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Abstract—Recent years have seen the maturing of ubiquitous 

computing middleware and software. Accompanied by research 
into sensor networks and other sensor-driven applications, 
widespread deployment and realisation of these technologies can 
now be expected in the coming years. As a cheap and quick 
method of prototyping applications and protocols, simulation will 
be a key part of the development cycle for these technologies.  
However, existing simulators only address a subset of ubiquitous 
computing environments and are unsuitable for modelling the 
desired complexity of the domain.  

This paper presents initial work on the design of a generic 
simulation tool suitable for the many scenarios encompassed by 
ubiquitous computing, such as simulation of sensors, actuators, 
and the environment. In addition, an emulation framework for 
middleware and software under development is provided which 
interfaces with the simulation tool. We provide a layered, flexible 
and modular approach to supporting the simulation of 
ubiquitous computing environments without constraining the 
simulator to one aspect of the many possible ubiquitous 
computing deployment scenarios. Finally, we present and discuss 
a proof-of-concept simulation. 
 

Index Terms—Emulation, sensor networks, simulation, 
ubiquitous computing, UCSE. 
 

I. INTRODUCTION 
biquitous computing [1,2] as an area of research is an 
umbrella for areas of research such as ambient 

intelligence [3], sensor networking [4], context awareness [5] 
and smart spaces [6]. In addressing this area, solutions have to 
contend with many non-trivial problems such as 
dependability, large scale, physical distribution, security, 
timely behaviour and many others. For these reasons, 
designing solutions is a difficult and time consuming process 
and effective development is an important issue. Simulation 
will play a key role in the development and testing of these 
solutions.  

Although we are not aware of a taxonomy of the typical 
components used in ubiquitous computing scenarios, it 

appears that there is a set of abstractions that are required by 
the wide range of scenarios envisaged in ubiquitous 
computing. These common components include sensors, 
actuators, applications utilising these sensors or contextual 
information derived from them, and the environment in which 
these components exist. Changes in the environment or user 
input typically drive sensors; applications react to this input 
and offer feedback into the environment or the user by way of 
some form of actuation. What is clear from the domains 
involved is the large diversity of these components that 
actually exist. Without mentioning actual types of sensors or 
referring to particular sensed phenomena, sensors can be 
classified as being active or passive. They can be 
exteroceptive or proprioceptive, i.e. they can detect values 
internally or from the ambient environment around them, and 
they can act in a periodic or sporadic manner.  
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Similarly, applications can run on a PDA requiring user 
input, this can take the form of a program running on a server, 
software running on some embedded hardware mote [7] with 
attached sensors, or even a collection of embedded agents 
enabling a smart office style scenario 

Actuators can be classified in a similar manner and in the 
general case, interesting properties such as the scope and 
effect of any action that takes place must be considered. 

Some of the typical environments in which these 
applications, sensors and actuators are deployed include 
buildings for smart space scenarios [8], rugged terrain for 
environmental monitoring [9] and road networks for 
intelligent transportation systems [10]. All of these 
environments have their own unique properties and their state 
can play a key role in the performance and behaviour of an 
application. Indeed, there are few environments in which 
some form of ubiquitous computing could not exist. 

The use of simulation technology in ubiquitous computing 
is of particular importance to developers and researchers alike. 
Many of the required hardware technologies such as cheap 
reliable sensors are only reaching maturity now, and many of 
the application scenarios are being designed with the future in 
mind and well in advance of the hardware actually being 
available. Furthermore, many of the target scenarios do not 
lend themselves to onsite testing, in particular, scenarios 
which require deployment of large numbers of nodes or 
devices. In addition, simulation enables researchers to 
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evaluate scenarios, applications, protocols and so forth 
without the difficulties in dealing with hardware sensors and 
actuators, and also offers greater flexibility since it is easy to 
run a set of simulations with a range of parameters. 

And yet, there are very few existing simulators which are 
effective in modelling the entire range of scenarios mentioned 
above. This may be because of the broad scope of scenarios 
listed already, and providing a suitably general yet 
customisable simulator is non-trivial. Many of the current 
ubiquitous computing simulators are not sufficiently flexible 
or general enough to be adapted to the many ubiquitous 
computing scenarios. Typically simulators used in this domain 
have been adapted from some other domain such as agent or 
network simulation and as such neglect or simplify some of 
the aspects that are more common to ubiquitous computing 
such as sensors and the environment. 

