
Tigger Project

Extensible Systems - The Tigger Approach.

Vinny Cahill, Christine Hogan, Alan Judge, Darragh O’Grady, Brendan Tangney, Paul Taylor
Distributed Systems Group, Dept. of Computer Science,

Trinity College, Dublin, Ireland

Distributed Systems Group
Department of Computer Science

University of Dublin
Trinity College, Dublin 2, Ireland.

Fax: +353-1-6772204

Document Status Final version
Distribution Public
Document # TCD-CS-94-45
Publication SIGOPS European Workshop 1994

c
 1994 University of Dublin

Permission to copy without fee all or part of this material is granted provided that the copyright notice, and the title and authors of the
document appear. To otherwise copy or republish requires explicit permission in writing from the University of Dublin.



Extensible Systems - The Tigger Approach.

Vinny Cahill�, Christine Hogan, Alan Judge, Darragh O’Grady, Brendan Tangney, Paul Taylor
Distributed Systems Group, Dept. of Computer Science,

Trinity College, Dublin, Ireland

Abstract

The Tigger project is developing a framework for
the construction of a family of distributed object-
support platforms suitable for use in a variety of dis-
tributed applicationsranging from embedded soft-real
time systems to concurrent engineering frameworks.
As no one system can easily meet the varied demands
of these different application areas, customisability,
extensibility and portability are put forward as the
way to handle diversity and are thus the core design
goals in Tigger.

1 Introduction

The Tigger project is developing a framework for
the construction of a family – the Tigger Pride – of
distributed object-support platforms suitable for use in
distributed applications ranging from embedded soft-
real time systems (actually 3-D arcade and console
video games) to concurrent engineering frameworks.
Members of the Tigger Pride are expected to be hosted
on top of bare hardware, (real-time) micro-kernels and
conventional operating systems. Thus customisability,
extensibility and portability are major design goals of
Tigger in addition to distributed object support.

The baseline for the Tigger project is a set of mini-
mal object-support platforms – known as Cubs – sup-
porting at least four primitive abstractions: distributed
objects; persistent objects; activities (i.e. distributed
threads of control) and extents (i.e. protected collec-
tions of objects). A given object may be both dis-
tributed and persistent.

Members of the Tigger Pride may provide addi-
tional abstractions supporting, for example, security
and transaction services. In addition, members of the
Pride may be specialised to support different policies.�E-mail: vinny.cahill@dsg.cs.tcd.ie

For example, distributed objects will be supported us-
ing both RPC (function shipping) and/or DSM (data
shipping) techniques. The result is that a Tigger which
provides the necessary services for the target applica-
tion domain can be constructed.

Each instantiation of the Tigger framework – the
Cubs and all other Tiggers – is intended to provide the
necessary support for the use of some object-oriented
language(s) for the development of distributed and per-
sistent applications. Thus the fundamental interface
provided by a Tigger is that provided for the language
implementer. The interface used by an application
developer is that provided by a supported language.

2 Rationale

The rationale for the Tigger project arose out of the
evaluation of the Amadeus object-support platform
[5].

Amadeus was a general-purpose object support
platform for distributedand persistent programming in
multi-user distributedsystems. Amadeus was targeted
for use in what may broadly be described as coopera-
tive applications concerned with access to shared data
in domains such as computer-aided design (CAD), of-
fice automation and software engineering. Amadeus
has been used to support applications such as ray-
tracing, simulation and a CAD framework.

The Amadeus platform was designed to support the
use of a range of object-oriented languages for the con-
struction of distributed applications. A language could
be extended to support a set of (inter-related) proper-
ties including distribution, persistence and atomicity
for its objects by using the services of the Amadeus
Generic Runtime (GRT), while maintaining its own
native object reference format and invocation mecha-
nism [2]. The GRT provided a range of mechanisms
from which the language designer could choose those



appropriate for the intended use of the extended lan-
guage.

Evaluation of Amadeus lead to a number of con-
flicting requirements. While the range of mechanisms
supported by the Amadeus GRT was sufficient to sup-
port the extension of conventional, non-distributed,
non-persistent programming languages, an early con-
clusion was that additional mechanisms were required
to support distributedand persistent programming lan-
guages [1, 2]. On the other hand, supported languages
typically used only one out of the range of mechanisms
provided to support distributed and persistent objects.
Moreover, applications used only a limited subset of
the functionality provided in any supported language.

In addition, the platform was rather heavyweight
including as it did a high degree of functionality. This
made the platform unsuitable for many potential ap-
plication areas including embedded and real-time sys-
tems. The platform also placed substantial require-
ments on the underlying host operating system both in
terms of functionality required and resource usage.

Amadeus evolved through a number of versions
as functionality was added. These included versions
with support for different GRT mechanisms, hetero-
geneity, transactions and security. In most cases these
modifications were somewhat haphazard, propagated
through the entire system and sometimes resulted in
systems which were not backwards compatible thus
requiring modifications to existing applications.

Finally, consideration of the implementation of the
Amadeus platform showed that the implementation
itself could have benefited substantially from the use
of a (light-weight)distributedpersistent object support
platform as its components were often concerned with
the manipulation of distributed, persistent data.

3 The Tigger Approach

From the evaluation of Amadeus the fundamental
aspects of the Tigger approach became apparent:� any general-purpose, language-independent, ob-

ject support platform should be based on a frame-
work describing the fundamental abstractions to
be supported thereby allowing tailored imple-
mentations to be provided;� this framework should be self-hosting thereby al-
lowing instantiations to make use of distributed
and persistent objects.

