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Ceci implique que Vn=1, 3m =1, ¢, = O

up lg(z)i <ec, sup Kg, Rudl=c, sup |{gA)du()
o eXph, @) T N ainse ulii< s

lg(A)]
< Cn sgp exp h,(4)’

donc S est suffisant.
Le théordme est démontré,
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Absolute bases, tensor products and a theorem of Bohr
by

SEAN DINEEN and RICHARD M. TIMONEY (Dublin)

Abstract. For E a locally convex Montel space with basis, we show that if the monomials
form an absolute basis for the space of holomorphic functions on E, then E must be nuclear. Using
related methods, we give an affirmative result for a special case of Grothendieck’s conjecture on
tensor products and nuclearity. We also relate our methods to a polydisc versicn of a theorem of
Behr on power series of bounded functions.

In [2] Boland and Dineen proved that the monomials on a fully nuclear
space with basis form an absolute basis for the space of holomorphic functions
(with the compact-open topology). We present here a result in the converse
direction (solving a question posed by Meise and Vogt [14, p. 397}

Using similar methods, we also obtain results on a conjecture of
Grothendieck [5] concerning tensor products and on a generalisation of
a theorem of H. Bohr [1] from one to several variables.

By monomials we mean finite products of cocrdinate evaluations {coor-
dinates with respect to a specified basis). The class of fully nuclear spaces which
was considered in [2] includes all Fréchet nuclear spaces and all DFN-spaces.
Our converse {Theorem 1.7) is stated for Montel spaces (with basis).

The main problem, which we refer to as the basis problem, leads naturally
to a particular case of a conjecture of Grothendieck [5] concerning equality of
the projective (r) and injective {¢) tensor products on locally convex spaces.
Grothendieck’s conjecture is known to be true for many classes of Banach
spaces (see [15] for details) and for certain localty convex spaces [8], but Pisier
{16, 15] has given a Banach space counterexample to the conjecture. The basis
problem leads to a case where Grothendieck’s conjecture is true (we give an
elementary proof which works for some of the earlier results), but which is not
covered by the results in [8, 15, 16].

Our proofs ultimately depend on a classical matrix inequality (Proposition
1.6). In the course of the reduction of the basis problem to enable us to apply
this result, it became clear that a suitable generalisation of an equality of H.
Bohr [1] from discs to polydiscs of large dimension would solve the basis
problem. In the end, we found that such a generalisation is possible, but via
a generalisation of Proposition 1.6 due to Mantero and Tonge [13].
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This paper is organised as follows. In § 1, we give an overview of some of
the background and show how to reduce the basis problem to the classical
- result (Proposition 1.6}, In §2, we explain the connection with Grothendieck’s
conjecture and show how the case of the comnjecture which arises naturally can
be proved using Proposition 1,6. In § 3, we explain how Bohr’s inequality fits in
to our context and obtain an asymptotic generalisation of Bohr’s inequality to
polydiscs in several variables.

Our references for locally convex spaces are [9, 7, 5, 18], for in-
finite-dimensional holomorphy [4] and for the geometry of Banach spaces [16,
107. All focally convex spaces will be over the complex numbers (C) and will be
assumed to be Hausdorff,

The authors thank the referee for his helpful comments and suggestions.

1. The basis problem. We let cs(E) denote the set of all continuous
seminorms on a locally convex space E. By a (Schauder) basis for E we mean
a sequence (e,), in E such that each xeE can be uniquely represented as
a convergent series x =), x ¢, and such that the coordinate evaluations
xrx,. E-»C are each continuous (see [2]).

N® will denote the collection of all finitely non-zero sequences of
non-negative integers. For (z,), a sequence of complex numbers and
meN®™, |m| =73 m, and z” denotes the (finite) product 11,2 (where z§ = 1),

DEFINITION 1.1. A basis (e}, for a locally convex space E is said to be
absolute if for each pecs(E) there exists gecs(E) satisfying

(1.1) Yixiple) < g3 x,e,)

for all },x,e,cE.