This paper presents a novel approach to modelling 
ubiquitous computing scenarios using the twin technique of 
simulation and emulation. We use simulation to model the 
sensors, actuators and environment, whilst proposing an 
emulation framework for testing of applications and 
middleware. The benefits of simulating sensors, actuators and 
the environment have been explained above. By providing an 
emulation framework, developers have only to write their 
applications once and can re-use the same code in testing and 
in actual deployment. Many of the applications designed for 
these domains are built upon existing middleware platforms 
and the emulation framework also provides support for this 
middleware. The combined approach of simulation and 
emulation and the interfacing between the two allows 
simulated hardware devices such as sensors and actuators to 
interact with emulated software or middleware. Since 
networking and communication is a key aspect of many 
ubiquitous computing scenarios, integration of an existing 
network simulator such as ns-2 [11] into our framework is a 
key requirement. 

As previously mentioned, there is huge diversity in the 
number of sensors and actuators that have to be deployed. 
Instead of providing models or instantiations of actual sensors 
and actuators, we provide a technique, utilising a pipeline of 
filters, for modelling the characteristics and properties of 
sensors and actuators which is presented in detail later. 
Furthermore, we provide a location-based layer model that 
underpins all of the simulated components.  Two variations 
within the layer model are provided. Representation layers are 
used to model aspects of the physical environment and other 
location-based phenomena, whereas reference layers are used 
for management of other simulated components such as 
hardware devices. 

We have successfully designed a proof-of-concept 
simulation of an intelligent transportation scenario. Separate 
layers are used to model mobile objects (vehicles), static 
objects (traffic lights), sensors (GPS) and the environment 
(road network). In particular, the vehicles and the GPS sensors 
are simulated and applications running on the traffic lights 
communicate using an emulated event-based middleware 

interface. 
The paper is organised as follows. In section 2, we present 

related work. Descriptions of the simulator design, the layer 
model and the architecture follow in sections 3, 4 and 5, 
respectively. We present the simulated traffic scenario in 
section 6 and, finally, our conclusions in section 7. 

II. RELATED WORK 
There are several simulators already in use in ubiquitous 

computing. Some have been designed specifically for this 
domain which we will classify as being native simulators, 
while others have been adapted from other simulation 
domains such as sensor network simulation. These are 
classified as being non-native. A synopsis of the state of the 
art of these two genres is now provided in which functional 
requirements such as flexibility, usability and scalability are 
evaluated. Further analysis of the simulators support for 
typical native ubiquitous computing components, such as 
sensors, actuators, and applications is also presented. 

A. Native ubiquitous computing simulators 
There are few native ubiquitous computing simulators 

available at present. Ubiwise [12] has been developed at 
Hewlett Packard by Barton et al. Recently, work at Lancaster 
[13] by Morla and Davies has led to the development of a 
hybrid test and simulation environment. Further research in 
this field has been done at Trinity College by O’Neill resulting 
in the Tatus [14] simulator. 

Ubiwise [12] is one of the few simulators being developed 
at the moment in the ubiquitous computing field. The 
simulator provides a "three-dimensional world, built on the 
Quake III Arena graphics engine, and serves to simulate a first 
person view of the physical environment of a user". The 
general theme underlying the aims of the simulator is the rapid 
and cheap deployment of ubiquitous devices and services, 
which would take too long to prototype in actual hardware. 

Native support for sensors and actuators is not explicitly 
mentioned. Ubiwise does however support the creation of 
hardware ‘devices’, which can interact with the environment 
by way of adding physical interaction code into a dynamic 
link library provided with Quake. Sensors and actuators could 
be modelled in this manner. Applications in Ubiwise are 
specified through an XML device description file and 
associated Java .class files. Applications can communicate 
with external services outside of the simulated domain. The 
environment can be modelled as simply or as complexly as 
required using the Quake 'map' format. Devices and users 
previously defined are then located within the world. 

Ubiwise provides modelling capabilities for all of the 
typical components identified. However although the authors 
claim to be interested in ubiquitous computing system design, 
the work is geared towards examining the user experience in a 
ubiquitous environment. Ubiwise has in fact been rebranded 
as a conceptualiser as opposed to a simulator.  

Furthermore, the human-in-the-loop model employed does 
not lend itself to evaluating scenarios or running experiments 
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multiple times. On the other hand, modelling of all the key 
components is flexible, if somewhat clumsy. Development of 
Ubiwise appears to have ceased for the moment. 

