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ABSTRACTGroup 
ommuni
ation will undoubtedly be a useful paradigmfor many appli
ations of wireless networking in whi
h relia-bility and timeliness are requirements. Moreover, lo
ation-awareness is 
learly 
entral to mobile appli
ations su
h astraÆ
 management and smart spa
es. In this paper, we in-trodu
e our de�nition of proximity groups in whi
h groupmembership depends on lo
ation and then dis
uss some re-quirements for a group membership management servi
esuitable for proximity groups. We des
ribe a novel approa
hto eÆ
ient 
overage estimation, giving appli
ations feedba
kon the proportion of the area of interest 
overed by a prox-imity group, and also dis
uss our approa
h to partition an-ti
ipation.
Keywordsgroup 
ommuni
ation, lo
ation awareness, proximity, ad-ho
 networks
1. INTRODUCTIONThe widespread deployment and use of wireless data 
om-muni
ations is generally re
ognised as being the next majoradvan
e in the information te
hnology industry. In the longterm, wireless data networks will represent a key enablingte
hnology underlying the vision of ubiquitous 
omputing [1℄.In this vision, inter
onne
ted 
omputers will be embeddedin a wide range of applian
es ranging in size from door lo
ksto vehi
le 
ontrollers, and will 
o-operate to perform taskson behalf of their human users ranging from automati
allyopening doors to routing vehi
les to their intended destina-
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tions in 
o-operation with other vehi
les' 
ontrollers. Mobil-ity, and hen
e wireless networking, is 
learly 
entral to thisvision. We believe that, as is the 
ase for �xed networks,group 
ommuni
ation [2℄, [3℄ will be a useful paradigm formany su
h appli
ations of wireless networking in whi
h reli-ability and timeliness are important requirements. A majorfeature of wireless 
ommuni
ations is the fa
t that parti
i-pants 
an be mobile and hen
e that their lo
ation 
an havean impa
t on the information in whi
h they are interestedor that they 
an provide. Hen
e, we believe that any wire-less group 
ommuni
ation system should support lo
ationawareness. Moreover, knowledge of the lo
ation of parti
i-pants 
an be exploited in the implementation of the group
ommuni
ation system itself.In this paper, we 
onsider the problem of group 
ommuni-
ation in a wireless network. Mu
h of the previous work inthis area deals with routing proto
ols for group 
ommuni
a-tion based on multi
ast or geo
ast [4℄, [5℄. In this paper, we
on
entrate on the de�nition and semanti
s of group mem-bership for lo
ation-aware mobile parti
ipants. While someresear
h has already been done on groups in whi
h member-ship is based on lo
ation information [6℄, [7℄, our de�nition ofproximity groups takes into a

ount both lo
ation and fun
-tional aspe
ts. When group membership depends on lo
a-tion, it be
omes important to understand what proportionof the area of interest is within wireless network 
overage.For this purpose we des
ribe a novel approa
h to 
overageestimation. Another important aspe
t of mobile 
omputingis that partitions are very likely to o

ur. For this reason ourmembership layer also in
ludes a new failure and partitionanti
ipation s
heme that 
an take into a

ount movement ofnodes, battery life, et
. This algorithm 
an be set up to beeither optimisti
 or pessimisti
 and tries to anti
ipate par-titions/failures in order to maintain 
onsistent group views.In se
tion 2, we summarize di�erent approa
hes to tra-ditional group 
ommuni
ation. In se
tion 3, we outline ourapproa
h to group 
ommuni
ation with mobile parti
ipants.We introdu
e the notion of proximity group taking into a
-
ount aspe
ts su
h as absolute or relative lo
ation and thefun
tion of the group. We then address some of the re-quirements of group membership management for proxim-