‘A holomorphic function on a locally convex space E is a continuous
function f* E — C which is holomorphic on all finite-dimensional subspaces of
" E. The collection of all such functions will be denoted by H(E) and we will
consider it with the topology 1, of uniform convergence on compact subsets of
E. For later reference we recall that Montel spaces E are reflexive gua-
si-complete (closed bounded subsets are complete) locally convex spaces in
which all closed bounded sets are compact. Moreover; (E', ,) coincides with
the strong dual Ej (E' with the topology of uniform convergence on bounded

subsets of E) and is also a Montel space.
If E has a basis (e,),, then by monemials on E we mean the functions

X z.e,—2Z"  (meNW),
"

The problem we consider {the basis problemy is then whether E must be nuclear
il the monomials form an absolute basis for (H(E), t,). Notice that for any
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space E with a basis, finite-dimensional considerations show that every f'e H(E)
can be represented pointwise as :

(1.2) f(Lze) =

for unique scalars a,,, me N™_and z in the algebraic span of the basis, Thus
our problem concerns the situation where the series (1.2) converges in t, and
moreover has the following property: for each K — E compact there is
a compact K’ < E and a constant € > 0 with

{1.3) Y Jau iz < C” > amz’”HK.
meNW) meN (N}
for each }a,z"e H(E). (Here ||f|lx = sup{|/(z)|: zeK}.)

Using Taylor series expansions in several variables it follows that if the
monomials form an absolute basis for H(E), then the monomials of degree
n form an absolute basis for (P("E), t,), where P("E) denotes the space of
(continuous) n-homogeneous polynomials on E. (Recall that pe P("E) if and
only if p(z) = p(z, z, ..., z) for a symmetric continuous n-linear mapping j on
E. ) In particular, taking n = 1, we find that E' = P(*E) must have an absolute
basis. In the case when E is a Montel space this will allow us to describe E" as
a locally convex sequence space with seminorms given by a family of weights.

A weight is a sequence w of non-negative real numbers. We consider
collections W of weights and, for convenience, we assume that if
w=(w),, W = (w,},eW then there exists w"=(w)),eW satisfying
max(w,, w;) < w, (all n). We consider sequence spaces

AW) = {(z,): Y lz,lw, < oo for all w=(w,),eW}

Y a, ™

meN{N)

topologised by the family of seminorms Y ,iz,|w,.

LemMma 1.2, Let F be a locally convex space with an absolute basis (f),.
Suppose F is quasi-complete and W consists of all the weights (|p (f,,)‘l),‘ with
pecs(F). Then the map

22 S (2 F— AW)

is a linear topological isomorphism,
Proof This is straightforward to verify. m

ProrosiTioN 1.3, Let E be a Montel space with basis {e,), and suppose that
the monomials form an absolute basis for (H(E), to). Then

(i) Ep may be identified with A(W), for some W.

(i) E has a fundamental system of compact sets consisting of the “polydiscs™

(S z,e,€E: sup|z,|a, < R}

with (a; 1),e W, R > 0. [Here we allow a, = o0, a, * =0, and use 0-20 =0 in
defining |z,|a,.]
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Proof. (i) follows from Lemma 1.2 and our earlier remarks. For (ii) we use '

the fact that a subset K = E is bounded if and only if its polar is a barrel {i.e.
closed, absolutely convex and absorbent). The Montel property of E and the
fact that E}, is barrelled (i.e. every barrel is a neighbourhood of the origin) allow
us o deduce (ii). »

LemMMa 1.4. With the hypothesis and notation of Proposition 1.3, if (a; 1),e W
then there exist (by e W and a constant C > 0 satisfying

A4 Y Nauz™z, <) = Zklamh’"‘ < Csup({| Zkamz"‘|: max|zj € 1}
i

meN' msN' - meN-
(b,fa,) for all n.

Proof. This is immediate from Proposition 1.3 and (1.3)..m

for all k where (a,)en™ is any set of scalars and 7, =

Restricting (1.4) to coefficients (a,,),, with a,, = 0 for {m| # 2 we obtain the
following;

LEmMMAa 1.5, With the hypotheses and notation of Proposition 1.3,

if (a7 1), € W then there exist (by'),e W and a constant C> 0 satisfying
b;b,
Z ;;lm’ki < Csupf| Y opzz | maxlzl 1}

Jk=1"j"%k [

for all symmetric n x n matrices (o) and all n.

