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Abstract

This paper discusses in what way a programming
language may be extended for distribution and per-
sistence. We specifically concentrate on C4++! and
Eiffel2. Our attention is on the programming mod-
els, together with rationale and incurred costs. The
extended languages are supported by a language in-
dependent execution environment which offers dis-
tributed invocation, concurrency, mapping and un-
mapping of objects, dynamic link loading, load bal-
ancing and garbage collection. However we do not
here consider in detail the internal mechanisms of our
support environment.

Parts of the work presented here have been par-
tially supported by the CEC, under Esprit project
2071, Comandos.

An extended version of this paper has been submait-
ted for publication: PLEASE do not reference this
paper without the explicit permission of the authors.

This verston of the paper was presented at the mi-
crokernel applications workshop, held at the OSF re-
search institute, Grenoble 27-29th November 1990.

1 Motivations

Together with a number of other institutions in
the Esprit Comandos project, we are constructing
an execution space for persistent and distributed
programming[16][7]. The layer produced by the
project 1s for Unix and microkernels such as OSF-
1 Mach and Chorus. It is language independent,
and provides object management services such as dis-
tibuted invocation, persistence, dynamic link loading,
concurrency and synchronisation, load balancing and
garbage collection. One of our major concerns is that
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popular languages should be supported in our envi-
ronment: consequently for a given language, we may
either have to extend it with distribution and/or per-
sistence facilities, or map i1ts own support for these
facilities onto our execution layer. We discuss in this
paper our designs for evolving in particular C4+[23]
and Eiffel[18].

The widely accepted mechanism to extend a pro-
gramming language to enable distributed applica-
tions to be written is the remote procedure call; with
an associated stub generator for that language and
runtime support to provide a generic interface to the
appropriate network protocol stack. The attractive-
ness of RPC is that it 1s now well understood and
accepted, because it isolates a programmer to a rea-
sonable degree from the specialised understanding re-
quired to use a particular network [3]:

“Our hope 1s that by providing communica-
tion with almost as much ease as local pro-
cedure calls, people will be encouraged to
build and experiment with distributed ap-
plications.”

In this paper we concentrate on the issues in ex-
tending the invocation mechanism of a programming
language, for both distributed invocation and invo-
cation of objects potentially resident on persistent
storage. While we are confident that our support
is applicable to a range of programming languages,
here we focus specifically on both C4++ and Eiffel. In
extending these languages for distribution and persis-
tence our concern is, in the first instance, to main-
tain their model of synchronous invocation of objects
while maintaining the general philosophy of making
cost explicit.

We do nevertheless acknowledge that there are
some well recognised limitations to the classical RPC
model. We accept the contribution that propos-
als such as futures[9][25], promises[15], REV[22] and

trading[10] can make but, as a first step, we are more
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concerned with supporting the execution models of
our chosen languages.

We have emphasised object oriented languages, not
only because of their current popular appeal, but also
from our own pleasant experiences in building appli-
cations and tools from them. We believe that they
are a promising approach to designing and building
distributed applications.

2 Transparency

A number of research projects have explored the pos-
sibility of hiding the boundaries between local and re-
mote virtual address spaces, so making cross context
invocation syntatically equivalent to intra context in-
vocation [4][5][12]. The proponents suggest that pro-
grammers are relieved of distribution concerns, and
can write (re-useable) code which is independent of
its actual use in a distributed application. In turn,
application builders and system administrators can
decide how best to structure an application and its
data over several nodes, including the ability to mod-
ify this mapping without having to rewrite, recompile
or even relink the applications.

The contrary approach is to make the programmer
blatently aware of the difference in cost between lo-
cal and potentially remote invocations. This style 1s
advocated in, for example, Argus[14]. Tt is also a nat-
ural consequence of the addition of a standard RPC
package to an existing language: remote procedures
can be invoked somewhat similarly to local ones, but
the programmer is acutely aware that she is invoking
a remote procedure. One argument in favour is that
a programmer is frequently in an excellent position
to supply advice to the execution environment and
should therefore be able to specify which interfaces
could be RPC invokable, and which should always be
locally resolved without RPC calls.