ity groups, in
luding lo
ation awareness, estimation of the
overage of the area 
overed by the group, and partition an-ti
ipation. In se
tion 4, we 
ompare our model to relatedwork and, �nally, se
tion 5 provides a summary and some
on
lusions as well as pointers to future work.
2. GROUP COMMUNICATION OVERVIEWToolkits for group 
ommuni
ation typi
ally provide groupmembership management servi
es as well as multi
ast pro-to
ols for reliable, ordered, and/or timely delivery of mes-sages to the members of a group. Group membership man-agement is primarily 
on
erned with a
hieving 
onsensus onthe membership of a group. In the following se
tions wegive a brief overview of the most important approa
hes togroup membership management and group 
ommuni
ationthat are relevant to the remainder of the paper.
2.1 Group membership managementGroup membershipmanagement in traditional group 
om-muni
ation systems follows one of two distin
t approa
hes.The �rst and most widely used approa
h is to assume thata group 
onsists of a dynami
ally varying subset of a �xednumber of group members. In this stati
 approa
h, the max-imum number of group members is �xed. In the se
ondapproa
h, there is no restri
tion on the maximum numberof group members. Membership is dynami
 with pro
essesbeing 
reated, 
arrying out some 
omputation and/or 
om-muni
ation, and then terminating. A well-known exampleof the use of stati
 group membership management is inthe CASD proto
ol suite [8℄. Some systems that use thedynami
 group membership management approa
h in
ludeISIS [2℄, Horus [2℄, and Transis [9℄.
2.2 Diffusion based group communicationIn di�usion based group 
ommuni
ation, messages to thegroup are probabilisti
ally 
ooded to other members of thegroup. On re
eiving a message, a group member forwardsthe message in a similar manner. If a group member re
eivesa previously seen message, it is dis
arded.The CASD syn
hronous atomi
 broad
ast proto
ol pro-vides an example of di�usion based group 
ommuni
ation.In this proto
ol, the maximum number of hops that a mes-sage may travel to rea
h any member of the group is bounded.However, the proto
ol assumes that the network will notpartition due to failure and that the number of messagesthat 
an be lost during a single run of the proto
ol is alsobounded.The proto
ol works by a group member 
ooding ea
h ofits messages with 
ertainty (probability = 1) to all othergroup members. Ea
h message is time stamped before be-ing transmitted and every member of the group delivers themessage at a time given by the timestamp plus a 
onstant�. Two or more messages with the same timestamp aredelivered in order of their senders' identi�ers. � dependson the network diameter and the laten
y in pro
essing andtransmitting a message.

The CASD proto
ol is a rather restri
ted example of aprobabilisti
 proto
ol. Less restri
tive proto
ols would re-du
e the probability from 1. These proto
ols are proba-bilisti
ally reliable with the probability of a failed run ofthe proto
ol approa
hing zero as the number of parti
ipantsin
reases.
2.3 Group communication based on message

exchangeAn alternative approa
h to group 
ommuni
ation relieson the ex
hange of messages between the members of thegroup. One example of this approa
h is the 2 phase 
ommitproto
ol. In this proto
ol, a 
oordinator initiates an initialround of messages to the parti
ipants. Ea
h parti
ipant thende
ides whi
h way to vote (
ommit or abort). A se
ondround of messages o

urs when the parti
ipants return theirvotes to the 
oordinator. Finally, the 
oordinator sends outa 
ommit or abort message to the parti
ipants based on the
olle
ted votes.Another proto
ol that uses message ex
hange to rea
hagreement on message ordering is the total ordering pro-to
ol developed during the 
ourse of the ISIS proje
t, whi
his similar to 2 phase 
ommit with the ex
eption that it onlyrequires a majority of group members to re
eive the messagebefore it 
an be delivered.
3. LOCATION-AWARE GROUP COMMU-

NICATION FOR MOBILE PARTICIPANTSOur goal is to provide mobile hosts in a wireless networkwith a suite of proto
ols for group 
ommuni
ation. Thewireless network 
an be either an infrastru
ture or ad-ho
network or even a hybrid of the two. As 
an be seen inthe literature, traditional 
ommuni
ation proto
ols su
h asmedium a

ess 
ontrol, routing, et
. are inadequate in this
ontext for various reasons [10℄, [11℄. Lo
ation awareness
an be used to over
ome some of the problems raised by thiskind of network. For example, several lo
ation-aware rout-ing proto
ols [12℄ [13℄ have been designed that illustrate theadvantages of making use of lo
ation information. Further-more, lo
ation-awareness is, in our opinion, 
entral to mo-bile appli
ations su
h as traÆ
 management or smart spa
es.Therefore, we propose to make lo
ation awareness the basisfor the de�nition of a new model of group 
ommuni
ationfor mobile parti
ipants. In this se
tion, we �rstly de�ne thismodel and then we address some of the requirements for thedesign of a framework implementing the model.
3.1 Definition of proximity groupsAt the heart of our approa
h to group membership man-agement is the use of lo
ation for both fun
tional and non-fun
tional reasons.� Firstly, in fun
tional terms, it often makes sense tode�ne a group in a mobile appli
ation in terms of ageographi
al area. We 
an easily imagine many 
aseswhere this would be interesting: in traÆ
 manage-ment, for example, the area around a traÆ
-light 
ouldbe used to de�ne a group with 
ars in that vi
inity be-
oming members of the group to re
eive noti�
ations