As is customary, we use I, for C" with the [ -norm |||, If A =
an #n x n symmetric matrix then

(@3 =1 is

”A”ﬁc.:xo_sup{l Z a)kx ylcl X, yEl w0 ”x” 11 “y”oo “<~ 1}

ik r—

denotes the norm of A as a bilinear form on I". Let i= J —1.
PROPOSITION 1.6. For ay, = exp(2nijk/n), 1 €j, k< n
[iAlls,0 < 132,

See Hardy and Littlewood [6, (5.1.5)] for a proof of this inequality. An
earlier result of Toeplitz [17] would be sufficient for our purpose. For
n a power of 4, he constructs a symmetric n x n matrix A with entries ay = £ 1
which satisfies [|A|x o ~ 1%,

A = {ay)y we have

" TueoreM 1.7. Let E be a Montel space with basis (e,), and suppose that the
monomials form an absolute basis for (H(E), 15). Then Ej is nuclear.

Proof Applying Lemma 1.5 together with Proposition 1.6, we find that
given (a,, 1)EW‘[‘m.:re exist (b, l),,EW and C > 0 so that

bm;brm: < C 3/2
Jk= 1_ amj a?mc
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holds for all sequences 1 <m, <...<m,, all n. Letting (8 )j=1 denote the
non-increasing rearrangement of b /a, it follows that

(30 <cmn

Consequently f, < C/n'™ and Y2, (b,/a)® < 0.

Using the Cauchy—Schwarz inequality we see that there exists (¢, 1), e W
with ¥ ,¢,/a, < co. The Grothendieck—Pietsch criterion for nuclearity [5, 18, 7]
now implies that Ej is nuclear. =

Remark 1.8 If E is assumed to be metrizable, then E is nuclear if and
only if Ej is. Thus nuclearity of E (as well as E}) can be deduced from the
hypotheses of Theorem 1.7 together with the assumption that one of E or Ej is
metrizable.

2. Tensor products. For a locally convex space F, F®F denotes the
algebraic tensor product consisting of (finite) linear combinations of elements
x ® y. Elements of ¥ ® F may be viewed as bilinear forms on F' ® F' via

x @ y(x', ¥) = x'(x)y'(y)-
If pecs(F) then the seminorms p®,p and p®@,p on FQ F are given by

inf (7 p(xip(y): u =T ® i),
p ®,p(u) msup{ux ¥): x', y'e By},

where B} = {x'e F': [x'(x)} < p{x) for all xe F}. F ® F denotes F @ F with the
topology generated by the seminorms p®,p, pecs(F) F®,F is similarly
defined.

We denote by F @*F the subspace of F® F spanned by the elements
x®x and we use F@F and F ®:F to indicate F ®°F with the n- and
s-topologies.

We now consider the case where F = E; and E is (as in the previous
section) a Montel space with basis and with thc property that the monomials
form an absolute basis for (H(E), 7o) Then we can identify Ej; ®:Ep with
a subspace of (P(*E), 1,) since, for ue E'®°F,

sup{u(z; z): ze B3} < p®,p(W) < 2sup{lu(z, 2)|: ze B3}

Using the fact that I! @11 is isometric to I, (1.3) for [m| = 2 and Proposition
1.3(ii) we can deduce that our hypotheses on E imply

By ®}E) = £} ®1Ej.

Consequently, an alternative route to Theorem 1.7 would be via the following
result.

P ®,p(u) =
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PROPOSITION 2.1. Let F = A(W). F must be nuclear if either one of the
following conditions holds:

(i) F®F =F @:F.
(i) F®,F=F@®,F.

Proof. (i) follows essentially from Proposition 1.6, as in the proof of
Theorem 1.7, and (ii) foliows from (i). m

Case (ii) of Proposition 2.1 is a special case of a conjecture of Grothen-
dieck [5]. The conjecture {now known not to be true in general [16]) was that
any locally convex space F for which F® ,F = F ® F must be nuclear, The
result above seems not to be a consequence of previous positive results on the
conjecture (see {8, 15] for these). :

3. Bohr’s theorem. Equation (1.4) led us to comsider the following
inequality of H. Bohr [1] (see also [3, p. 445]); if fe H"(4), the space of

bounded holomorphic functions on the open umit disc 4 in C,
f(@H=Yr0a,z" then
(3.1) Y laJr < supf| ¥ a,2: 12l < 1}

n=0 n=0

holds for r < 1/3. Moreover, if r > 1/3 then there exists an f e H*(4) for which
inequality (3.1) fails.

