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popular languages should be supported in our envi-ronment: consequently for a given language, we mayeither have to extend it with distribution and/or per-sistence facilities, or map its own support for thesefacilities onto our execution layer. We discuss in thispaper our designs for evolving in particular C++[23]and Ei�el[18].The widely accepted mechanism to extend a pro-gramming language to enable distributed applica-tions to be written is the remote procedure call; withan associated stub generator for that language andruntime support to provide a generic interface to theappropriate network protocol stack. The attractive-ness of RPC is that it is now well understood andaccepted, because it isolates a programmer to a rea-sonable degree from the specialised understanding re-quired to use a particular network [3]:\Our hope is that by providing communica-tion with almost as much ease as local pro-cedure calls, people will be encouraged tobuild and experiment with distributed ap-plications."In this paper we concentrate on the issues in ex-tending the invocation mechanism of a programminglanguage, for both distributed invocation and invo-cation of objects potentially resident on persistentstorage. While we are con�dent that our supportis applicable to a range of programming languages,here we focus speci�cally on both C++ and Ei�el. Inextending these languages for distribution and persis-tence our concern is, in the �rst instance, to main-tain their model of synchronous invocation of objectswhile maintaining the general philosophy of makingcost explicit.We do nevertheless acknowledge that there aresome well recognised limitations to the classical RPCmodel. We accept the contribution that propos-als such as futures[9][25], promises[15], REV[22] andtrading[10] can make but, as a �rst step, we are more1



3 THE BASIC MODEL 2concerned with supporting the execution models ofour chosen languages.We have emphasised object oriented languages, notonly because of their current popular appeal, but alsofrom our own pleasant experiences in building appli-cations and tools from them. We believe that theyare a promising approach to designing and buildingdistributed applications.2 TransparencyA number of research projects have explored the pos-sibility of hiding the boundaries between local and re-mote virtual address spaces, so making cross contextinvocation syntatically equivalent to intra context in-vocation [4][5][12]. The proponents suggest that pro-grammers are relieved of distribution concerns, andcan write (re-useable) code which is independent ofits actual use in a distributed application. In turn,application builders and system administrators candecide how best to structure an application and itsdata over several nodes, including the ability to mod-ify this mapping without having to rewrite, recompileor even relink the applications.The contrary approach is to make the programmerblatently aware of the di�erence in cost between lo-cal and potentially remote invocations. This style isadvocated in, for example, Argus[14]. It is also a nat-ural consequence of the addition of a standard RPCpackage to an existing language: remote procedurescan be invoked somewhat similarly to local ones, butthe programmer is acutely aware that she is invokinga remote procedure. One argument in favour is thata programmer is frequently in an excellent positionto supply advice to the execution environment andshould therefore be able to specify which interfacescould be RPC invokable, and which should always belocally resolved without RPC calls.At the level of our language independent execu-tion environment, our philosophy in respect of trans-parency in any particular programming language isto be neutral. However when extending any speci�clanguage { such as C++ or Ei�el { above our execu-tion environment, our approach is to try to re
ect thephilosophy of that language. We believe our execu-tion environment can support both transparent andnon-transparent distribution. We do however notethat prototypes which have explored the transparentapproach are, to our knowledge, limited in each caseto a single language, with a tight coupling of its run-time support.One approach towards providing a transparent dis-