of 
hanges to the state of the lights; in a similar way,we might want to de�ne a group 
orresponding to thearea around an ambulan
e in order to inform nearby
ars to yield the right of way.� Se
ondly, from the non-fun
tional point of view, we
an use lo
ation information to, for example, anti
i-pate partitions and hen
e take preventative measuresto ensure 
onsistent group views when these partitionshappen.In 
lassi
al group 
ommuni
ations, a group is de�ned byits fun
tional aspe
t, e.g. its name. Our notion of prox-imity group involves both lo
ation and fun
tional aspe
ts,i.e., to be able to apply for group membership, a node must�rstly be lo
ated in the geographi
al area 
orresponding tothe group and se
ondly be interested in the group. In thefollowing paragraphs we dis
uss the various possibilities re-lated to the lo
ation aspe
t of group membership.To de�ne a proximity group, we �rstly have to de�ne thearea that it 
overs as a geometri
 shape with asso
iated
oordinates. Any kind of shape 
an be used, i.e., it neednot ne
essarily be a 
ir
le or a square but 
an be arbitrarily
omplex. We 
an obviously imagine using 2 or 3 dimensions,but it is also possible to in
lude time in the de�nition of thearea, e.g., \the area around the position at whi
h the am-bulan
e was lo
ated at 2.00pm". To de�ne the 
oordinatesof the area, we asso
iate a referen
e point with the shape.We distinguish two 
ases: either the group is absolute, i.e.geographi
ally �xed, or it is relative to a moving point, itsso-
alled navel. In the absolute 
ase, the referen
e point isatta
hed to a �xed point in spa
e. In the relative 
ase, it isatta
hed to the navel, i.e. an identi�ed node.Figure 1 illustrates this notion of an area. The �rst shapeS on the left is asso
iated with a referen
e point R. Thisreferen
e point is relative to the shape. The de�nition of thearea is not 
omplete sin
e R has not been atta
hed to a point(possibly moving) in spa
e. For the se
ond shape, R hasbeen atta
hed to the point (0,0), making the area absolute.The referen
e point of the third shape has been atta
hed to anode M that represents the navel of this relative proximitygroup. Table 1 gives some example group areas for twodi�erent appli
ation domains.
Figure 1: Area de�nitionIn typi
al group 
ommuni
ation, a group is roughly de-�ned by a topi
 (or a name) and nodes 
an join this group ifthey are interested in its topi
. We believe that this is alsone
essary for proximity groups be
ause a node in the areaof the group may or may not be interested in joining thegroup. We then add the fun
tional aspe
t to the previous

Group MembershipPartition/Failure Anti
ipationCoverage Awareness Routing/Geo
astingConne
tivity AwarenessLo
ation AwarenessTable 2: Summary of Requirementsde�nition of a proximity group by asso
iating a name withea
h group:De�nition 1. A Proximity group G is 
ompletely de�nedby the shape, the referen
e point, the navel and the name:G = fShape;Referen
ePoint;Navel;Nameg
3.2 Membership management for proximity

groupsOur goal is to de�ne a group membership managementlayer suitable for proximity groups. Sin
e in this model, lo-
ation is intrinsi
 to group membership, it is important to beable to provide appli
ations with at least an estimate of theprobability of there being one or more nodes, whi
h while
urrently in the area of interest, are dis
onne
ted from thegroup, typi
ally be
ause of la
k of network 
overage. To ad-dress this issue we provide a 
overage estimation tool basedon a novel algorithm des
ribed in se
tion 3.2.2. below thatuses knowledge of the 
onne
tivity graph of the network. Aswe des
ribe later, 
overage estimation 
an also be used to se-le
t the appropriate approa
h to our group 
ommuni
ation.Our membership management proto
ols should also be fail-ure aware and anti
ipate partitions, whi
h are very likelyto o