Thus inequality (3.1) places restrictions on r and we were led to try
generalising (3.1) to multidimensional polydiscs. Specifically, we considered the
following.

ProBLEM 3.1. For each k describe the set B, of all k-tuples r =(ry, ..., 1}
of non-negative real numbers which satisfy the inequality

32 Y laal™ < | 2 32" e
meN* meNk

for all f(2) = ¥ menra 2" c H®(4*) where 4* is the unit polydisc in C"
Using Lemma 1.5 we could show that there exists a ¢ > 0 (in fact any
g >4) and M >0 (both independent of k) such that
K
<M
i=1

for all (., ..., r)&B,, and then an application of the Grothendieck—Pietsch
criterion would solve the basis problem. :

While we are unable to give a complete solution to Problem 3.1, the
following is the best result we could obtain. '

TusoreM 3.2. For reB,, Wity < 2\/;1.
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Lemma 3.3 ([13]). For each n> 1, each J < 2 and each « > 0 there exists
a J-fold (symmetric) tensor

n

= 3

kpdy=1 .
with & = + 1 (all k) which has e-norm ||t]| in § ®...® I{ satisfying
llell < 27 [Jn7* Nog(1+4)] 2 +a.

Proof This follows from the proof of Theorem 1.1 of [13] {noting that
the constant K used there may be taken to be J). =

by, @ ... ® ey,

Proof of Theorem 3.2. The s-norm of the symmetric tensor ¢ dominates
[lfll,» where f is the homogeneous polynomial on C”

f(z):-—-%a,,z".

From (1.6), it follows that each re B, satisfies

(Z rk)J < lell-

k=1 .
Letting  — 0, taking Jth roots and letting J — oo gives the desired result. =

We remark that it is possible to modify Theorem 3.2 slightly so as to give
alternative proofs of Theorem 1.7. :
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On an extrapolation theorem of Carleson—Sjolin with
applications to a.e. convergence of Fourier series

by
FERNANDO SORIA* (Madrid)

Absiract, A weak type version of Yano's extrapolation theorem is presented which improves
a result of Carleson and $jolin about almost everywhere convergence of Fourier-Walsh series.

§ 0. Introduction. Let (2, u) be an arbitrary measure space. A well-known
result due to Yano [Y] (see also Zygmund [Z]) states that if u{€) < oo, T is
a continuous linear operator from () into (), 1 <p < ps and for some
fixed m = 0, T satisfies the estimate

(1) 1T Alle < CO—1)" (A,
for every measurable subset 4 of 2 and with C independent of 4 and p, then we
can “extrapolate” and conclude that T acts continuously from L{1 +log™ L){(€)
into I} (). .

1t is not hard to see that the result remains true if Tis assumed to be
sublinear and estimate (1) is replaced by the weaker assumption

¥y 1T les < C(Pﬁl)_"‘#_(A)”"-
In this case, the condition “x(Q) < 0o” is not even needed. (See § 3 for a simple
proof of this fact.)

In 1967, extending the fundamental work of Carleson [Ca], R. Hunt [H]
found the following basic estimate for the maximal operator, $*, associated to
the partial sums of Fourier series: _

B) tu{xe: S*y, >t < Cplrp—1)"'u(4t?, 1 <p< o, t>0,
where (Q, w) represents here the one-dimensional torus with the usual Lebesgue
measure. This, combined with the inequality

@ 171l < plp— 1)~ suplep{x: LF (> 17,
. >0 :

gives an estimate for S* like (2) with m = 2 and, therefore, Yano's extrapolation
theorem ensures the a.e. convergence of Fourier series for functions in
L(log™ L) '

* Work supported in part by a grant of the NSF at the University of Chicago.