tributed environment which is receiving some atten-tion is distributed shared memory: its applicationto C++ is reported, for example, in [5]. Our feel-ings about DSM systems are quite mixed: on the onehand they provide a transparent environment, andallow even a language as complex as C++ to be rea-sonably transparently supported; on the other, de-spite initial experiments such as [8][27] and [24], weremain to be convinced that DSM can scale, addressheterogeneity, fault tolerance and multiple users.Our own execution environment currently does notnormally provide a mechanism for reading and writ-ing arbitrary bytes of an address space context over anetwork { there is no assumption about the availabil-ity of distributed shared memory. Thus mechanismsare restricted to invocations and (distributed) threadcreation.3 The basic modelWe start here by considering the various issues andalternatives for accessing objects in a distributed en-vironment, and proceed in section 3.1 below to givethe solutions we are adopting.In both C++ and Ei�el, accesses to objects canbe in two ways: by pointer (including also constantpointers such as C++'s references)3 or directly (ie\inline" { a member object in C++ or a direct ob-ject from an expanded type in Ei�el). Since we donot assume distributed shared memory, in our dis-tributed environment a member/direct object cannotbe remote from its encapsulating object.If, as a result, the only mechanism for accessing re-mote objects is via pointers, the next issue is whether,and if so how, pointers to remote objects should di�erfrom those to local objects. By remote objects, herewe mean objects that may potentially be in anothercontext. Local objects are on the contrary guaran-teed never to be separated into a di�erent contextfrom those objects which hold pointers for them.If pointers to remote and local objects are fully in-terchangeable, then a transparent model with respectto distribution results. For C++, but less so in Eif-fel, the programmer is normally aware of the cost ofeach language construct4 : thus for these languageswe feel on the contrary that the cost of remote ac-cess should be apparent. How then should local andremote pointers be syntatically distinguished ?3Although note that in Ei�el, pointers are not explicit.4But note that in Ei�el, an attribute access is indistinguish-able from a parameterless routine access of the same name.



3 THE BASIC MODEL 3One possibility is to distinguish remote pointersby, for example, using an \@" rather than a \*" inC++, or by using \smart" pointers. As a result foreach class, there can be both local and remote point-ers for its instances. Remote instances of a class re-quire that RPC stubs are used to marshall argumentsand dispatch invocations for each remotely invokableroutine5. If any class can potentially have remoteinstances, RPC stubs must always be available forit. Our view is that this can sometimes be an un-necessary overhead, particularly during compilation{ generating these stubs when compiling the classde�nition.A further issue is assignment between local and re-mote pointers. In general a local pointer cannot beupdated with the value of a remote pointer: the ob-ject referenced by the remote pointer may naturallybe remote, and a subsequent access to it via a localpointer would not use the RPC stubs. It is conceiv-able to insert a runtime check to test for proximity,and to allow the assignment if the target object is ac-tually local. However this would be complicated bythe object consequently migrating away.In a non object oriented world, simply associat-ing \remoteness" with typing information would pre-sumably be adequate to prevent the two categoriesof assignment above: remote types would not be as-signment compatible with local types, and vice versa.However, for C++ and Ei�el at least, the situationcan arise due to subtyping: in such languages an in-stance of a subclass can be used for an instance ofone of its superclasses. Hence in principle a pointerto a remote derived class could be assigned to aninstance of a non-remote base class, and vice versa.One option would be to prevent mutual subclassingof the two categories of classes: this would then leadto two completely separate class hierarchies[17]. Wefeel that this would be unfortunate since it woulddiscourage re-use of code { for example a non-remoteclass could not easily be converted into a remote onevia the obvious derivation.We argue that inheritance between non-remote andremote classes and vice-versa should be provided:however assignment of local and remote pointersshould be normally mutually incompatible.3.1 Accessing remote objectsBased on the above discussion, we believe that { forEi�el and C++ at least { it is wise to allow the de-signer of a class to specify whether or not remote5We discuss exactly what categories of features can be sup-ported for marshalling later below in section 4.