At the level of our language independent execu-
tion environment, our philosophy in respect of trans-
parency in any particular programming language is
to be neutral. However when extending any specific
language — such as C++ or Eiffel — above our execu-
tion environment, our approach is to try to reflect the
philosophy of that language. We believe our execu-
tion environment can support both transparent and
non-transparent distribution. We do however note
that prototypes which have explored the transparent
approach are, to our knowledge, limited in each case
to a single language, with a tight coupling of its run-
time support.

One approach towards providing a transparent dis-

tributed environment which is receiving some atten-
tion is distributed shared memory: its application
to C++ is reported, for example, in [5]. Our feel-
ings about DSM systems are quite mixed: on the one
hand they provide a transparent environment, and
allow even a language as complex as C4++ to be rea-
sonably transparently supported; on the other, de-
spite initial experiments such as [8][27] and [24], we
remain to be convinced that DSM can scale, address
heterogeneity, fault tolerance and multiple users.

Our own execution environment currently does not
normally provide a mechanism for reading and writ-
ing arbitrary bytes of an address space context over a
network — there is no assumption about the availabil-
ity of distributed shared memory. Thus mechanisms
are restricted to invocations and (distributed) thread
creation.

3 The basic model

We start here by considering the various issues and
alternatives for accessing objects in a distributed en-
vironment, and proceed in section 3.1 below to give
the solutions we are adopting.

In both C++4 and Eiffel, accesses to objects can
be in two ways: by pointer (including also constant
pointers such as C++’s references)® or directly (ie
“inline” — a member object in C+4 or a direct ob-
ject from an expanded type in Eiffel). Since we do
not assume distributed shared memory, in our dis-
tributed environment a member/direct object cannot
be remote from its encapsulating object.

If, as a result, the only mechanism for accessing re-
mote objects is via pointers, the next issue is whether,
and if so how, pointers to remote objects should differ
from those to local objects. By remote objects, here
we mean objects that may potentially be in another
context. Local objects are on the contrary guaran-
teed never to be separated into a different context
from those objects which hold pointers for them.

If pointers to remote and local objects are fully in-
terchangeable, then a transparent model with respect
to distribution results. For C+4++, but less so in Eif-
fel, the programmer is normally aware of the cost of
each language construct*: thus for these languages
we feel on the contrary that the cost of remote ac-
cess should be apparent. How then should local and
remote pointers be syntatically distinguished 7

3 Although note that in Eiffel, pointers are not explicit.
4But note that in Eiffel, an attribute access is indistinguish-
able from a parameterless routine access of the same name.
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One possibility is to distinguish remote pointers
by, for example, using an “@” rather than a “*” in
C++, or by using “smart” pointers. As a result for
each class, there can be both local and remote point-
ers for its instances. Remote instances of a class re-
quire that RPC stubs are used to marshall arguments
and dispatch invocations for each remotely invokable
routine®. If any class can potentially have remote
instances; RPC stubs must always be available for
it. Our view is that this can sometimes be an un-
necessary overhead, particularly during compilation
— generating these stubs when compiling the class
definition.

A further issue is assignment between local and re-
mote pointers. In general a local pointer cannot be
updated with the value of a remote pointer: the ob-
ject referenced by the remote pointer may naturally
be remote, and a subsequent access to it via a local
pointer would not use the RPC stubs. It i1s conceiv-
able to insert a runtime check to test for proximity,
and to allow the assignment if the target object is ac-
tually local. However this would be complicated by
the object consequently migrating away.

In a non object oriented world, simply associat-
ing “remoteness” with typing information would pre-
sumably be adequate to prevent the two categories
of assignment above: remote types would not be as-
signment compatible with local types, and vice versa.
However, for C++ and Eiffel at least, the situation
can arise due to subtyping: in such languages an in-
stance of a subclass can be used for an instance of
one of its superclasses. Hence in principle a pointer
to a remote derived class could be assigned to an
instance of a non-remote base class, and vice versa.
One option would be to prevent mutual subclassing
of the two categories of classes: this would then lead
to two completely separate class hierarchies[17]. We
feel that this would be unfortunate since it would
discourage re-use of code — for example a non-remote
class could not easily be converted into a remote one
via the obvious derivation.