The Lancaster simulator [13] attempts to provide a “new 
environment for testing and evaluating system and network-
related issues in location-based applications”. Developed after 
Ubiwise, this work is more experimentally focussed. It 
supports actual application code, interfaces with a proven 
network simulator, ns and also enables live user interaction at 
run time.  By providing separate interfaces for network and 
location simulation, and a Web Services based API for 
applications being tested, some flexibility is achieved in their 
approach. 

Application emulation is also supported through the Web 
Services interface although this almost certainly introduces 
additional overhead. Their test environment does not focus on 
simulation of large scale systems, nor on the simulation of 
sensors and actuators which is essential for ubiquitous 
computing simulators 

Tatus [14] is another 3-d simulator built using a similar 
methodology to that of Ubiwise, except that it is built upon the 
Half-Life game engine. Compared with Ubiwise, Tatus is a 
more user-centric simulator and offers the user the opportunity 
to experience a ubiquitous environment. Ubiwise on the other 
hand offers a toolkit for simulating devices. Tatus offers users 
the opportunity to test software before deploying it through 
the use of a proxy, which interfaces with the simulator. 

This is comparable to emulation, but means that the 
software is running in a separate address space, perhaps even 
on a different machine.  

B. Non-native ubiquitous computing simulators 
SENS [15] is an application-oriented wireless sensor 

network simulator which models ad hoc static nodes. It 
provides models for a limited set of sensors, actuators, a 
model for the environment and a framework for testing of 
applications. Although not regarded as a ubiquitous 
computing simulator, SENS is included as it is very similar in 
methodology to what we are trying to achieve. SENS is 
designed for a signal based experimentation platform and as 
such a limited range of sensors and actuators are provided. No 
references are made as to how to add new models of sensors 
or actuators. SENS also tries to provide an environment 
modelling system for developing more realistic 'worlds'. This 
is however a wireless sensor network simulator so the world is 
constrained to being of type, ‘grass’, ‘concrete’ or ‘wall’. 
SENS provides a “compatibility layer to enable portability 
between simulated applications and real sensor nodes”, which 
is in effect providing an emulation environment. 

SENS aims for its components to be extensible and 
interchangeable and it is, in terms of the wireless sensor 
network domain. However, the nature of the environmental 
model does not suggest re-usability for anything other than 
sensors and actuators modelling wave phenomena, making it 
unsuitable for modelling arbitrary ubiquitous computing 
environments. 

C. Conclusion 
Ubiwise and Tatus offer a rich model of the environment 

but are not designed as simulation test beds. They are perhaps 
better described as device or scenario prototyping test beds 
instead. It is not possible to run a suite of experiments where 
you are varying the input parameters in a simulator that 
requires user input. There are many motivations for 
simulation. The most commonly quoted are cost, and quick 
prototyping. Another is time. The Lancaster work and SENS 
focus more on the set up of the simulator tools themselves and 
are results oriented. 

III. SIMULATOR DESIGN 
The first step in the design of a simulator suitable for 

modelling ubiquitous computing environments is to look at 
requirements and from these produce a set of goals. 

It has been noted that many of the typical scenarios deal 
with issues such as large numbers of devices, possibly 
physically distributed over a large geographical space, 
hardware problems involving many types of sensors and 
actuators and the many application frameworks that may use 
such devices and be running in the space. The simulator for 
ubiquitous computing must reflect these issues in its goals and 
design. In the simulator that we have designed, four key 
abstractions are addressed: modelling of sensors and actuators, 
enabling an application framework and modelling the 
environment.  

A. Simulator Goals 
Given the diversity of the aforementioned scenarios, any 

simulator that attempts to model the abstractions identified 
above must be flexible and sufficiently general yet extensible 
enough in its base model to support these. However, a tool 
that attempts to be too high-level risks being unusable and 
leads to ‘hacking’ of models. This happens all too frequently 
when simulators do not accurately meet the domain 
requirements and result in bad software engineering. Another 
goal critical to simulators is the provision of an accessible and 
usable environment which exposes a complete interface in an 
intuitive manner, therefore usability or ease of use is a second 
goal. Large scale is such an important aspect of many of the 
scenarios identified, and is such a non trivial problem that 
supporting scalability is a third and final goal of the simulator. 

