
I

Implementing Atomic Objects
with the

RelaX Transaction Facility

Michael Mock and Reinhold Kroeger

German National Research Center for Computer Science (GMD)
Postfach 1240

D-5205 St. Augustin 1, Fed. Rep. Germany
e-mail: mock@ gmdzi.gmd.dbp.de, kroegea gmdzi.gmd.dbp.de

Abstract
RelaX offers an extensible transaction facility which

isolates distributed (thus complex) transaction
processing. A distributed system providing basic support
for local recovery may easily be enhanced with flexible
transaction functionality by linking it to the RelaX
facility. The work desribed is being carried out in
conjunction with the European ESPRIT Comandos
project. In the Comandos platform, the transaction
facility is used to implement atomic objects.

1 Introduction
Many experimental distributed systems have advocated

a programming model in which atomic objects are
manipulated on behalf of transactions. Usually,
atomicity is an intrinsic property of all objects in the
system and mostly either embedded in the language [7,
103 or related to a database style background store [2].
Together with several partners, we follow a different
approach in the ESPRIT Comandos project
(Construction and Management of Distributed Open
Systems) [4]. Comandos identifies and constructs an
integrated application support environment for
developing and administrating distributed applications
which can manipulate persistent objects. The Comandos
platform provides the persistent and distributed object
space as a generic, i.e. language independent system layer
in which atomic and non-atomic objects co-exist. To
achieve a uniform view and implementation of the
system, the basic mechanisms to manipulate objects of
both kinds are the same. Of course, management of non-
atomic objects must not suffer from any overhead related
to atomic objects. Thus, the problem is to enhance the
system with transaction functionality for a subset of
objects while keeping interference with the basic
mechanisms low, Being generic, a purely language based

approach does not work. Concentrating on the system
aspects, we consciously neglect language level issues in
this paper.
2 Basic Mechanisms

The basic mechanisms of the Comandos kernel
architecture apply to non-atomic and atomic objects.
They are described in this section as far as they relate to
atomicity of objects. For a detailed description. see [ll.

An activity is a sequence of object invocations
executed in the global object space, independent of where
the objects reside. A job is a set of related activities. A
context is a collection of directly addressible objects on
one site. An activity is represented by one or more
processes in every context visited by the activity. Object
invocations are initiated and executed at a language level.
A language-independent virtual machine interface is
provided by a generic run-time system (GRT) which
enables the language specific run-time system to benefit
from support for persistence and distribution. To
communicate with the GRT, the language level has to
provide for every considered object a predefined set of
operations which are up-called from the GRT layer as
required. The GRT maps objects into a context to make
them accessible to the language. Accesses to non-mapped
objects (object faults) are trapped and the GRT which
will either map (activate) the object or initiate a cross-
context invocation, e.g.. if the object is already mapped
in some other context (possibly on a remote site). The
background representation of an object is maintained in a
Storage Subsystem (SS) associated to one site in the
system which is called the storage site of the object. On
demand the object is activated and brought into the
requesting context. The site of this context is called the
activation site of the object. Objects are grouped into
clusters to reduce the number of object faults and to
increase the I/O me. There is at most one active
representation of an object at a time. Further accesses are

0-8186-2265-2/91 $1.00 Q 1991 IEEE

- 1

IO0

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 3, 2009 at 08:00 from IEEE Xplore. Restrictions apply.