We argue that inheritance between non-remote and
remote classes and vice-versa should be provided:
however assignment of local and remote pointers
should be normally mutually incompatible.

3.1 Accessing remote objects

Based on the above discussion, we believe that — for
Eiffel and C4++4 at least — it is wise to allow the de-
signer of a class to specify whether or not remote

5We discuss exactly what categories of features can be sup-
ported for marshalling later below in section 4.

instances of it are possible. RPC stubs are then gen-
erated only for classes which may have remote in-
stances. We call such a class a global class. Note
that an instance of a global class is only potentially
remote; it may actually be local. It 1s also possible
that an instance of a global class may migrate from
one node to another in the distributed system — its
location is not necessarily fixed.

Given a pointer to an instance of a global class,
what categories of features can be accessed 7 In C++,
a public member of a class can be any designator —
eg a function, a simple type, a class instance, or a
pointer (or array) to a type or class instance. Ob-
viously member functions should be accessible via a
remote pointer, provided that the arguments and re-
sults of the function can be marshalled by rpc stubs
(cf section 4): we call such functions global functions.

In FEiffel, an exported feature can be a routine, or
an expanded or reference attribute. The basic types
are all expanded classes. Thus an Eiffel routine can
be a global routine in our environment if it can be
marshalled.

In the absence of a mechanism to read or write
arbitrary bytes of a remote address spaces (eg by
de-referencing and offsetting from a remote pointer)
we advocate that in addition to global functions and
global routines, only member instances (in C++)
and instances of expanded classes (in Eiffel) of global
classes should be accessible via a pointer to a global
instance: we call such a member a global member o0b-
ject or global direct object. That 1s we impose no re-
strictions on what comprises the public interface to a
global class: however given a pointer to an instance of
that class, only its global functions and global mem-
ber objects are accessible. Functions which are to
be global must be explicitly marked; global member
objects are global by virtue of their class:

global class A {
pugiic:

. ce.

class Z {
pugiic:

}

global class B {
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public:
A parti; //visible via B#
Z part2; //invisible via B#*
1%

global void fi1(....); //visible via B*

void f2(....); //invisible via B#*
int y; //invisible via B*
char* str; //invisible via B#*

}

Naturally this is recursive: class Z may have pub-
lic member parts which themselves are (inline) in-
stances of global classes. Thus given a pointer B
*bptr, a “part-of” navigation chain can be formed by
bptr->pz.py.px. .. which ultimately must denote a
global function or an instance of a global class. If the
object referenced by bptr really is remote, then in-
voking one of its own global functions, or one of the
global functions of its public parts, will result in a re-
mote invocation. Accessing one of its (nested) public
parts so as to form an address (eg to obtain an lvalue)
is also legimate since our execution environment de-
tects pointers to remote objects (whether or not they
be nested as parts within another remote object).

Our rules for C++4 references match those for
pointers: given a reference to an instance of a global
class, only the global functions and global member
objects can be used from the reference. Note too
that for the purposes of these access rules, we clas-
sify C++4 non-class entities (eg ints) as non-global
entities. In Eiffel, as noted above, the basic types
are (non-global) expanded classes: however since ex-
panded classes cannot be derived, a non-global ex-
panded class cannot be subclassed to form a global
one.

It should be noted that global functions have the
semantics of virtual (in C4++4), or redefined or de-
ferred (in Eiffel), functions. That is, for example in
C++, if a global function is called via a pointer to a
base class, which actually references an instance of a
derived class, then the global function in the derived
class will be called.

3.2 Derivation

In addition to the access rules above, we impose the
further limitation that when assigning a value to a
pointer to a global class, that value must also be a
pointer to, or the address of, a global class. A com-
plimentary rule is imposed on pointers to non-global

classes®.