ur in the kind of networks that we are 
onsidering.This has lead us to the de�nition of a partition anti
ipationtool. Given these tools we would be in a position to de�neappropriate routing and geo
asting proto
ols to be used bythe group membership management layer. Table 2 summa-rizes the resulting ar
hite
ture. We elaborate on the mostimportant 
omponents below.
3.2.1 Location information distribution protocolIn our model, the group membership management layermust be able to determine how well the group members 
ol-le
tively 
over the area of interest. This is a very importantquestion sin
e we are dealing with mobile parti
ipants: if asub-part of the area is not 
overed, potential group mem-bers lo
ated in this sub-area may be unknown to other groupmembers. Knowledge about the 
overage of the area by thenetwork parti
ipants is distributed: to evaluate the 
overageof the area, one would need to know ea
h node's lo
ation andat least an estimate of its own 
overage. We propose an al-gorithm to share the 
onne
tivity information and anotheralgorithm to evaluate the 
overage of the area using thisinformation; the pre
ision of this latter algorithm is thendis
ussed.Wireless MAC proto
ols like the point 
oordination fun
-tion of IEEE 802.11 [14℄ and routing proto
ols like AODV[15℄, often require nodes to periodi
ally send bea
on mes-



Domain Absolute Proximity Relative ProximityTraÆ
 Management TraÆ
 light : a traÆ
 light informs nearby 
arsof its status. The shape is a 
ir
le; the refer-en
e point is the 
entre of the 
ir
le and is at-ta
hed to the geographi
al 
oordinates of thetraÆ
 light. Ambulan
e: an ambulan
e on 
all informsnearby 
ars to yield the right of way. Theshape is a square, the referen
e point its 
entreand the navel is the ambulan
e itself.Smart Spa
es Resour
e a

ess: to use a printer, nearby peo-ple must reserve it using the printer proximitygroup. The system administrator de�nes theshape a

ording to the available printers andoÆ
es; the referen
e point is at the printer andatta
hed to the printer's 
oordinates. Centralised tour guide: in a museum a groupof tourists wear headsets and are remotelyguided by an automati
 guide. The area sur-rounds the group of tourists, while the navelis atta
hed to one of them.Table 1: Examples of group areassages in order to make their neighbours aware of their pres-en
e. In a similar way, we use lo
ation-stamped bea
ons.Ea
h node keeps a map of its knowledge of the lo
ationand 
onne
tivity of other nodes, whi
h is represented as agraph as shown in �gure 2. This graph is regularly updatedwhen the node re
eives a bea
on and is also regularly sent tothe node's neighbours in its bea
ons. In this way, a node'sknowledge in
reases over time:� �rstly, the node knows its own lo
ation (level 0),� se
ondly, when the node re
eives its neighbours' bea-
ons, in
luding their lo
ations, it knows about its onehop 
onne
tivity (level 1),� then, the node re
eives bea
ons in
luding its neigh-bours knowledge (level L-1) and updates its own graphwith this information (level L).If bea
ons are sent ea
h � time units, level L informationis (L * �) old. Be
ause high-level knowledge is older andbe
ause it is not desirable to have the knowledge of the wholenetwork, the maximum level of knowledge is bounded. Thisbound, Lmax, is determined dynami
ally a

ording to thesize of the group area and the density of the network.
Figure 2: Lo
ation knowledge levelsThis algorithm is pro-a
tive and enables a node to knowthe other nodes physi
ally present within the area if Lmaxis suÆ
iently large. When Lmax is not large enough, orthe 
overage obtained is not suÆ
ient, a rea
tive proto
olis used to 
olle
t lo
ation information further than Lmaxhops.