instances of it are possible. RPC stubs are then gen-erated only for classes which may have remote in-stances. We call such a class a global class. Notethat an instance of a global class is only potentiallyremote; it may actually be local. It is also possiblethat an instance of a global class may migrate fromone node to another in the distributed system { itslocation is not necessarily �xed.Given a pointer to an instance of a global class,what categories of features can be accessed ? In C++,a public member of a class can be any designator {eg a function, a simple type, a class instance, or apointer (or array) to a type or class instance. Ob-viously member functions should be accessible via aremote pointer, provided that the arguments and re-sults of the function can be marshalled by rpc stubs(cf section 4): we call such functions global functions.In Ei�el, an exported feature can be a routine, oran expanded or reference attribute. The basic typesare all expanded classes. Thus an Ei�el routine canbe a global routine in our environment if it can bemarshalled.In the absence of a mechanism to read or writearbitrary bytes of a remote address spaces (eg byde-referencing and o�setting from a remote pointer)we advocate that in addition to global functions andglobal routines, only member instances (in C++)and instances of expanded classes (in Ei�el) of globalclasses should be accessible via a pointer to a globalinstance: we call such a member a global member ob-ject or global direct object . That is we impose no re-strictions on what comprises the public interface to aglobal class: however given a pointer to an instance ofthat class, only its global functions and global mem-ber objects are accessible. Functions which are tobe global must be explicitly marked; global memberobjects are global by virtue of their class:global class A {...public:...}class Z {...public:...}global class B {...



3 THE BASIC MODEL 4public:A part1; //visible via B*Z part2; //invisible via B*global void f1(....); //visible via B*void f2(....); //invisible via B*int y; //invisible via B*char* str; //invisible via B*}Naturally this is recursive: class Z may have pub-lic member parts which themselves are (inline) in-stances of global classes. Thus given a pointer B*bptr, a \part-of" navigation chain can be formed bybptr->pz.py.px... which ultimately must denote aglobal function or an instance of a global class. If theobject referenced by bptr really is remote, then in-voking one of its own global functions, or one of theglobal functions of its public parts, will result in a re-mote invocation. Accessing one of its (nested) publicparts so as to form an address (eg to obtain an lvalue)is also legimate since our execution environment de-tects pointers to remote objects (whether or not theybe nested as parts within another remote object).Our rules for C++ references match those forpointers: given a reference to an instance of a globalclass, only the global functions and global memberobjects can be used from the reference. Note toothat for the purposes of these access rules, we clas-sify C++ non-class entities (eg ints) as non-globalentities. In Ei�el, as noted above, the basic typesare (non-global) expanded classes: however since ex-panded classes cannot be derived, a non-global ex-panded class cannot be subclassed to form a globalone.It should be noted that global functions have thesemantics of virtual (in C++), or rede�ned or de-ferred (in Ei�el), functions. That is, for example inC++, if a global function is called via a pointer to abase class, which actually references an instance of aderived class, then the global function in the derivedclass will be called.3.2 DerivationIn addition to the access rules above, we impose thefurther limitation that when assigning a value to apointer to a global class, that value must also be apointer to, or the address of, a global class. A com-plimentary rule is imposed on pointers to non-globalclasses6.Thus given6However we do not outlaw C++ type casts, and leave theprogrammer to su�er the consequences should she use them.

global class A {....}class B : public A {....public:A a; // global member}global C : public B {....public:A aa; // global memberB b; // local memberglobal int fn(....);}global int C::fn(....};{ A *ap;B *bp;C *cp;....ap = cp; // legal// ap = bp; // illegal// bp = cp; // illegalap = &(cp->aa);// legal//ap = &(bp->a); // illegal//bp = &(cp->b); // illegal}3.3 EncapsulationWhen considering the rules for pointer assignmentand dereferencing, we must also take account of thecurrent object. If the current object is an instance ofa global class, then every access to its instance datais categorised (for the purposes of assignment com-patibility checking) as an access via a remote pointer{ after all, C++'s this or Ei�el's Current is then apointer to a global class.In C++, the current object may access the pri-vate (as well as the protected and public) instancedata of another object of the same class, given thevalue of, or a pointer to, such an object. In Ei�el,the current object can only access the exported fea-tures of another object, even if that other object isfrom the same class. However selective exporting canbe used (possibly to the current class itself) so as toallow access to more features than are generally visi-ble. In our extensions, such rules must be moderatedby the access rules for remote pointers. Thus, in anon-global class, the rule for access to peer instancesare unchanged. However for a global class, given a