Lack of flexibility is one of the common problems in many 
of the simulators in use at the moment. Ubiwise is clearly well 
suited to providing a rich model of a smart space environment 
but would not be suitable for running a series of experiments 
on a sensor network. Similarly SENS provides an accurate 
model of network behaviour in sensor networks, but users are 
forced to use a specific SENS API for any applications which 
run on top of these sensor networks. 

More flexible models are required if a simulator is to be 
used across the board. One of the successes of ns-2 is that any 
layer of the protocol stack can be simulated in the user’s 
desired manner, layers can be replaced and a default layer 
implementations is also provided. In this regard, we can say 
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that ns-2 is flexible. This type of flexibility is one of the key 
goals of the simulator. Furthermore, all types of sensors and 
actuators must be supported. Any environment, whether it is 
the smart space or an intelligent road network must be 
supported by an environmental model. In section 4, a layer 
model is introduced which addresses this goal. Flexibility in 
the modelling of each of the ‘typical’ ubiquitous computing 
components is detailed later in this section. 

When accounting for usability in simulation, there are 
several design factors that have to be made. The key factor is 
that it has to be easy for the user to get what they want. This is 
typically experimental results or verification. To enable this, 
the design of the simulator should be as ‘open’ as possible. By 
open, we mean that every component is accessible and 
replaceable to the user. And that in the case of the user not 
wishing to address some aspect of a simulation, a default 
implementation is always available. For example, one user 
may wish to use ns-2 for an accurate representation of the 
process by which messages are passed, but another user may 
not. This will allow users to get up and running quickly when 
designing their simulations. 

Another important aspect from the users’ perspective is the 
actual process by which the results are obtained. This is 
addressed in the system architecture, where a log manager is 
provided as an interface between users the simulated domain. 

There are two interpretations of scalability in terms of 
simulation of ubiquitous computing environment. The 
traditional and classical interpretation is that many ‘devices’ 
must be supported, for some interpretation of device whether 
that be a sensor mote or an mobile agent. The second 
interpretation is that there may be many different types of 
devices, different types of sensors, different types of 
applications running on different middleware with different 
requirements.  Supporting the two interpretations of scalability 
is a key goal of this simulator design. 

B. Simulated components 
Four common abstractions of ubiquitous computing 

scenarios were identified earlier: the environment, sensors and 
actuators and applications. The methods and design for 
modelling each of these components within the simulator is 
now presented.  

It has been noted that ubiquitous computing can 
conceivably take place within any type of environment or 
space, and as such the model of the environment provided 
must be sufficiently general that it can be adapted to the many 
scenarios required. The main property of all environments and 
objects within those environments is location. Using location 
as the inspiration,, a grid-based approach to modelling the 
environment is provided. This modelling of an environment is 
achieved using a combination of representation layers, the 
design of which are described in detail in the following 
section. Representation layers are used to model all 
phenomena that may be sensed as well as the purely physical 
aspects of the environment, i.e., reference layers refer not only 
to physical components such as the topology of the ground, or 

the presence of buildings or roads but also phenomena such as 
the light levels at a particular location, or the noise or the 
temperature at a particular location within the environment 

  

 
Fig. 3.  A single representation layer with a world size of 1km2 and a 
granularity of 100m. The layer models relative humidity in the environment. 

 
Sensors can have a wide range of characteristics and 

properties. The method provided for modelling sensors only 
addresses their most fundamental characteristics. These 
characteristics are  

• Whether the sensor is active or passive 
• Internal or external measurements 
• Periodic or sporadic occurrences 

Even sensors of the same type have unique properties and 
levels of accuracy and so forth. A flexible method for 
modelling these properties is to use a sensor pipeline, 
displayed in Fig 1, comprising of a combination of filters 
which may ‘modify’ or ‘block’ the measurements in some 
way.  The initial measurement or sensor reading is made when 
the sensor retrieves or ‘senses’ data from a reference layer 
modelling the sensed phenomenon using one of the 
retrieve() methods implemented by the layer. This initial 
value is then pushed onto the sensor pipeline where it passes 
through the filters. ‘Modifying’ filters may update the value in 
some way by adding some error based on a Gaussian 
distribution for example. A ‘blocking’ filter determines if it 
was possible that the reading actually was possible to make, 
and may take the location of the sensor and the distance to the 
sensed phenomenon into account for example. By combining 
many of these filters into a single conceptual pipeline, through 
which all sensor measurements must pass, it is possible to 
provide a very accurate model of a sensor. 