In addition to the lo
ation of the node, the bea
on mayalso in
lude other useful information about the sending node'sradio 
overage, its battery life, et
. At any time after (Lmax:�)time units, a node knows the lo
ation and 
overage of itsLmax hops neighbours and is then able to estimate the 
ov-erage of the area by this set of nodes (see 3.2.2below). Itshould however be noted that at time t, every node in thenetwork has a di�erent view of the 
onne
tivity sin
e itslevel 1 information is � time units old, its level n is (n:�)time units old, et
. If this 
onne
tivity information is tobe used for some proto
ol where 
onsensus is ne
essary, onewould 
onsider that at time t ea
h node knows the exa
t
onne
tivity graph that we had at time t� (Lmax:�) 1.
3.2.2 Evaluation of the coverage of an areaEvaluating the per
entage of the area that is 
overed bya set of nodes 
an be a very 
omplex 
al
ulation. A
tually,the 
omplexity depends on the shape of the area de�ningthe group and on the number and shapes of the 
overage ar-eas. For instan
e, 
al
ulating the area 
overed by two over-lapping 
ir
les, representing the transmission ranges of twonearby nodes, ne
essitates an integral [16℄ and the 
omplex-ity in
reases with the number of 
ir
les. To 
ir
umvent thisproblem we propose to estimate 
overage using a number ofsample points, randomly generated, and to 
he
k whether ornot these points are in an area that is 
overed by any of thenodes. Table 3 presents this algorithm for 
ir
ular shapesbut it 
an be implemented for any kind of shape providedthat one 
an give the spe
i�
 fun
tion inside() that deter-mines if a point is inside or outside the area 
overed by theparti
ular shape.
3.2.3 Precision of the coverage estimationThe pre
ision of this evaluation algorithm 
an be 
on-sidered as a dire
t result of the Weak Law of Large Num-bers, whi
h states that the sample mean of a suÆ
ientlylarge number of independently identi
ally distributed ran-dom variables 
an be made arbitrarily 
lose to the true meanwith high probability [17℄.1This is a
tually true if no message is lost during the lo
ationinformation distribution proto
ol. A stronger 
onsensus forthe 
overage estimate 
ould be a
hieved in 
onjun
tion withthe group membership management. This estimate 
an thenbe seen as part of the group view.



float 
overage(Area A,int N, ListOfCir
les Clist) ffor (int I=1 to N) fpoint p = new random point in Area A;boolean found = false;
ir
le C ;while (not found and C=Clist.next()!=null) ffound=inside(C,p);gif (found) nb points found++;greturn (nb points found/N);gbool inside(
ir
le C, point p) freturn (sqrt(pow(C.x-p.x,2)+pow(C.y-p.y,2))< C.radius);g Table 3: Coverage estimation algorithmIn the 
ontext of the estimation algorithm, we 
onsider the
overage fun
tion as generating a sequen
e of N independentand identi
ally distributed Bernoulli trials, Xi with the in-side fun
tion returning 1 if the generated point is within thelist of 
ir
les and 0 otherwise.Let p be the probability of a point being within at leastone 
ir
le. We de�ne the sample mean SN to be:SN = X1 +X2 + : : :+XNNThen E[SN ℄ = p; V ar[SN ℄ = p(1� p)By the Weak Law of Large Numbers, for any " > 0,P (jSN � pj) > ") < p:(1� p)N:"2For example, if " = 110 and n = 1000, we obtainP (jS1000 � pj) > 110) < 141000 � 110 2 = 0:025Sin
e the value of p(1� p) � 14In words, by 
hoosing 1000 random points, the probabilitythat our estimate of the 
overage area is wrong by more than10% is no larger than 0.025. Table 4 illustrates some valuesfor the a

ura
y of the 
overage area estimate and someprobabilities whi
h give 
orresponding values for N.The �nal value in the table states that if we want ourestimate of the 
overage area to be 
orre
t to within 1% ofthe a
tual area with a probability of 0.9999 then we must
hoose 25 million sample points. This last value seems verylarge, fortunately it 
an be redu
ed due to the Central LimitTheorem. By the 
entral limit theorem, if N is large then

a

ura
y/probability 0.95 0.99 0.999910% 500 2,500 250,0005% 2,000 10,000 1,000,0001% 50,000 250,000 25,000,000Table 4: Sample values of NSN 
an be treated as if it follows a normal distribution. Bythe symmetry of the normal distribution, we haveP (jSN � pj > ") � 2 � P (SN � p > ")Again by taking the largest possible varian
e of SN { p tobe 14 :N , we use the normal approximationP (SN � p > ") � 1� �(z)where �(z) = 2:":pNand �(z) is the normal distribution fun
tion.Now 
onsider the problem of 
hoosing N given the a

u-ra
y of our estimate of the 
overage area to be within 1%of the a
tual 
overage area with probability at least 0.9999.Then P (jSN � pj > ") � 2� 2�(2: 1100 :pN)And 2� 2�(2: 1100 :pN) � 110000Rearranging this inequality we get,�(2: 1100 :pN) � 0:99995From the normal distribution tables, we see that�(3:8906) = 0:99995Then 2: 1100 :pN � 3:8906and N � 37; 842Thus, if we require our estimate of the 
overage area of aset of nodes to be within 1% of the a
tual 
overage area withprobability 0.9999 then we require at least 37,842 samplepoints to be 
hosen. Table 5 illustrates a table 
orrespondingto Table 4 using this revised 
al
ulation for N.a

ura
y/probability 0.95 0.99 0.999910% 96 166 3785% 384 663 1,5141% 9,604 16,587 37,842Table 5: Improved values of N