4 MARSHALLING 5pointer to one of its peers, the current object canonly access the global functions and global memberobjects of that peer (using the same rules as previ-ously). For C++, the same access rules also apply tofriend classes and functions.global class B {....}global class A {int n;global int fn(A&);B b;B *bp;public:global void f1(....);global int f2(....);}global int A::fn(A& aref){ // aref.fn, aref.b, aref.f1// and aref.f2 are all available.// aref.n and aref.bp are hidden.// However n and bp are available// to the current object}Although it is certainly feasible to be more restrictiveand outlaw peer and friend access altogether, we be-lieve it is legitimate to have non-public features whichare (possibly remotely) accessible by collaborating in-stances and classes. However the programmer stillretains control over the cost of remote access, and in-curs the additional overheads only for those featureswhich she has distinguished.3.4 CloningBoth C++ and Ei�el allow a copy of an object tobe obtained: in Ei�el, this can be a shallow or deepclone; in C++ the copy is by default a member bymember copy of the instance data, but the default fora class X can be overridden by providing operator=(X&) for general assignment, and X(X&) for initiali-sation by assignment.For global classes, we currently impose the restric-tion that such copying is not supported. Once again,our basic problem is the lack of arbitrary byte accessto remote contexts: copying an instance of a globalclass may well require access to a remote instance.

4 MarshallingThe normal way of adding RPCs to a program-ming language is to provide interface de�nitions, fromwhich a tool can generate RPC stubs for both theclient and server[3][10]. In languages which providesupport for abstract data types { including the ob-ject oriented languages { it is obviously natural toconsider a tool which takes an ADT de�nition in thatlanguage { for example a \
attened" Ei�el class de�-nition { and likewise generates client and server stubs.A more friendly programming environment results.A major question is how closely the RPC packagecan match the type system of the host language. Thebasic types, such as ints7 are usually relatively sim-ple to marshall into an RPC packet, possibly trans-late between host (and compiler) conventions, andunmarshall on delivery. However pointers are noto-riously di�cult { yet in many object oriented lan-guages, including C++ and Ei�el, pointers are a com-mon representation for object identi�ers. It is highlydesireable that object identi�ers are RPC marshal-lable for any distributed object oriented language.A related problem is the transmission of copies ofobjects since the location of object pointers withinthe instance data must be located during RPC mar-shalling. C++ structs are no di�erent in this regard,but unions are impossible without additional codesupplied by the programmer herself.In passing object instances, there may be \hid-den" data added by the compiler, which must also beRPC marshallable. For example, a C++ class maycontain pointers to so-called \vtbls", which serve todispatch virtual function calls and so implement dy-namic binding. Likewise Ei�el objects contain mech-anisms for handling rede�ned or deferred routines.Such compiler generated information must be identi-�ed and rebuilt at the recipient.For our extended versions of Ei�el and C++,pointers8 to global classes can be passed as argumentsand results within global routines. However pointersto non-global classes cannot be. Further, copies ofinstances of global classes also cannot be passed (cfsection 3.4). Copies of instances of non-global classesin principle can be, however our initial implementa-tion does not support this.Values of basic types (such as ints) can be passed,but pointers to and references for basic types cannotbe passed for C++.Yet a further problem in C++ is arrays. Sincean array is (only) represented by its �rst element,7But sometimes with the exception of 
oating point types.8as well as C++ references.