The interface supported by the Tigger framework
is that required to support distributed and persistent
programming languages and is a refinement of that of
the Amadeus GRT. Instantiationsof the framework im-
plement specific mechanisms or collections of mech-
anisms. A key point is that multiple instantiations can
coexist. For example, two different instantiations may
be used to support two different languages requiring
different mechanisms from the underlying platform
while still supporting inter-language working.

4 The Tigger Cub

The defining characteristic of a Tigger Cub is that
it is any instantiation of the framework which supports
the language in which instantiations of the framework
are implemented. In this sense the Tigger project is
following the micro-kernel philosophy by providing a
minimal system capable of hosting more sophisticated
systems. Thus each Cub supports a version of C++
extended to provide distributed and persistent objects.

In Tigger the framework is a collection of abstract
base classes. The instantiations are implemented in
extended C++ by deriving classes implementing the
required mechanisms and policies. Likewise a Cub is
instantiated from the framework by choosing suitable
mechanisms to support extended C++. Of course,
not all the classes in the framework have distributed
and persistent instances and these classes provide the
fundamental support for other classes whose instances
may be distributed or persistent.

A Cub may support additional languages if the
mechanisms provided by that Cub are sufficient for
those languages.

A Cub must provide at least four primitive abstrac-
tions: distributed objects; persistent objects; activities
(i.e. distributed threads of control) and extents (i.e.
protected collections of objects). In fact a Cub need
only implement a single extent and the means of trap-
ping accesses to objects which belong to other extents.
The framework provides an interface for handling such
accesses, the implementation of which in a Cub need
only raise an exception, but which can be refined to
implement multiple extents. Thus a Cub need only be
a single-user system.

To summarise, there is no single unique Cub – any
instantiation of the framework which can support the
implementation language is a Cub. Where multiple
instantiations coexist, one is always a Cub. Services



required to support the Cub interface may be imple-
mented in the extended C++ supported by the Cub.
For example, the storage system used to store persis-
tent objects is implemented in extended C++ and used
by the Cub and other instantiations as necessary.

5 The Tigger Pride

New Tiggers can be implemented in one of two
ways: by providing additional implementations of the
fundamental abstractions or by supporting additional
abstractions.

For example, a new Tigger can be created which
supports a different implementation of distributed ob-
jects or a choice of implementations. Likewise new
Tiggers can be created which support multiple extents
(and hence basic security) or transaction support. New
mechanisms can be implemented using the language
supported by the Cubs i.e. using distributed and per-
sistent objects.

As an example, to implement a Tigger which sup-
ports multiple-users requires that the Tigger frame-
work be instantiated to support multipleextents, cross-
extent invocation of objects and access checking. In
addition, the framework must be extended to include
(abstract base) classes, describing the management of
multiple extents and users, and instantiated appropri-
ately. These additional components may be imple-
mented in the language supported by the Cubs as
Tigger applications in one extent which acts as the
“kernel” for other extents and which stores the control
information that it uses – user descriptors and access
control lists for example – as persistent objects be-
longing to the “kernel” extent.

One definite disadvantage of this approach is that
there is still the danger, when instantiating a new Tig-
ger, that it may not be backwards compatible with
existing Tiggers. Although based on experience with
Amadeus this is clearly undesirable, it appears to be
nevertheless unavoidable.

6 Related Work

Apart from Amadeus, the design of Tigger has been
influenced by a number of other projects including
Choices [3] – which developed a C++ framework for
the construction of operating systems for distributed

and shared memory multiprocessors – and Peace [4]
– which also addressed the use of object-oriented
techniques for the construction of a family of oper-
ating systems for massively parallel computers. The
Peace family encompasses a range of different mem-
bers ranging from one supporting a single thread of
control per node to one supporting multiple tasks per
node. Tigger differs from these systems in the in-
tended application areas, the abstractions supported
and in the goal of direct support for language support
as the primary interface to the system as well as in the
specifics of the mechanisms employed by the system.

7 Conclusions

The Tigger project may be seen as an exercise in
practising what you preach: the use of object-oriented
design techniques and of distributed, persistent, object
support platforms.

At the current time, an implementation of a single-
user Cub hosted above the Mach micro-kernel is near-
ing completion. The next instantiation will be an im-
plementation of another object-support platform pro-
viding functionality similar to Amadeus. Another ver-
sion of the Cub hosted by a real-time kernel will be
used in arcade and console video games.

References

[1] S. Baker. System Issues in Persistent Programming
and OODBMS Integration. PhD thesis, Department of
Computer Science, Trinity College, Dublin, July 1992.

[2] V. Cahill, S. Baker, C. Horn and G. Starovic. The
Amadeus GRT — Generic Runtime Support for Dis-
tributed Persistent Programming. In Proceedings of the
1993 Conference on Object-Oriented Programming,
Systems, Languages and Applications, ACM, 1993.

[3] R. H. Campbell, N. Islam and P Madany. Choices,
Frameworks and Refinement. Computing Systems,
5(3):217–257, Summer 1992.

[4] J. Cordsen and W. Schroder-Preikschat. Object-
Oriented Operating System Design and the Revival
of Program Families. In Proceedings of the 1st Inter-
national Workshopon Object Orientation in Operating
Systems, IEEE, 1991.

[5] C. Horn and V. Cahill. Supporting Distributed Ap-
plications in the Amadeus Environment. Computer
Communications, 14(6):358–365, July/August 1991.