3.2.4 Performance evaluation of the coverage estima-
tion algorithmThe time it takes to 
arry out the 
overage estimationdepends on a number of parameters:� the probability/a

ura
y pair desired, i.e. the numberof samples to be genrated and tested, and� the number of shapes to be tested, i.e. the number ofnodes 
overing the area,� the algorithm used for the random number genera-tion2.� the 
omplexity of the inside() fun
tion3,We now analyse the e�e
ts of the three �rst parameters.We use a simple 
ir
le for the 
overage area of ea
h node,and then the inside() fun
tion is as given in Table 3. Themost important parameter is obviously the desired a

ura
yof the 
overage estimation, it greatly in
uen
es the 
ost ofthe algorithm sin
e it determines the number of samples tobe used in the 
omputation. We saw for instan
e that fora probability of 99.99% and an a

ura
y of 1%, the totalnumber of samples must be 37,842. Figure 3 shows the timespent by the algorithm for estimating the 
overage of 1000nodes (the range of a node being 50 meters) over a 
ir
ulararea of radius 1000 meters 4. From this experiment, we
an see that the time spent to estimate the 
overage of thearea is dire
tly proportionnal to the number of samples anda rough estimate of the 
ost of generating and 
omputingea
h sample is 76 mi
rose
onds.

Figure 3: Time of 
overage estimation for 1000nodes2The random number generator used in
uen
es both theperforman
e and the a

ura
y of the algorithm. Good ran-dom generators are expensive to run but provide better re-sults.3This parameter depends on the pre
ision of the information
on
erning the 
overage of a node. In pra
ti
e the shapeused will often be a 
ir
le and then, the inside() fun
tion berather simple (
.f. Table 3).4This experiment has been 
arried out on a Pentium II 650Mhz running RedHat Linux 7.1.

The se
ond most important parameter is the number ofnodes 
overing the area. This parameter is in
uen
ed byboth the size of the area and the density of the network inthat area. Figure 4 shows the time spent by the algorithmusing 37,842 samples for a total number of nodes varyingfrom 1 to 1000. This simulation shows that the 
omputa-tional overhead is quite reasonable. It may seem propor-tional to the number of nodes but as shown on Figure 5,the time of the 
overage estimation divided by the numberof nodes de
reases with the number of nodes. This is dueto the fa
t that a sample that has been found in a 
ir
ledoesn't need to be 
he
ked against other 
ir
les.

Figure 4: Time of 
overage estimation for 37,842samples

Figure 5: Time of 
overage estimation divided bythe number of nodes for 37,842 samplesFinally, parti
ular attention must be given to the algo-rithm used for the random number generation. The qualityof the generator greatly in
uen
es the validity of the al-gorithm; the proof we gave above is based on 
ompletelyindependent samples. A lot of pseudo-random number gen-erators exist, for instan
e we used both the system providednumber generator and a \minimal" generator of Park andMiller with Bays-Durham shu�es [20℄.



3.2.5 Partition anticipationIn our model, partitions 
an be due to the failure of eithera node or the failure of a link between two nodes. Variousreasons 
an 
ause a node to fail su
h as an operating sys-tem or hardware 
rash, or simply a drained battery. A link
an fail be
ause of the movement of the nodes or be
auseof other environmental 
onditions su
h as obsta
les or inter-feren
e. We aim at anti
ipating partitions in order to keep
onsistent views of the group membership. As we use a prob-abilisti
 approa
h, we distinguish two di�erent 
ases: eitherthe probability of a partition is beyond a given thresholdT and then we use an optimisti
 algorithm or it is below Tand thus we run in a pessimisti
 mode. Handling a partitionis obviously easier when it was anti
ipated (when we werein the pessimisti
 mode), but we also provide some kind ofre
overy pro
edure when it was not anti
ipated (optimisti
mode).The probability of a partition o