5 PERSISTENCE 6an RPC marshalling routine cannot know the actuallength of the array unless additional information isgiven by the programmer { and this information isnot mandatory in conventional C++. Thus we do notcurrently support marshalling of C++ arrays, withthe exception of a pointer to a const char, whichby convention represents a null terminated characterstring.In Ei�el, a marshalling routine can determine the(dynamic) length of an array, and act accordingly.There are some further nuances in C++. For ex-ample, pointers to class member functions are legiti-mate values for argument transmission: we can sup-port these by marshalling a code address (and in factother supplementary information).4.1 Cross language callsOur execution environment allows invocations fromobjects written in one language to those of another,whether or not these all be locally in the same addressspace context. Naturally in so doing, issues arise dueto the mis-match in type systems of the languagesconcerned. Our basic approach here is to further re-strict as necessary the values which can be marshalledfor a particular language in a call which will be cross-language. To help us to this end, a distributed servicecalled the type manager is being built above the ba-sic execution environment. The type manager recordstype information registered in respect of interfaces atcompile time and work on it is being led by our col-leagues at Glasgow within the project[7].5 PersistenceMany modern languages, if not actually incorporat-ing persistence into their de�nition, include somesupport for persistence in their libraries. For ex-ample, the Ei�el libraries include classes STORABLEand ENVIRONMENT: any class which includes STORABLEin its inheritance hierarchy can have persistent in-stances; if ENVIRONMENT is used, all object creationsdone while an environment is \open" will be per-sistent. Likewise for example the C++ Interviewslibrary[13] includes class persistent, somewhat akinto Ei�el's STORABLE.One of the pioneering developments in persistentlanguages was PS-Algol[20]. A major postulate ofthis project was that persistence should be orthogo-nal to type. As a result the persistence of an objectis not statically determinate. When an object is cre-ated, it will not become persistent unless it becomes

referenced by another persistent object. It will per-sist as long as it is so referenced: eventually it maybecome disconnected and be discarded. Thus persis-tence is a dynamic attribute that can be gained andlost at execution time: further, not all instances ofthe same type may necessarily persist.The advantages of this approach are summarisedin [1]: the saving of coding e�ort and space to trans-fer data to and from �les or a dbms; a conceptuallysimple, single program view of data; and bene�ttingfrom any type safety of the programming languagewhen applied to persistent data.Although we also adopt this approach to persis-tence, it should be noted how it relates to our ap-proach to distribution. For distribution, we separatedglobal classes from non-global ones: all instances ofa non-global class are always local to objects whichhold references to them; a local instance can never dy-namically become remote. However, an instance of aglobal class may or may not be remote (and this de-gree of proximitymay change dynamically due to mi-gration). Thus we have one category of classes whichbehave similar to \normal" (C++ or Ei�el) classeswith respect to distribution, and a second which aremore costly to use.In the same way that, even in the best case9, apotentially remote object is more costly than a localone, also a potentially persistent object is more costlyto use than one which is always non-persistent. Thecost of a persistent object is chie
y detecting whetheror not it is currently loaded { even in the best case(ie the object is already loaded) this test must stillbe taken10.Thus we divide classes into two further categories:those for which persistent instances never exist, andthose for which some of their instances may persist.Note that in the second case, persistence is deter-mined (and may change) at runtime, depending onwhat objects are transitively reachable (at a givenconsistent point in time) from a set of root objects.Thus in principle there are four categories ofclasses: local potentiallyremotetransient A Bpotentiallypersistent C D9Costs are reported later in section 10.10It is conceivable to consider memory violations as a basisfor this test, thus relegating it to the hardware MMU: howeverit seems di�cult to do this in a language independentway, andnotably to determine what the current object (and maybe alsothread) is within the violation signal handler.



6 STATIC STORAGE 7In practice we have chosen not to support categoryB classes for C++ and Ei�el in our environment. Thechief reasons are simplicity and cost: a programmercan decide that a class should behave exactly like a\normal" one { non-distributed, non-persistent { andwith no consequent costs; or she can choose to addthe ability to persist on a per-instance basis, withsome additional resultant costs; and �nally she canchoose to add the potential to be remote, and incurthe heaviest cost penalty.Automatic (in C++) and local (in Ei�el) instancesof category C and D classes are not supported (as in[21]). However arrays of both, including an array ofinstances of global classes, are supported.5.1 Class based approachesAs noted above, class libraries exist for both C++and Ei�el to provide persistence. In our executionenvironment we believe it is important that applica-tions written using these classes should continue tofunction.We believe that re-implementing these classesshould be relatively straightforward. Our environ-ment will store all objects reachable from a givenpersistent object, with the exception of instances oftransient classes. Thus to implement the \persistencecompleteness" rule of Ei�el, any Ei�el class which de-rives from class STORABLEmust be checked to con�rmthat neither it nor its dependents contain pointersto transient objects. Doing otherwise should, in ourview, generate a compile time warning. A similarcheck should be used for any object used in put orforce of class ENVIRONMENT, but this will in generalneed to be a runtime check. Implementing the keyedinsertion and retrieval of this class require a persis-tent table, a generally useful library class in any case.5.2 Object oriented data manage-mentObject oriented database systems, such as pro-pounded by[2], are receiving commercial interest asfeasible stores for object technology. Alternative ap-proaches are extending relational database technol-ogy [6]. We do not intend to enter this debate: ourexecution environment includes a persistent store onwhich such data management systems can be built.Our storage subsystem typically uses a number ofsegments for each address space context. A segmentcan be unmapped by one context and remapped intoanother. However a default policy is that a segment