Thus given

SHowever we do not outlaw C++ type casts, and leave the
programmer to suffer the consequences should she use them.

global class A {

}

class B : public A {
public:
A a; // global member
}
global C : public B {
public:
A aa; // global member
B b; // local member
global int fn(....);
}
global int C::fn(....};
{ A =*ap;
B *bp;
C *cp;
ap = cp; // legal
// ap = bp; // illegal
// bp = cp; // illegal
ap = &(cp->aa);// legal
//ap = &(bp->a); // illegal
//bp = &(cp—>b); // illegal
}

3.3 Encapsulation

When considering the rules for pointer assignment
and dereferencing, we must also take account of the
current object. If the current object is an instance of
a global class, then every access to its instance data
is categorised (for the purposes of assignment com-
patibility checking) as an access via a remote pointer
— after all, C++4’s this or Eiffel’s Current is then a
pointer to a global class.

In C++, the current object may access the pri-
vate (as well as the protected and public) instance
data of another object of the same class, given the
value of, or a pointer to, such an object. In Eiffel,
the current object can only access the exported fea-
tures of another object, even if that other object is
from the same class. However selective exporting can
be used (possibly to the current class itself) so as to
allow access to more features than are generally visi-
ble. In our extensions, such rules must be moderated
by the access rules for remote pointers. Thus, in a
non-global class, the rule for access to peer instances
are unchanged. However for a global class, given a
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pointer to one of its peers, the current object can
only access the global functions and global member
objects of that peer (using the same rules as previ-
ously). For C++, the same access rules also apply to
friend classes and functions.

global class B {

}

global class A {
int n;
global int fn(A&);
B b;
B *bp;
public:
global void f1(....);
global int f£2(....);
}
global int A::fn(A& aref)
{ // aref.fn, aref.b, aref.fl
// and aref.f2 are all available.
// aref.n and aref.bp are hidden.
// However n and bp are available
// to the current object
}

Although it is certainly feasible to be more restrictive
and outlaw peer and friend access altogether, we be-
lieve it 1s legitimate to have non-public features which
are (possibly remotely) accessible by collaborating in-
stances and classes. However the programmer still
retains control over the cost of remote access, and in-
curs the additional overheads only for those features
which she has distinguished.

3.4 Cloning

Both C+4++4 and Eiffel allow a copy of an object to
be obtained: in FEiffel, this can be a shallow or deep
clone; in C++ the copy is by default a member by
member copy of the instance data, but the default for
a class X can be overridden by providing operator
=(X&) for general assignment, and X (X&) for initiali-
sation by assignment.

For global classes, we currently impose the restric-
tion that such copying is not supported. Once again,
our basic problem is the lack of arbitrary byte access
to remote contexts: copying an instance of a global
class may well require access to a remote instance.

4 Marshalling

The normal way of adding RPCs to a program-
ming language is to provide interface definitions, from
which a tool can generate RPC stubs for both the
client and server[3][10]. In languages which provide
support for abstract data types — including the ob-
ject oriented languages — 1t 1s obviously natural to
consider a tool which takes an ADT definition in that
language — for example a “flattened” Eiffel class defi-
nition — and likewise generates client and server stubs.
A more friendly programming environment results.

A major question is how closely the RPC package
can match the type system of the host language. The
basic types, such as ints’ are usually relatively sim-
ple to marshall into an RPC packet, possibly trans-
late between host (and compiler) conventions, and
unmarshall on delivery. However pointers are noto-
riously difficult — yet in many object oriented lan-
guages, including C4++ and FEiffel| pointers are a com-
mon representation for object identifiers. It is highly
desireable that object identifiers are RPC marshal-
lable for any distributed object oriented language.
A related problem is the transmission of copies of
objects since the location of object pointers within
the instance data must be located during RPC mar-
shalling. C4+ structs are no different in this regard,
but unions are impossible without additional code
supplied by the programmer herself.

In passing object instances, there may be “hid-
den” data added by the compiler, which must also be
RPC marshallable. For example, a C++ class may
contain pointers to so-called “vtbls”, which serve to
dispatch virtual function calls and so implement dy-
namic binding. Likewise Fiffel objects contain mech-
anisms for handling redefined or deferred routines.
Such compiler generated information must be identi-
fied and rebuilt at the recipient.