urring is given by parti-tion anti
ipators that are a 
ombination of failure anti
ipa-tors, movement planners and environment evaluators.Failure anti
ipators are responsible for suspe
ting nodes of
rashing, having a low battery level, entering a power savingmode, et
. In our model, nodes are fail-silent, fail-still and
an re
over. The metri
 used to evaluate the probability ofa node failing involves both lo
al information (battery life)and distributed information (
rash, suspi
ious neighbours).Ea
h node has a failure anti
ipator that evaluates a list ofother nodes su
h as its neighbours and eventually its mosta

essed partners. Some of the information ne
essary forfailure anti
ipation is provided in the bea
ons used by thelo
ation servi
e des
ribed above, e.g., the battery level.Movement planners are based on [7℄, they use the notionof \safe distan
e" to determine the probability of a nodefailing be
ause of movement. Roughly, if two nodes are notwithin a safe distan
e, the link between them is 
onsideredto have failed and, if this link represents the only 
onne
-tion between two sets of nodes, a partition 
an o

ur. Move-ment planners obviously rely on the 
onne
tivity graph builtby the lo
ation servi
e des
ribed above. Additionally, themovement planners 
an eventually use knowledge of the di-re
tion of the nodes as well as their velo
ity to evaluate thelink.Environment evaluators 
an be used to share knowledgeabout some environmental 
onditions that 
ould potentiallydisturb 
ommuni
ations. For instan
e, a node that is awareof the presen
e of an obsta
le in some area or about a tru
kthat 
auses radio interferen
es 
an tell the other membersthe lo
ation (eventually dire
tion and velo
ity) of the obsta-
le that may 
ause a partition.
4. RELATED WORKIn [6℄, a simple ar
hite
ture for group 
ommuni
ation inmobile systems is proposed. The key idea is to 
reate agroup of all the nodes that are within a given distan
e Dfrom the group 
reator g
. Using our de�nition of a groupit is similar to : G=f
ir
le C of radius D, 
enter of C, g
,nameg.Their model does not 
onsider dis
onne
tion or partition

within a group. The proposed ar
hite
ture is 
omposed oftwo di�erent layers. The proximity layer 
onsists of a proto-
ol that uses the underlying MAC sublayer to �nd all nodesthat are within a given distan
e from the mobile host. Ituses 
ooding for the dis
overy phase and 
onverge
ast forthe replies. The group membership layer uses a three-roundproto
ol that (1) proposes to the nodes dis
overed by theproximity layer to be
ome members of the group, (2) allowsthem to reply and then (3) 
on�rms their membership. Thissolution su�ers from a number of drawba
ks. Firstly, the�rst phase uses pure 
ooding to dis
over the nodes lo
atedin the area, and therefore does not s
ale well. For instan
e,in a traÆ
 management s
enario, every single node of thenetwork will re
eive and repeat every 
ood message. A se
-ond drawba
k is the restri
tive de�nition of a group and thefa
t that a node 
an be involved in only a single group.In [7℄, as explained above, the proximity group is de�nedby the notion of safe distan
e. Ea
h node has to be withinthis safe distan
e of its nearest neighbour to be 
onsideredas a member of the group. This notion of a group is veryrestri
tive and does not 
ope well with the 
ommon under-standing of group 
ommuni
ation but is nevertheless parti
-ularly interesting for implementing partition awareness andanti
ipation.
5. SUMMARY, CONCLUSIONS AND FUTURE

WORKIn this paper, we des
ribed a model of group membershipfor lo
ation-aware mobile parti
ipants that is at the heartof a new group 
ommuni
ation toolkit for wireless networksthat we are developing. In this model, eligibility for groupmembership depends on the lo
ation of the potential mem-ber and, in parti
ular, ea
h group is asso
iated with a stati
or a mobile area of interest within whi
h its members shouldbe lo
ated. This model is aimed primarily at appli
ations inthe traÆ
 management [18℄, smart spa
e [19℄ and augmentedreality domains. We also des
ribed some of the 
onsidera-tions underlying our approa
h to group membership man-agement that exploits lo
ation information to a
hieve 
over-age estimation and partition anti
ipation. We are 
urrentlydeveloping a suite of multi
ast proto
ols providing di�erentordering, reliability and timeliness guarantees based on thismembership substrate.
6. REFERENCES[1℄ M. Weiser, \Some Computer S
ien
e Issues in Ubiqui-tous Computing," Communi
ations of the ACM, vol. 7, pp.74-83, 1993.[2℄ K. P. Birman, Building Se
ure and Reliable NetworkAppli
ations: Prenti
e Hall Professional Referen
e Seriesand Manning Publishing Company, 1997.[3℄ F. Cristian, \Syn
hronous and Asyn
hronous GroupCommuni
ation," Communi
ations of the ACM, vol. 39,1996.[4℄ E. M. Royer and C. E. Perkins, \Multi
ast Operation ofan Ad Ho
 On-demand Distan
e Ve
tor Routing Proto
ol,"presented at MobiCom, Seattle, WA, 1999.[5℄ Y.-B. Ko and N. H. Vaidya, \GeoTORA: A Proto
ol