An active sensor in effect ‘queries’ or ‘pulls’ its 
measurements from the phenomena that it is sensing. A 
passive sensor is driven by changes in the phenomena that it is 
measuring and measurements are effectively ‘pushed’ onto the 
sensor device. Active sensors simply ‘query’ the phenomenon 
they are sensing. This reading is then passed into the pipeline. 
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Fig 1.  The process by which a reading passes through a pipeline formed of a 
combination of blocking and modifying filters 
 

Internal and external values or proprioceptive and 
exteroceptive sensors take readings from a co-located 
phenomenon or from an external source. Two examples would 
be a GPS sensor measuring its’ own location, or a thermistor 
measuring the ambient temperature in the room. 
Proprioceptive sensors are bound to the phenomenon that they 
are measuring using a unique identifier which is specified by 
the programmer at design time. Exteroceptive sensors are 
bound to a layer which models the phenomena and at run time 
a look up is performed into the layer to ‘sense’ the 
phenomenon. 

Actuators are modelled using a similar methodology to the 
sensors. They are characterised in the same way, they may be 
periodic or sporadic, act internally or externally and so forth. 
They are also modelled similarly within the simulator. A 
pipeline of filters again used, except that logically the process 
happens in the opposite direction. In the actuator pipeline, the 
actuator alters some phenomenon and this updates the state of 
some variable or state representing some other aspect of the 
simulated environment. We again use the pipeline and use the 
notion of blocking and modifying filters to increase the 
fidelity of the model. The ‘effect’ of the actuator passes 
through the pipeline before the actuation actually occurs and 
some state is updated. 

Both sensors and actuator events can occur in a periodic or 
sporadic fashion. These are handled differently in simulation 
framework. Periodic devices queue an event themselves in the 
event queue and at the appropriate time, an event is executed. 
At the time of execution, the next periodic event is scheduled. 
Sporadic events are driven by the execution of an alternative 
event and occur arbitrarily. Therefore sporadic events are 
never scheduled but are the result of the execution of another 
event.  

Application code is written by users that forms a part of the 
ubiquitous computing scenario. It is a common, but an 
unfortunately inefficient practice that this code is typically 
written once for the simulation of that environment and is then 
rewritten at the time of actual deployment. This occurs 
because most simulators do not provide an API for the 
application being developed. One of the goals of the simulator 
is to address this issue. By providing an emulation framework, 
it is intended that researchers only have to write code once for 
simulation and can then re-use the same code without 
modification at actual deployment. Since flexibility is a key 

goal of the simulator, this emulation framework must be 
replaceable. This simulator proposes using a Replaceable 
Code Emulation Unit as a methodology of supporting multiple 
application API’s. 

 

 
Fig. 2.  The split level API. The Replaceable Code emulation unit acts as a 
binding between the application API and simulators API and binds calls from 
the application to the appropriate function in the simulator 
 

This is achieved using a split level design illustrated in Fig. 
2. The simulator API exists at the base level which interacts 
with all the simulated components such as the sensors and 
actuators, and well as the rest of the simulator architecture. A 
mid-level API then sits above the base level and interacts 
between the application and the simulator. This mid-level 
component ‘binds’ calls from the application to the 
corresponding calls within the simulator. The libraries upon 
which the application is based have to be rewritten in order to 
do this. These rewritten libraries then sit at this mid-level. 
Using this methodology, the simulator is in fact transparent 
from the application. 

Although this approach requires an initial overhead in 
coding, it is envisaged that these ‘bindings’ will only have to 
be written once and that over time a library of common 
bindings can be produced, i.e., one binding for the STEAM 
middleware [16], one for TinyOS, and so on, all of which are 
shared and can be reused by researchers.  A default 
implementation of the mid-level API will also be provided 
which makes a direct mapping from the application to the 
simulator.  

IV. THE LAYER MODEL 
Modelling environments using an extensible, flexible, and 

scalable design is a non-trivial problem, particularly given the 
broad ranging scenarios involved in ubiquitous computing. 
The layer model utilises the common aspect of location as the 
key to providing a model suitable for capturing the 
environment. It is intended that as all scenarios have their own 
modelling requirements, individual layers can be designed as 
required, reused and shared using the layer API provided. 
Flexibility is achieved through the use of a layer stack 
whereby many layers representing individual aspects of the 
simulated domain are juxtaposed. Any interdependencies 
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between these layers are specified by simulator users. This 
collection of layers is the representation of the domain being 
modelled by the user. 