http://gmdzi.gmd.dbp.de
http://gmdzi.gmd.dbp.de

I

E
T

4 Resource * Transaction
Managers 4 Manager (TM)

1 (RMs) R
L - K

i

directed to this representation until it is passivated.
Passivating an object means deleting it from its context
while writing its cluster back to the SS.
3 What is needed to implement

atomic objects ?
Atomic objects provide consistent states even in the

presence of concurrency and failures. Therefore, they
must at least provide the following object local
functionaltiy :
- synchronization of concurrent accesses to meet the

serializability criterion,
saving object states into recovery points, restoring
recovery points to achieve the all-or-nothing
Property,
saving object states stably to realize the permance of
effect in spite of site failures.
But local functionality is not sufficient to define

consistency on the basis of sets of operations grouped
into transactions which either terminate successfully
(commit) or leave no effect in the system (abort). For
this, global coordination is necessary, which:
- detects failures/restarts of remote sites and forces

affected transactions to abo?t,
- detects and cancels orphans created by timed-out

remote invocations or site failures,
- runs a multi-phase commit protocol to achieve a

common agreement on the outcome, i.e., a
transaction must not commit at one site and abort at
another site.
Conventionally, global transaction functionality is

provided in a distributed database system. Unfortunately,
it is irredeemably combined with the data-model of the
database and cannot be extracted to be used in
conjunction with atomic objects. In the RelaX facility,
we identify and isolate transaction functionality which is
independent of the underlying data-m&l and thus make
it available outside of database systems.

-

-

4 What is provided by the RelaX
transaction facility ?

Implementing transactions at the system-level requires
a flexible transaction concept not taylored to a specific
application. In our approach, this flexibility is expressed
by the concepts of the premature release of data objects
as a basis for the optional use of uncommitted data,
separating the successful completion of a transaction
from its commitment, group commitment, extended
nesting and non-strict two-phase locking. A non-
extensible version of this transaction concept taylored to
a hardwm-supported object-oriented architecture has been
implemented in our predecessor project Profemo. For a
detailed description, see [8,91.

Extensibility is achieved by a clear separation between
distributed transaction management and management of
atomic resources (Fig. 1). This approach is also
supported by X/Open [13]. On every site in the system,
distributed transaction management is isolated in a server
0 which cOoperates via a standard iaterface with an
extensible set of so-called resource managers (RMs) and
application programs (APs). The TM is responsible for
transaction control at a site and executes together with
the TMs at the other sites distributed transaction control
functions, i.e. commit/abort protocols [111. TMs
communicate via a reliable broadcast protocol RBP
[3,12], which also is in charge of detecting and
announcing failures of remote sites b the TM.

From the TM's point of view, the active entity
responsible for the computational progress is the
"application program". The "resource manager" is a
passive entity which maintains state in the system.
Different RMs might provide different kinds of data (e.g.
object management systems, file systems or specialized
databases) with different interfaces to the AP. Of course,
the distinction &tween AP and RM is only of logical
nature and does not prevent them to be represented by the
same entity (e.g. a process maintaining programs and
state).

Every AP binds a TM-library which logically links it
to the TM. The AP defines transaction boundaries via

191

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 3, 2009 at 08:00 from IEEE Xplore. Restrictions apply.

I

calls to the TM-library. Inside these transactions, it uses
resources of one or more RMs. If computations go
remote, the TMs on both sites are informed via the
library in order to keep track of distribution. According
to the non-strict two-phase locking, the Ap may
announce the lockpoint of a transaction to the TM,
which propagates the lockpoint to all relevant RMs (on

For the TM, a context acts as a resource manager for
the objects it currently maps. Simultaneously, the
context is the application program with respect to all
object invocations executed in the context. Thus, the
TM-library and the RM-library are both linked with
every context and connect it to the local TM.

every &f&& site). Calls-to the TM-library finally go
from the AP to the TM. In the opposite direction, the
TM calls the library to set up the computational state of
the AP if a transaction aborts (which might have been
initiated remotely, e.g., by a site failure).

