¼ exp �z �ðtÞ þN � iþ 1½ �ð Þd�ðtÞ
1� e�z : ð11Þ

In [23], it is shown that, by its Levy representation, we can
approximate ZcðtiÞ � Zcðti�1Þ as a compound Poisson
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Fig. 7. (a) Observed bug discovery times of the NTDS data, plotted with the posterior mean of the median discovery time (solid line) and the posterior

mean of the 10th and 90th percentiles (dotted lines). (b) The posterior reliability function of the 32nd time to failure for the NTDS data given N > 32:

pointwise posterior mean (solid line), pointwise posterior 2.5th and 97.5th percentiles (dashed lines), and reliability according to the MLE fit of the JM

model (dotted line).
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process
P�

j¼1 �j, where, for small �, the number of jumps � is

Poisson with mean

� ¼
Z 1

0

Z 1
0

e�z�ðsÞ�ðsÞIðz > �; ti�1 < s < tiÞ
1� e�z dz ds ð12Þ

and the jumps �j are independent and come from a density

gðzÞ /
Iðz > �Þ

R ti
ti�1

exp �z �ðsÞ þN � iþ 1½ �ð Þd�ðsÞ
1� e�z : ð13Þ

A sample from Zcðt1Þ is obtained by this definition if we let

t0 ¼ 0. The approximation converges to ZcðtiÞ � Zcðti�1Þ as

�! 0; practically, we can take � to be small. In [23], the error

in this approximation as a function of � is discussed, which

is of the order Eð�Þ < ��ðti�1; tiÞ. In this paper, following

some exploration, we found that there was no difference in

results for any � < 10�5; thus, we set, conservatively,

� ¼ 10�7.

In order to sample the compound Poisson processP�
j¼1 �j, we first sample �, then sample � from the Poisson

with mean �, and then independently sample �1; . . . ; �� from

gðzÞ. Summing the �j obtains the approximate sample from

ZcðtiÞ � Zcðti�1Þ. This is independently repeated for i ¼
1; . . . ; k and also for ZcðT �Þ � ZcðtkÞ. For the latter case, (11),

(12), and (13) are still valid with ti�1 replaced by tk, ti
replaced by T � and N � iþ 1 (in (11) and (13)) replaced by

N � kþ 1. In [23], it is shown how to draw a sample from �

and from gðzÞ. For our specific case, one would do the

following (which follows exactly the Appendix of that

paper):

1. Sampling � for ZcðtiÞ � Zcðti�1Þ. This is done by a

Gibbs sampler on variables ðz; sÞ. Take initial values of

the sampler to be zð0Þ > � and ti�1 < sð0Þ < ti; for

sampling ZcðT �Þ � ZcðtkÞ, we have tk < sð0Þ < T �.

Iteration lþ 1 of the sampler that draws ðzðlþ1Þ; sðlþ1ÞÞ
given ðzðlÞ; sðlÞÞ is then:

a. Sample zðlþ1Þ from an exponential distribution
with mean ½�ðsðlÞÞ þN � iþ 1��1 restricted to
ð�;1Þ. For sampling ZcðT �Þ � ZcðtkÞ, the mean is
½�ðsðlÞÞ þN � kþ 1��1.

b. Sample sðlþ1Þ by a Metropolis move. Propose a
point s� from the density fðsÞ / �ðsÞ restricted to
ti�1 < s < ti. Let sðlþ1Þ ¼ s� with probability the
minimum of 1 and

exp �zðlþ1Þ �ðs�Þ � �ðsðlÞÞ
h i� �

;

otherwise, sðlþ1Þ ¼ sðlÞ.
c. Once many samples have been taken, the chain

has converged, and L samples from the sta-
tionary distribution are taken, then

� 	 1

L

XL
l¼1

1

1� expð�zðlÞÞ �
Z ti

ti�1

expð���ðsÞÞ
�ðsÞ d�ðsÞ;

where the integral here is one-dimensional and

should be sufficiently well approximated by the

easier to compute
R ti
ti�1

d�ðsÞ=�ðsÞ � ��ðti�1; tiÞ.
For sampling ZcðT �Þ � ZcðtkÞ, we replace ti�1 by

tk and ti by T �.

2. Sampling from gðzÞ. A sample z from gðzÞ can be

obtained by a Gibbs sampling scheme over vari-

ables ðz; u; sÞ. Initial values are zð0Þ > �, 0 < uð0Þ < 1,

and ti�1 < sð0Þ < ti; for sampling ZcðT �Þ � ZcðtkÞ we

have tk < sð0Þ < T �. To draw ðzðlþ1Þ; uðlþ1Þ; sðlþ1ÞÞ
given ðzðlÞ; uðlÞ; sðlÞÞ :
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Fig. 8. (a) Sampled values of � for Zcðt28Þ � Zcðt27Þ against the number of iterations in the MCMC chain used to produce that value. (b) Sampled

values of Zcðt6Þ � Zcðt5Þ against the number of iterations in the MCMC chain between samples of �j.
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a. Sample zðlþ1Þ from an exponential distribution
with mean ½�ðsðlÞÞ þN � iþ 1��1 restricted to
ð�;1Þ if uðlÞ � 1, or restricted to

ð�;� logð1� ðuðlÞÞ�1Þ;

if uðlÞ > 1. For sampling ZcðT �Þ � ZcðtkÞ, the

mean is

½�ðsðlÞÞ þN � kþ 1��1:

b. Sample uðlþ1Þ from a uniform on

ð0; ð1� expð�zðlþ1ÞÞÞ�1Þ:

c. Sample sðlþ1Þ exactly as it was sampled above in
the generation of �.

d. Repeat until convergence has been reached, at
which point zðlÞ is a sample from gðzÞ.

e. To obtain all � independent samples from gðzÞ, it
is not necessary to start this Gibbs sampler again,
rather just continue the chain and draw the
remaining samples at suitably spaced intervals.

APPENDIX B

DETERMINING CHAIN LENGTH FOR SAMPLING OF

ZcðtiÞ � Zcðti�1Þ
We use some data simulated from the Jelinski-Moranda

model to illustrate how chain length is determined. Fig. 8a

shows sampled values of � (see Appendix A for its

definition) for the sampling of Zcðt28Þ � Zcðt27Þ, which show

no relationship between MCMC chain length and the

sampled values. In Fig. 8b, the value of Zcðt6Þ � Zcðt5Þ is

plotted against the number of iterations in the MCMC chain

between samples of �j. Cases where � ¼ 0 and hence no �j
are sampled are omitted. Again no relationship is seen

between the computed values and the chain length.
Given these plots, we adopt a chain of length 20,000 for �

and 10,000 iterations between samples of �j. This proved

sufficient for the NTDS data. For the simulated Weibull data

described in Section 5, the same analysis led to a chain of

length 100,000 for � and 10,000 for �j.
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