For our extended versions of Eiffel and C++,
pointers® to global classes can be passed as arguments
and results within global routines. However pointers
to non-global classes cannot be. Further, copies of
instances of global classes also cannot be passed (cf
section 3.4). Copies of instances of non-global classes
in principle can be, however our initial implementa-
tion does not support this.

Values of basic types (such as ints) can be passed,
but pointers to and references for basic types cannot
be passed for C++.

Yet a further problem in C+4++ is arrays. Since
an array is (only) represented by its first element,

"But sometimes with the exception of floating point types.
%as well as C++ references.
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an RPC marshalling routine cannot know the actual
length of the array unless additional information is
given by the programmer — and this information is
not mandatory in conventional C+4. Thus we do not
currently support marshalling of C++ arrays, with
the exception of a pointer to a const char, which
by convention represents a null terminated character
string.

In Eiffel, a marshalling routine can determine the
(dynamic) length of an array, and act accordingly.

There are some further nuances in C+4. For ex-
ample, pointers to class member functions are legiti-
mate values for argument transmission: we can sup-
port these by marshalling a code address (and in fact
other supplementary information).

4.1 Cross language calls

Our execution environment allows invocations from
objects written in one language to those of another,
whether or not these all be locally in the same address
space context. Naturally in so doing, issues arise due
to the mis-match in type systems of the languages
concerned. Qur basic approach here is to further re-
strict as necessary the values which can be marshalled
for a particular language in a call which will be cross-
language. To help us to this end, a distributed service
called the type manager is being built above the ba-
sic execution environment. The type manager records
type information registered in respect of interfaces at
compile time and work on it is being led by our col-
leagues at Glasgow within the project[7].

5 Persistence

Many modern languages, if not actually incorporat-
ing persistence into their definition, include some
support for persistence in their libraries. For ex-
ample, the Eiffel libraries include classes STORABLE
and ENVIRONMENT: any class which includes STORABLE
in its inheritance hierarchy can have persistent in-
stances; if ENVIRONMENT is used, all object creations
done while an environment is “open” will be per-
sistent. Likewise for example the C+4 Interviews
library[13] includes class persistent, somewhat akin
to Eiffel’s STORABLE.

One of the pioneering developments in persistent
languages was PS-Algol[20]. A major postulate of
this project was that persistence should be orthogo-
nal to type. As a result the persistence of an object
is not statically determinate. When an object is cre-
ated, it will not become persistent unless 1t becomes

referenced by another persistent object. It will per-
sist as long as it is so referenced: eventually it may
become disconnected and be discarded. Thus persis-
tence is a dynamic attribute that can be gained and
lost at execution time: further, not all instances of
the same type may necessarily persist.

The advantages of this approach are summarised
in [1]: the saving of coding effort and space to trans-
fer data to and from files or a dbms; a conceptually
simple, single program view of data; and benefitting
from any type safety of the programming language
when applied to persistent data.

Although we also adopt this approach to persis-
tence, 1t should be noted how 1t relates to our ap-
proach to distribution. For distribution, we separated
global classes from non-global ones: all instances of
a non-global class are always local to objects which
hold references to them; a local instance can never dy-
namically become remote. However, an instance of a
global class may or may not be remote (and this de-
gree of proximity may change dynamically due to mi-
gration). Thus we have one category of classes which
behave similar to “normal” (C++ or Eiffel) classes
with respect to distribution, and a second which are
more costly to use.

In the same way that, even in the best case®, a

potentially remote object is more costly than a local
one, also a potentially persistent object is more costly
to use than one which is always non-persistent. The
cost of a persistent object 1s chiefly detecting whether
or not 1t is currently loaded — even in the best case
(ie the object is already loaded) this test must still
be taken!'?.

Thus we divide classes into two further categories:
those for which persistent instances never exist, and
those for which some of their instances may persist.
Note that in the second case, persistence is deter-
mined (and may change) at runtime, depending on
what objects are transitively reachable (at a given
consistent point in time) from a set of root objects.