 
Conceptually, a layer is a two-dimensional grid of fixed 

size which maps onto the scenario being modelled. Two types 
of layers are provided in the simulator: representation and 
reference layers. At the time of creation, all layer types are 
parameterised to represent the scale of the environment 
desired, as well as the granularity of the grid within the layer. 

 

Fig. 4.  The Layer Stack comprising of two representation layers and a single 
reference layer. Note the fixed world size and the variable granularity.

 

A. Representation Layers 
Representation layers are used to model aspects of the 

physical environment. In a sensor networking scenario, a 
single layer might represent the type of ground across the 
simulated environment, such as whether it was concrete or 
grass and so forth. The granularity of this detail could 
typically be 10m. A second layer in this scenario might 
represent a model of the moisture levels in the air across the 
simulated environment. The granularity of this detail could be 
as large as 100m for example. 

Layer creators must implement a populate() method 
which instantiates the phenomena represented at each part of 
the layer and a transform() method which is called to 
update the state of the layer. 

 

B. Reference Layers 
Reference layers are used to support the management and 

storage of simulated components already created such as 
sensors and actuators. A dedicated layer is created for the 
management of each type of component created, and each 
component is stored within the layer at a particular location 
within the grid. The use of a location-based reference 
mechanism for management and storage of components 
ensures greater scalability. The simulator exploits the location 
information to bound the amount of interactions that can occur 
between devices. A similar method was introduced in [17] to 
achieve greater scalability in ns-2. 

The combination of simulated components, reference layers 
for management of those components, and representation 
layers for modelling the environment provides the basis for 
simulating most scenarios. As the user specialises the 
simulation to their own requirements, they may have to define 

their own domain specific component types and support for 
this is also provided in the reference layer model.  

It is envisaged that potentially interaction can occur 
between almost any of the layers and the components stored 
within the layers and therefore the interaction between layers 
is loosely coupled so as not to constrain any simulation.  

An implicit binding between simulated components and 
layers also exists which must be addressed. For example, a 
representation layer of thermistor sensors which take 
temperature measurements should be bound to a 
representation layer which models the temperature of the 
environment. The layer model supports a naming system to 
provide this binding transparently to users.  

An interesting interaction to note is between different 
environment layers. It has already been stated that 
dependencies may be built up between different representation 
layers. This should be quite common if users are hoping to 
model a complex environment, as conceptually so many layers 
are actually interdependent. Precipitation can lead to moisture 
which can lead to decreased wireless transmission ranges for 
example. This dependency is captured within the layer API. 
As a user implements the transform() method, he may 
query other layers using the current location as the key to 
determine the state of any other layers. Thus, a layer 
modelling the wireless transmission range of a wi-fi card, may 
query the layer representing the precipitation using the 
location of the wi-fi card to retrieve the correct precipitation 
level at its location. Theoretically, we hope that users would 
be able to model any level of detail or complexity required 
using this model. 

C. Data retrieval within layers 
There are two primary methods for retrieving data from 

within layers. As noted, location is a common property for 
many of the simulated components. More specifically, all 
components have either an explicit location, or they are 
associated with an component which has an explicit location, 
i.e. the two entities are co-located. Components with a relative 
location have two potential accessors.  A component may be 
physically collocated but may still interact with other 
components as if it had its own explicit location. An example 
of this would be a sensor attached to some mobile device (of 
which it has no control), and which is broadcasting its sensor 
events for anybody who is listening. 

The layer API should therefore support two access 
methods. The first uses location as the key. For example, a 
sensor queries an environmental layer for an attribute at a 
certain location, or the simulator obtains a list of potential 
recipients of a transmitted message based on the location of 
the sender. 

The second method uses the component as the key. For 
example, there are cases when location is not specific to the 
information being sensed or the actuator acting. Collocated 
sensors and actuators are a case in point. A proprioceptive 
sensor, for example, does not measure environmental 
properties, but measures a property of the object to which it is 
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attached, such as an accelerometer. In the layer model, the 
sensor and sensed entity are represented independently (in 
separate layers), so if the sensor was to query a representation 
layer, it would have to use the represented object itself as the 
key, and would then have to query the sensed property of the 
returned object. From these observations, we have defined a 
layer API with the following accessors. 
 
class Layer{ 
  someType retrieve(Location); 
  someType retrieve(entityID, property); 
} 
 Fortunately this data retrieval can be abstracted away from 

users by using the naming and binding service mentioned 
earlier. This is performed by the layer manager which is 
described in Section 5. 