cannot be simply unmapped without checking for anypointers into it (from other segments or from threadstacks). This as a result may limit the number ofobjects which can be mapped into a context11.While this approach is adequate and reasonablyinexpensive for many purposes, it is inadequate forlarge collections of objects since the virtual space willbecome depleted. Thus to support large collections,di�erent segments must be mapped and unmappedat the same position in a context, as required. Whilemapped, a segment may need to be pinned so thatany pointer values into it which are temporarily es-tablished remain valid. We are currently actively in-vestigating such an extension, together with a mecha-nism for atomic transactions and recoverable memorysuitable for moderating accesses to large collectionsof objects: we intend to report on the details of thiswork in due course.6 Static storageStatic storage is frequently used in C++ to achieveglobal information. The problems of supportingstatic storage in a persistent environment are wellknown and solvable[21]. However in a distributed en-vironment, the problem seems harder. Since staticstorage is by default a part of the executable image ofa linked C++ program, a naive use of static storagein a distributed environment will result in multiplecopies of the static data, once at each node wherethe same code image is being used. Communicationvia the static storage area is di�cult to support {once again assuming that distributed shared memoryis not used.Our current proposal is to limit static storage forC++ programs to const values and also const point-ers to global class objects. In particular the latterallows a well-known object to be available for RPCuse: the object identi�er for that object is obtainedduring compilation.For Ei�el, static storage is not available to the pro-grammer. However once routines are provided whichprovide some measure of global information in thatthey will only ever be executed once, and their resultscached for immediate return to any subsequent invo-cations. Supporting these is similar to the solutionidenti�ed for persistent storage above.11by virtue of limitations imposed by the underlying virtualmemory system, such as the paging space available.



10 COSTS 87 Exception handlingWhile Ei�el includes exception handling in its lan-guage de�nition, C++ does not yet provide a stablemechanism[11]. In our system, the range of excep-tions that may occur from the exception are increasedover those normally available, so as to include for ex-ample communication failures.In Ei�el, our approach is simply to extend therange of exceptions exported by the kernel classEXCEPTION. Thus programmers using global classescan attempt to rescue failures arising due to the dis-tributed environment. Naturally an exception due todistribution may not be successfully caught, as in-deed any exception may not be caught. In this casethe current \activity" is terminated (itself raising anexception).Likewise when an incoming RPC invocation is dis-patched into an Ei�el routine, that routine may failwith an uncaught exception. In this case the excep-tion is caught by the RPC dispatcher and returnedback to the caller.With respect to C++, in the absence of excep-tions from the current language de�nition, we aretempted to allow the de�nition of handlers for systemrelated failure conditions, akin to the extern void(*set new handler (void(*)())) () of <new.h>which allows failure of new to be caught. Program-mer level exceptions arising from a call to an objectwritten in another language (eg a call to an Ei�el ob-ject which returned an Ei�el exception) could also bemapped into a single failure category, with an asso-ciated handler.8 ConcurrencyOmitted in this version of the paper.9 Binding and naming servicesA concern in RPC environments is the binding of aclient of an interface to a potential provider. Bind-ing environments like the DECdns, recently adoptedby OSF as an integral part of their DCE o�ering[19],and the more sophisticated ISA trader[10] allow deci-sions to be deferred until runtime, potentially makingsuccessful \marriages" on a best e�ort basis.As may be apparent, our execution environmentdoes not rely on the availability of such brokerageservices. Objects are named by object identi�ers (eg