Thus in principle there are four categories of
classes:

local | potentially
remote
transient A B
potentially
persistent C D

?Costs are reported later in section 10.
107t is conceivable to consider memory violations as a basis
for this test, thus relegating it to the hardware MMU: however
it seems difficult to do this in a language independent way, and
notably to determine what the current object (and maybe also
thread) is within the violation signal handler.
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In practice we have chosen not to support category
B classes for C++4 and Eiffel in our environment. The
chief reasons are simplicity and cost: a programmer
can decide that a class should behave exactly like a
“normal” one — non-distributed, non-persistent — and
with no consequent costs; or she can choose to add
the ability to persist on a per-instance basis, with
some additional resultant costs; and finally she can
choose to add the potential to be remote, and incur
the heaviest cost penalty.

Automatic (in C++4) and local (in Eiffel) instances
of category C and D classes are not supported (as in
[21]). However arrays of both, including an array of
instances of global classes, are supported.

5.1 Class based approaches

As noted above, class libraries exist for both C++
and Eiffel to provide persistence. In our execution
environment we believe it is important that applica-
tions written using these classes should continue to
function.

We believe that re-implementing these classes
should be relatively straightforward. Our environ-
ment will store all objects reachable from a given
persistent object, with the exception of instances of
transient classes. Thus to implement the “persistence
completeness” rule of Eiffel, any Eiffel class which de-
rives from class STORABLE must be checked to confirm
that neither it nor its dependents contain pointers
to transient objects. Doing otherwise should, in our
view, generate a compile time warning. A similar
check should be used for any object used in put or
force of class ENVIRONMENT, but this will in general
need to be a runtime check. Implementing the keyed
insertion and retrieval of this class require a persis-
tent table, a generally useful library class in any case.

5.2 Object oriented data manage-
ment

Object oriented database systems, such as pro-
pounded by[2], are receiving commercial interest as
feasible stores for object technology. Alternative ap-
proaches are extending relational database technol-
ogy [6]. We do not intend to enter this debate: our
execution environment includes a persistent store on
which such data management systems can be built.

Our storage subsystem typically uses a number of
segments for each address space context. A segment
can be unmapped by one context and remapped into
another. However a default policy is that a segment

cannot be simply unmapped without checking for any
pointers into it (from other segments or from thread
stacks). This as a result may limit the number of
objects which can be mapped into a context!!.

While this approach is adequate and reasonably
inexpensive for many purposes, it is inadequate for
large collections of objects since the virtual space will
become depleted. Thus to support large collections,
different segments must be mapped and unmapped
at the same position in a context, as required. While
mapped, a segment may need to be pinned so that
any pointer values into it which are temporarily es-
tablished remain valid. We are currently actively in-
vestigating such an extension, together with a mecha-
nism for atomic transactions and recoverable memory
suitable for moderating accesses to large collections
of objects: we intend to report on the details of this
work in due course.

6 Static storage

Static storage is frequently used in C4++ to achieve
global information. The problems of supporting
static storage in a persistent environment are well
known and solvable[21]. However in a distributed en-
vironment, the problem seems harder. Since static
storage is by default a part of the executable image of
a linked C4++ program, a naive use of static storage
in a distributed environment will result in multiple
copies of the static data, once at each node where
the same code image is being used. Communication
via the static storage area is difficult to support —
once again assuming that distributed shared memory
is not used.

Our current proposal is to limit static storage for
C++ programs to const values and also const point-
ers to global class objects. In particular the latter
allows a well-known object to be available for RPC
use: the object identifier for that object is obtained
during compilation.

For Eiffel, static storage is not available to the pro-
grammer. However once routines are provided which
provide some measure of global information in that
they will only ever be executed once, and their results
cached for immediate return to any subsequent invo-
cations. Supporting these is similar to the solution
identified for persistent storage above.

by virtue of limitations imposed by the underlying virtual
memory system, such as the paging space available.
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7 Exception handling

While Eiffel includes exception handling in its lan-
guage definition, C+4 does not yet provide a stable
mechanism[11]. In our system, the range of excep-
tions that may occur from the exception are increased
over those normally available, so as to include for ex-
ample communication failures.