Every RM binds a RM-library logically linking it to
the TM. This library provides local concurrency control
and local recovery control. Accesses to atomic resources
must be trapped into the library for concurrency and
recovery control checking. This is based on the
identifiers of the current transaction and the accessed
resource. When the library gets notice of a transaction for
the first time, it announces to the TM that its RM joins
this transaction. Concurrency control is handled
completely inside the library. The library may be
configured to handle different numbers of lock- and
compatibility modes for different resources. With respect
to recovery control, the library keeps track of which
transaction uses which resources and cooperatm with the
TM to coordinate state changes of transactions
(commit/abort) with the corresponding state changes of
resources. This is basically a local extension of the
distributed protocols executed by the TM. The RM is
expected to implement supporting operations which are
called by the library. These are operations to save and
restore resource states to handle transaction aborts. For
commitment, background representations of resources
have to be updated in two phases, according to the
progress of the commit protocol execution.

Summarizing, the RelaX transaction facility covers
concurrency control (local and distributed aspects) and the
distributed aspects of recovery control. Support
operations performing local recovery are left to be
implemented by the RMs in the most convenient and
efficient way. For a detailed description of the
architecture and the distributed protocols the reader is
referred to [6, 111.

5 How it fits together
In the first step, we are concentrating on an

implementation based on Unix (Ulu-ix 4.1). A context is
represented by a Unix process, a (Comandos) process is
represented by a thread. On every site, the TM is a
separate Unix process.

Transactions are always started/ended within the same
activity (concurrent activites may be created additionally
within the transaction). Creation of a transaction blocks
the current process and sets up a new process for the
transaction. Thus, adjusting program state on behalf of a
transaction abort is achieved by killing the processes
which are actually running in the transaction.

. . Creahon/rcarbage CO llection 0-

New objects can be created in a context without
interacting with the SS. If an object is atomic, its
creation is announced to the RM-library. The RM-library
will initiate a stable save for the object only if the
creating transaction commits and if the object is not
detected to be garbage. Thus, detecting atomic garbage
objects reduces the amount of data involved in
transaction commit. Of course, the garbage collector
must take references stored in recovery points into
account because they might be restored.

-in? a-s to atomic ob-
The basic strategy to trap accesses to atomic objects

is to re-use the mechanism provided to trap object faults
from the language to the GRT level. Access checks are
then performed in the RM-library based on the current
transaction identifier and on the virtual memory address
and size of the object. After that, the normal GRT
invocation path is resumed. If an invocation within a
transaction goes remote, the GRT informs the TM via
the TM-library. Both mechanisms do not affect non-
atomic objects. They induce the cost of a language to
GRT switch on the invocation of a local atomic object
and two additional local messages to the TMs on both
sites for remote invocations. We are also considering
language extensions for atomic objects enabling the
language layer to invoke the RM-library and the TM-
library directly.

Savfiesto re management in virtual me mow .

. .

Transaction aborts are handled in virtual memory.
Triggered by the RM-library, a recovery point of an
object is saved by copying the current object
representation into a seperate memory area (possibly
newly allocated). The address of the copy is returned to
the library and is used as source to restore the object in
case of an abort.

192

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 3, 2009 at 08:00 from IEEE Xplore. Restrictions apply.

I

T W O - c . . .
We log after images onto a stable log in the first

phase of the commit protocol execution, thus avoiding
log writes during the normal execution of a transaction.
Under the control of the RM-library, a context stores its
affected objects stably onto a log located at the activation
sites (or at an associated log-server site if the activation
site is diskless). Thus commit processing for objects
activated at the same site is performed locally on that
site. The possible alternative to use logs at the
corresponding storage sites would make commit
processing costly and would increase the probability of
being blocked/aborted because the ability to commit then
would depend on the availability of these storage sites.