for Geo
asting in Mobile Ad Ho
 Networks," presented at8th International Conferen
e on Network Proto
ols (ICNP),Osaka, Japan, 2000.[6℄ R. Prakash and R. Baldoni, \Ar
hite
ture for GroupCommuni
ation in Mobile Systems," presented at Sympo-sium on Reliable Distributed Systems, West-Lafayette (IN),USA, 1998.[7℄ G.-C. Roman, Q. Huang, and A. Hazemi, \On main-taining Group Membership Data in Ad Ho
 Networks," Wash-ington University, St Louis, Te
hni
al Report wu
s-00-26,April 16, 2000 2000.[8℄ F. Cristian, H. Aghili, R. Strong, and D. Dolev, \Fault-Tolerant Atomi
 Broad
ast Proto
ols," presented at 15th In-ternational Conferen
e on Fault-Tolerant Computing (FTCS),Ann Arbor, Mi
higan, USA, 1985.[9℄ Y. Amir, D. Dolev, S. Kramer, and D. Malki, \Tran-sis: a Communi
ation Subsystem for High Availability," pre-sented at 22nd International Symposium on Fault TolerantComputing (FTCS-22), Boston, Massa
husetts, USA, 1992.[10℄ J. Bro
h, D. Maltz, D. Johnson, Y.-C. Hu, and J.Jet
heva, \A performan
e 
omparison of multi-hop wirelessad-ho
 network routing proto
ols," presented at The FourthAnnual International Conferen
e on Mobile Computing andNetworking, MobiCom 2000, Dallas, Texas, US, 1998.[11℄ A. Chandra, V. Gumalla, and J. O. Limb, \WirelessMedium A

ess Control Proto
ols," in IEEE Communi
a-tions Surveys & Tutorials, 2000.[12℄ Y.-B. Ko and N. H. Vaidya, \Lo
ation-aided routing(LAR) in mobile ad ho
 networks," presented at ACM/IEEEInt. Conf. on Mobile Computing and Networking (Mobi-Com'98), 1998.[13℄ B. Karp and H. Kung, \GPSR: Greedy perimeterstateless routing for wireless networks," presented at 6thAnnual Int. Conf. on Mobile Computing and Networking(MobiCom), Boston, MA, USA, 2000.[14℄ IEEE, \Wireless LANMediumA

ess Control (MAC)and Physi
al Layer (PHY) Spe
i�
ations," in IEEE Std 802.11-1997. New York: The Institute of Ele
tri
al and Ele
troni
Engineers, 1997.[15℄ C. E. Perkins, E. Royer, and S. R. Das, \Ad Ho
 OnDemand Distan
e Ve
tor (AODV) algorithm," presented at2nd IEEE Workshop on Mobile Computing Systems andAppli
ations (WMCSA'99), New Orleans, Louisiana, USA,1999.[16℄ S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu,\The Broad
ast Storm Problem in a Mobile Ad Ho
 Net-work," presented at ACM/IEEE Mobi
om, 1999.[17℄ S. M. Ross, Introdu
tion to Probability and Statisti
sfor Engineers and S
ientists, 2nd ed: John Wiley & Sons,1999.[18℄ R. Cunningham and V. Cahill, \System Support forSmart Cars: Requirements and Resear
h Dire
tions," pre-sented at 9th ACM SIGOPS European Workshop, Kolding,Denmark, 2000.[19℄ P. Nixon, S. Dobson, and G. La
ey, \Smart Envi-ronments: Some 
hallenges for the 
omputer 
ommunity,"presented at 1st International Workshop on Managing In-tera
tions in Smart Environments, Dublin, Ireland, 1999.[20℄ William H. Press, B. P. Flannery, S. A. Teukolsky

and W. T. Vetterling, \Numeri
al Re
ipes in C : The Art ofS
ienti�
 Computing", Cambridge University Press, 1986.