In Eiffel, our approach is simply to extend the
range of exceptions exported by the kernel class
EXCEPTION. Thus programmers using global classes
can attempt to rescue failures arising due to the dis-
tributed environment. Naturally an exception due to
distribution may not be successfully caught, as in-
deed any exception may not be caught. In this case
the current “activity” is terminated (itself raising an
exception).

Likewise when an incoming RPC invocation is dis-
patched into an Eiffel routine, that routine may fail
with an uncaught exception. In this case the excep-
tion is caught by the RPC dispatcher and returned
back to the caller.

With respect to C+4, in the absence of excep-
tions from the current language definition, we are
tempted to allow the definition of handlers for system
related failure conditions, akin to the extern void
(*set mew handler (void(*)())) () of <new.h>
which allows failure of new to be caught. Program-
mer level exceptions arising from a call to an object
written in another language (eg a call to an Eiffel ob-
ject which returned an FEiffel exception) could also be
mapped into a single failure category, with an asso-
ciated handler.

8 Concurrency

Omatted in this version of the paper.

9 Binding and naming services

A concern in RPC environments is the binding of a
client of an interface to a potential provider. Bind-
ing environments like the DECdns, recently adopted
by OSF as an integral part of their DCE offering[19],
and the more sophisticated ISA trader[10] allow deci-
sions to be deferred until runtime, potentially making
successful “marriages” on a best effort basis.

As may be apparent, our execution environment
does not rely on the availability of such brokerage
services. Objects are named by object identifiers (eg

C++ pointers) and mechanisms are provided to en-
sure that the references remain valid even should the
designated objects migrate (eg as a result of load bal-
ancing within our execution environment), or persist
and later be mapped on demand. Object identifiers
are returned by Eiffel’s Create and C++’s new. They
can be subsequently communicated by direct assign-
ment or by parameter and result transmission dur-
ing function calls. Because of the dynamic binding
presented by the class hierarchies, a “client” may ac-
tually be bound to a “server” which offers a more
elaborate interface than the client actually requires.

Nevertheless 1t may be useful to associate human
readable names with object identifiers, and to sup-
port a looser degree of binding. In our view this is
best achieved as an application in our environment -
eg by aset of (eg C++) classes which combine to pro-
vide a naming service, and which can benefit from the
persistence and distribution mechanisms provided by
the execution environment. An X.500 like directory
service has already been prototyped in this way by
our colleagues in Bull within the project[7].

Note too that the concept of trading should be pos-
sible in our environment. A “server” can export a
binding to an interface which it is proffering. This
interface could in principle be an augmented public
description of a C++4 or Eiffel class. Likewise a client
could obtain an object reference from a trader, which
should be subtype compatible with the expected in-
terface. We hope that this approach can be explored
in conjunction with the ISA project.

10 Costs

So far we have consciously led the reader away from
consideration of the details of our underlying execu-
tion environment. We have done so so as to focus
attention on what programming model we present to
a C++4 and Eiffel programmer. Nevertheless it is rea-
sonable to give some attention to the costs incurred
by our various extensions. A fuller description of the
intricate internals of our environment is in prepara-
tion. Currently a prototype of our execution envi-
ronment is operational above Ultrix (on Decstations
and pVaxes), and retargettable compiler tools for our
Eiffel and C4++ extensions are well underway.

As noted in section b, we propose three categories
of classes.

Transient and non-global classes are exactly equiv-
alent to “normal” Fiffel and C++ classes. The only
restrictions on their use 1s avoiding pointer assign-
ments to and from persistent and/or global instances,
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and 1ncur no additional overheads in our environ-
ment.