V. SIMULATOR ARCHITECTURE 
Several components are required to support the simulator as 

it has been described so far. These components are a layer 
manager, Replaceable Code Emulation Unit, network 
manager, location manager, log manager, event queue and 
global clock. The role that these components play is described 
now in detail. 

 

 
Fig 5.  The simulator architecture showing the key components 
 

The layer manager has several responsibilities. As well as 
being a registration point for all layers created, it also manages 
the interactions between layers which have interdependencies. 
As changes occur in a layer, dependant layers are scheduled to 
update their state if required. The layer manager is also 
responsible for scheduling periodic updates to layers in the 
event queue. When an update is due, the appropriate 
transform() method for the layer is called by the layer 
manager. The layer manager provides a naming service as it 
also maintains any bindings that are required between sensors 
and layers representing sensed phenomena, and actuators and 
modifiable phenomenon. Furthermore, the layer manager 
monitors the modelled environment for changes which a 

passive sensor may then sense.  
The functionality of the Replaceable Code Emulation Unit 

(RCEU) is described in detail in Section 3. Although 
applications sit above the RCEU in the architecture, they may 
also maintain a logical location within a representation layer. 
This is common enough as many ubiquitous computing 
applications are location based. Any actual physical hardware 
associations between applications, sensors and actuators is 
maintained in the layer manager using the naming and binding 
service. 

Network simulation can be a key component of accurately 
simulating ubiquitous computing environments. We provide a 
network manager to interface between our simulator and a 
network simulator. Within the RCEU, any calls that are made 
to the network are intercepted and redirected through the 
network simulator, whereby the communication mechanism is 
simulated and the message is delivered to its final recipients. 
This network manager will interface with the subset of layers 
that represent communicable devices. Within the network 
manager, the network simulator may also interface with the 
location manager component to provide locations of 
networked nodes thus providing optimised simulation of 
communication. 

The location manager interfaces with the layer manager to 
track mobile components and inform the layer manager of 
important changes. For example, when a device moves from 
one grid to another within a layer. Doing this in a just in time 
or a proactive manner remains an evaluation criteria. Effective 
location management of components is expected to play a 
large role in simulation efficiency and in enabling scalability 
[17] 

Achieving the desired simulation output in an easy and 
efficient manner is another important requirement for an 
effective simulator. A log manager is provided, in which users 
can register their interest in state that they wish to have 
monitored. This log manager interfaces with the layer 
manager to monitor this state and can output logged results 
when required.  

A standard event queue and global clock within the DEVS 
[18] simulation formalism is provided to run the simulator. 
Events are scheduled to occur in the event queue and as the 
simulation clock iterates, events are taken from the queue and 
processed. 

The architectural components listed above are designed to 
meet with the simulators goals, of flexibility, usability and 
scalability. Flexibility is achieved through the dual use of 
layer manager, and the underlying layered model which it 
supports and the Replaceable Code Emulation Unit. The 
RCEU provides a useable and replaceable model for 
emulating existing application frameworks. The log manager 
also supports usability by providing a straightforward method 
of accessing variables of interest whilst maintaining a 
separation between the models and the logging interface. 
Scalability is enabled through the use of location managers to 
bound interaction between devices, whether communication is 
based on the network simulation, or physically through sensor 
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and actuator interaction. 

VI. RESULTS 
We have successfully designed a proof-of-concept 

simulation of an Intelligent Transportation Systems (ITS) 
scenario. The ITS scenario is a typical ubiquitous computing 
scenario if on a scale larger than is normally envisaged. In this 
simulation, smart traffic lights attempt to increase the vehicle 
throughput at a junction by using a collaborative 
reinforcement learning technique. The traffic lights 
communicate to share state information and attempt to find 
global optimisation through making localised changes. The 
localised change that occurs is that a particular traffic light 
alters its light sequence to prioritise one flow of traffic over 
another.  