To increase availability of clusters after a failure of a
storage site, the storage site stably marks activated
clusters. If activated clusters were not marked in the SS,
a restarting S S would have no means to determine the
current activation site and could not decide whether there
is a new committed (or prepared) state of the cluster in
the log. Especially, if any other site was not available,
the S S must pessimistically assume that this site has
been activation site and already maintains a new
committed (or prepared) state of the cluster in its log.
Thus, with no marking of activated clusters, a restarting
S S could only respond to any activation request if all
sites in the system were available.
6 Status

A first version of the Comandos virtual machine
together with an extended C++ run-time system, called
the Amadeus system, has been implemented by Trinity
College, Dublin, one of our partners in the Comandos
project. This version, which so far has no support for
atomic objects, is the starting point for integrating
transaction functionality. Implementation of the RelaX
transaction facility is currently underway. The fully
integrated Unix version is expected to be operational in
early 1992.
7 Conclusion

The simplicity of the mechanisms described in section
5 shows that implementing atomic objects is fairly easy
with the RelaX transaction facility, especially because
the implementor is not burdened with the distributed
aspects of transaction management. The next step will be
to move to a micro-kemel based implementation taking
advantage of virtual memory management facilities for
access trapping and save/restore management. The
implementation will also serve as a testbed for
extensions of the implemented transaction concept with
respect to type-specific concurrency and recovery control.
and integrated replication schemes to achieve highly
available objects.

Acknowledgements
We would like to thank our partners in the Comandos

consortium who have been involved in the design of the
kernel. These include Bull-Imag at Grenoble, Chorus at
Paris, INESC at Lisbon and Trinity College at Dublin.
Special thanks go to Vinny Cahill and Paul Taylor from
TCD for many fruitful discussions on the integration of
transactions into the Comandos system.
References

V. Cahill, C. Horn, G Starowic, R. Lea and P.
Sousa: Supporting Object Oriented Languages on
the Comandos Platform. Accepted, Esprit
Conference 199 1.
M. Carey, D. DeWitt, D. Frank, G. Graefe, J.
Richardson, E. Shekita, M. Muralikrishna: The
Architecture of the Exodus Extensible DBMS, First
Int. Workshop on Object-Oriented Database
Systems, Pacific Grove. 1986.
J. Chang. N. Maxemchuk: Reliable Broadcast
Protocols, ACM Transactions on Computer
Systems, Vol. 2, No. 3, Aug. 1984.
Comandos Consortium: A Guide to the Comandos
Platform, Esprit Project 2071, Deliverable D1-
T2.2, 1991.
K.P. Eswaran, J.N. Gray, R.A. Lofie, I.L. Traiger:
On the Notions of Consistency and Predicate
Locks, CACM, Vol. 19, No. 11, 1976.
R. KrUger, M. Mock, R. Schumann, F. Lange:
RelaX - An Extensible Architecture Supporting
Reliable Distributed Applications, 9th Symposium
on Reliable Distributed Systems, Huntsville, 1990.
B. Liskov. R. Scheifler: Guardians and Actions:
Linguistic Support for Robust Distributed
Programs, Proc. 9th ACM Symp. on Operating
System Principles, Bretton Woods, 1983.
E. Nett, J. Kaiser, R. KrUger: Providing
Recoverability in a Transaction Oriented Distributed
System, Proc. of 6th Int. Conf. on Distributed
Computing Systems, Cambridge, Mass. 1986.
E. Nett, K.-E. GrossDietsch, A. Junnblut. J.
Kaiser, R. KrUger, W. .Lux, M. SpeichG, H.-W.
Winnebeck: PROFEMO - Design and
Implementation of a Fault Tolerant Distributed
System Architecture, GMD-Studie 100, 1985.

101 G. D. Parrington: Reliable Distributed
Programming in C++: The Arjuna Approach, 2nd
Usenix C++ Conference, San Francisco, 1990.

111 R. Schumann. R. KrUger, M. Mock: The
Decentralized Non-Blocking RelaX Commit
Protocol, 1 lth ITGEI-Fachtagung Architektur von
Reclpsystemen, Baden-Baden, 1990.

121 R. Vonthin: Spezifikation des PROFEMO-Reliable
Broadcast Protokolls in Unix 4.2 BSD, GMD-
Studie 127, 1987.

[13] X/Open Preliminary Specification: Distritbuted
Transaction Processing: The XA Interface, 1990.

I93

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 3, 2009 at 08:00 from IEEE Xplore. Restrictions apply.