10.1 Non-global but

classes

persistent

Non-global classes which can have potentially persis-
tent instances incur, for each (non-member or non-
direct) instance, a space and time overhead. They
each have a header which includes the size, class iden-
tifier and language identifier of the object. It also
includes a pointer to a set of functions (actually a
C++ vtbl) which our execution environment can up-
call so as to manage the object in a language specific
way[26]. The most important of these is the nextptr
function which can be used to iterate through the ob-
ject identifiers within the instance data of the object.

Apart from the space cost of the header, and the
occasional use of the up-calls, the main cost in using
a persistent object i1s detecting whether or not it is
currently mapped. As noted in section 5.2 we use
segments to store clusters of related persistent ob-
jects. An object identifier for an as yet not mapped
object occupies the same storage space as normal (eg
a 32bit pointer in most C+4 and Eiffel implementa-
tions), unlike for example [21].

When mapping a segment, one possible option is
to ensure that all pointers into that segment are im-
mediately made valid. In our environment, achieving
this would require the whole incoming segment (and
not the whole context) to be scanned: however this
can be slow, particularly if only a few objects from
the segment are required. It would certainly be un-
acceptable in a data management application. Hence
an alternative is to only “register” the requested ob-
ject from the segment, with the consequence of an

explicit check on each pointer de-reference!?.

In summary, once the target object denoted by a
pointer is mapped, the pointer refers directly to the
object (as in normal C++ or Eiffel) but there can be
a residual test (which will succeed) to confirm that
the object is present.

10.2 Global and persistent classes

The final category is global classes which can have
persistent instances. The overheads of these in addi-
tion to those incurred by non-global persistent classes
are essentially the RPC stubs required to marshall
parameters at the client side, and to unmarshall and

12In practice this may be optimised to checking when a
pointer is available in a new scope.

dispatch the invocation at the called side. FEach
(source) class thus has two forms: one form con-
taining RPC stubs for a client; the other containing
the dispatching code and original class code. The
stub-class and true-class are actually subclasses of
the interface-class in which any global functions ap-
pear as virtual, or deferred, functions. These three
classes are automatically produced from the original
source class definition.

11 Conclusions

In this paper we have summarised our approaches to
extending the Eiffel and C++ programmer’s model
for distributed and persistent programming. We
have noted that these extensions are being imple-
mented above a language independent execution en-
vironment, and have given an indication of the costs
involved in each extension. Implementation of the
extended support for Eiffel and C++ is underway.
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13 Appendix

We here include an attempt to describe in C4++ of
the additional rules we introduce for global classes
(cf section 2). We give class definitions for both class
global and class nonglobal. Our global classes in
principle then use class global as their base class;
likewise non-global classes use nonglobal. Unfortu-
nately we cannot capture completely in C++ the se-
mantics we desire.
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class global{
private:
global(const global&);
// no init. by assignment
global& operator=(const global¥);
// no assignment

“global(); // no autos or temps
protected:
global(); // construction allowed

// in subclasses

}

class nonglobal{
private:

nonglobal(const global&);

// no init. by assignment

“nonglobal(); // no autos or temps
protected

nonglobal(); // construction allowed

// in subclasses

}

And so given, for example:

class A : public global{ // A global class
public:

// assume these are global functions

f(AZ); // legal

/7 g(h); // wrong: memberwise copy
}
class Z : public nonglobal{//non-global class
public:

void fn();

A aa; // a global member object
}
void Z::fn()
{

A* pa = new A; // a remote pointer

Z* pz = new Z; // a local pointer

Z& rz = *pz; // legal

pa—>f(*pa); // legal
//A temp; // illegal - no autos.
//*pa = *pa; // illegal - no copying
//*pz = *pz; // should be legal - #1
//*pz = rz; // should be legal - #2
//pa->g(*pa); // should be illegal- #3
}

10

disallows member-wise copying. To model our rules
in C4++4, we would need to amend the code above to
indciate that operator= of class global can be used
by (the friend) class Z.

At #3, an instance of a global class i1s passed by
value (member-wise) as an actual parameter. This is
disallowed by our rules, but for the C4++ code above
only a warning message is produced.

In practice, the system wide garbage collector
would conceptually be a “friend” of both the global
and nonglobal classes, and would be responsible for
calling destructors.
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