C++ pointers) and mechanisms are provided to en-sure that the references remain valid even should thedesignated objects migrate (eg as a result of load bal-ancing within our execution environment), or persistand later be mapped on demand. Object identi�ersare returned by Ei�el's Create and C++'s new. Theycan be subsequently communicated by direct assign-ment or by parameter and result transmission dur-ing function calls. Because of the dynamic bindingpresented by the class hierarchies, a \client" may ac-tually be bound to a \server" which o�ers a moreelaborate interface than the client actually requires.Nevertheless it may be useful to associate humanreadable names with object identi�ers, and to sup-port a looser degree of binding. In our view this isbest achieved as an application in our environment -eg by a set of (eg C++) classes which combine to pro-vide a naming service, and which can bene�t from thepersistence and distribution mechanisms provided bythe execution environment. An X.500 like directoryservice has already been prototyped in this way byour colleagues in Bull within the project[7].Note too that the concept of trading should be pos-sible in our environment. A \server" can export abinding to an interface which it is pro�ering. Thisinterface could in principle be an augmented publicdescription of a C++ or Ei�el class. Likewise a clientcould obtain an object reference from a trader, whichshould be subtype compatible with the expected in-terface. We hope that this approach can be exploredin conjunction with the ISA project.10 CostsSo far we have consciously led the reader away fromconsideration of the details of our underlying execu-tion environment. We have done so so as to focusattention on what programming model we present toa C++ and Ei�el programmer. Nevertheless it is rea-sonable to give some attention to the costs incurredby our various extensions. A fuller description of theintricate internals of our environment is in prepara-tion. Currently a prototype of our execution envi-ronment is operational above Ultrix (on Decstationsand �Vaxes), and retargettable compiler tools for ourEi�el and C++ extensions are well underway.As noted in section 5, we propose three categoriesof classes.Transient and non-global classes are exactly equiv-alent to \normal" Ei�el and C++ classes. The onlyrestrictions on their use is avoiding pointer assign-ments to and from persistent and/or global instances,



11 CONCLUSIONS 9and incur no additional overheads in our environ-ment.10.1 Non-global but persistentclassesNon-global classes which can have potentially persis-tent instances incur, for each (non-member or non-direct) instance, a space and time overhead. Theyeach have a header which includes the size, class iden-ti�er and language identi�er of the object. It alsoincludes a pointer to a set of functions (actually aC++ vtbl) which our execution environment can up-call so as to manage the object in a language speci�cway[26]. The most important of these is the nextptrfunction which can be used to iterate through the ob-ject identi�ers within the instance data of the object.Apart from the space cost of the header, and theoccasional use of the up-calls, the main cost in usinga persistent object is detecting whether or not it iscurrently mapped. As noted in section 5.2 we usesegments to store clusters of related persistent ob-jects. An object identi�er for an as yet not mappedobject occupies the same storage space as normal (ega 32bit pointer in most C++ and Ei�el implementa-tions), unlike for example [21].When mapping a segment, one possible option isto ensure that all pointers into that segment are im-mediately made valid. In our environment, achievingthis would require the whole incoming segment (andnot the whole context) to be scanned: however thiscan be slow, particularly if only a few objects fromthe segment are required. It would certainly be un-acceptable in a data management application. Hencean alternative is to only \register" the requested ob-ject from the segment, with the consequence of anexplicit check on each pointer de-reference12 .In summary, once the target object denoted by apointer is mapped, the pointer refers directly to theobject (as in normal C++ or Ei�el) but there can bea residual test (which will succeed) to con�rm thatthe object is present.10.2 Global and persistent classesThe �nal category is global classes which can havepersistent instances. The overheads of these in addi-tion to those incurred by non-global persistent classesare essentially the RPC stubs required to marshallparameters at the client side, and to unmarshall and12In practice this may be optimised to checking when apointer is available in a new scope.
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