The ITS scenario was chosen as the proof of concept 
prototype because it addressed many of the characteristics of 
ubiquitous computing scenarios. All of the common 
abstractions that we identified are present: sensors (GPS), 
actuators (traffic lights), applications controlling both the 
traffic lights and the sensors and a rich, complex and accurate 
physical road environment as well. Finally, the ITS scenario 
presents the problem of scale.  

The area of Dublin being simulated is approximately 80sq 
km and the number of vehicles being simulated is in the order 
of 10s of thousands. Simulated vehicles are equipped with a 
GPS sensor and periodically broadcast this information using 
an emulated event based middleware framework. Traffic 
lights within a designated transmission range (250m) receive 
these events, update their internal representation of the 
congestion load in the road network and then alter their light 
timing sequence to optimise the flow of traffic. Using the 
same emulated event based middleware, the traffic lights then 
communicate with their neighbouring traffic lights to share 
their congestion information and any other state shared in the 
collaborative reinforcement learning protocol. 

Several of the typical components identified in ubiquitous 
computing scenarios are used in the ITS scenario. 
Representation layers are used to maintain simulated vehicles, 
which are mobile objects running applications, the location of 
the GPS sensors and the location of the traffic lights, which 
are static objects running applications. A reference layer is 
used to maintain a model of the road network which is the 
simulated environment in this case. A wide-scale picture of 
the layer is provided in fig 6. Although no network simulator 
was incorporated into this proof-of-concept, a location 
manager was implemented which, using the grid based 
location of vehicles and traffic lights, was able to reduce the 
number of messages that were passed when simulated 
communication took place. 

 

 
Figure 6.  A section of the Dublin area road network. This is about 3000 links 
and 600 traffic lights 
 

Only a single reference layer was used in this simulation. A 
user could extend this model very simply to generate a far 
more complex model. Using the single reference layer (road 
network model) and the vehicle location representation layer 
as sources, it would be very easy to create a dependant 
reference layer that simply tracked the number of vehicles in a 
grid of 500 m2 block. This layer could be used as a source of 
traffic congestion for one simulation. In an alternative 
simulation though, that new congestion layer could be the 
basis for a representation layer modelling the amounts of 
pollution over various parts of the city, which is the input for a 
carbon monoxide sensor. 

 

 
Fig 7.  A detail from the simulation showing vehicles queuing at a junction 
displaying a red traffic light. 

 
By simply adding more layers, and programming simple 

dependencies between them it is quite easy to build up 
complex models using the layer model and the layer stack. 

The simulated ITS scenario was designed and modelled as 
an independent experimental platform, i.e. only at a later stage 
was the simulator tailored for a collaborative reinforcement 
learning technique experiment. The separation of the layers 
representing the different phenomenon allowed the simulator 
to be easily specialised to this domain, although we do not 
have any quantifiable user metric of much easier this was than 
if a normal simulator framework was used. The simulator is 
also being used as a data source by some M.Sc students in 
Trinity College Dublin who are designing software providing 
congestion data to users. The use of this proof-of-concept 
simulation in two different software engineering domains 
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suggests that the simulator has achieved its goals of flexibility 
and usability.  

VII. CONCLUSIONS 
We have provided a simulator for modelling a wide range 

of ubiquitous computing scenarios. Through a flexible model 
reflected in the layered architecture, this simulator can be used 
to simulate many scenarios in a more complete manner than 
has been possible before. The sensor pipeline and actuator 
pipeline model, as well as layer stack enable greater flexibility 
in modelling components and does not constrain users in any 
way. 

Similarly, the novel use of a split level API to enable 
emulation of multiple application frameworks is a significant 
contribution to the ubiquitous computing simulation 
community. We believe our goals of flexibility, usability and 
scalability are reflected in the architecture and the methods 
provided. The proof-of-concept traffic simulation provided 
demonstrates the achievement of some of these goals. 

We have yet to evaluate our approach experimentally to 
verify our methods. We hope to evaluate questions such as the 
overhead in using the layer model vs increases in simulator 
performance. Usability is a key goal of this work, so we are 
also interested in evaluating to what degree the models 
provided assist users developing simulations. These 
experimentations and further development of the simulator 
will form the basis of work on the simulator in the foreseeable 
future. Experimental evaluation of the traffic simulation is 
being carried out at the moment. 

Simulation of ubiquitous computing scenarios is still in its 
infancy and many simulators including this one require more 
research and development. By starting at the bottom however 
and attempting to model fundamental components and 
working our way up, we hope that this simulator will enjoy 
some success as development increases.  
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