COMPUTING THE NORMS OF ELEMENTARY OPERATORS

RICHARD M. TIMONEY

Abstract

We provide a direct proof that the Haagerup estimate on the completely bounded norm of elementary operators is best possible in the case of $\mathcal{B}(H)$ via a generalisation of a theorem of Stampfli. We show that for an elementary operator T of length ℓ, the completely bounded norm is equal to the k-norm for $k=\ell$. A C^{*}-algebra A has the property that the completely bounded norm of every elementary operator is the k-norm, if and only if A is either k-subhomogeneous or a k-subhomogeneous extension of an antiliminal C^{*}-algebra.

1. Introduction

For A a C^{*}-algebra, an operator $T: A \rightarrow A$ is called an elementary operator if T can be expressed in the form

$$
\begin{equation*}
T x=\sum_{i=1}^{\ell} a_{i} x b_{i} \tag{1}
\end{equation*}
$$

with a_{i} and $b_{i}(1 \leq i \leq \ell)$ in the multiplier algebra $M(A)$ of A (see [17]). A well-known estimate due to Haagerup states that

$$
\begin{equation*}
\|T\| \leq\|T\|_{c b} \leq \sqrt{\left\|\sum_{j=1}^{\ell} a_{j} a_{j}^{*}\right\|\left\|\sum_{j=1}^{\ell} b_{j}^{*} b_{j}\right\|} \tag{2}
\end{equation*}
$$

where $\|T\|_{c b}$ is the completely bounded (or CB) norm of T.
For $A=\mathcal{B}(H)$, our main result shows how to recognise equality in (2), in a way that generalises a result of Stampfli [22] dealing with special elementary operators $T x=a_{1} x 1-1 x b_{2}$. The bound on $\|T\|_{c b}$ in the estimate (2) is known to be sharp, at least in the case $A=\mathcal{B}(H)$, provided one considers all possible representations of T as $T x=\sum_{j=1}^{\ell} a_{j} x b_{j}$ (and takes the infimum of the upper bounds obtained). We first give a direct argument to characterise

[^0]equality of $\|T\|,\|T\|_{c b}$ with the right hand side of (2) for $A=\mathcal{B}(H)$ and this involves a balance condition on certain numerical ranges of the a_{i} and b_{i} (Proposition 3.1). More accurately, the numerical ranges we consider are asymmetric and involve $a_{j} a_{i}^{*}$ on the left and $b_{j}^{*} b_{i}$ on the right. These numerical ranges are not convex in general but when we apply our condition to look for equality of $\|T\|_{k},\|T\|_{c b}$ and the right hand side of (2) we end up considering convex combinations of k elements of the numerical range we use for $k=1$. We reach the convex hull by the time $k=\ell$ and for this k the balance condition must be satisfied for some representation of T (Theorem 3.3).

We can pass to general C^{*}-algebras A by considering representations and we can then conclude that $\|T\|_{k}=\|T\|_{c b}$ for $k=\ell$. It seems to be new to have any bound on k (except for $\ell=1$) without conditions on A. A simple example (Example 3.5) shows that the result is optimal (that is, not true for $k=\ell-1$ for any $\ell>1$).

Our techniques allow us to embed the example in a continuous trace C^{*} algebra as long as the algebra has an irreducible representation of large enough dimension (Theorem 4.3). This is the step we need to characterise those C^{*}-algebras A where $\|T\|_{k}=\|T\|_{c b}$ for all elementary $T: A \rightarrow A$ (with k independent of $T)$. The remaining parts of the proof of this characterisation can be borrowed from [4] where the case $k=1$ was settled.

We recall that there are somewhat similar results for complete positivity of elementary operators. In [23] it is shown that an elementary T (as in (1)) must be completely positive (CP) if it is k-positive for any k at least as big as the integer part of $\sqrt{\ell}$ (and again this is optimal). In [24] the class of C^{*}-algebras A where k-positivity implies complete positivity of elementary operators $T: A \rightarrow A$ is characterised, leading to the same class of algebras as for the CB situation. Again the case $k=1$ was settled earlier in [4].

This difference between the optimal k in the CP and CB cases suggests looking at norms for the subclass of hermitian-preserving elementary operators. In Theorem 3.12 we establish a smaller k (that is $k<\ell$ if $\ell>1$) for which $\|T\|_{k}=\|T\|_{c b}$ holds in this subclass, but examples show that the optimal k must be proportional to ℓ in general.

Notation. We are using M_{n} for the $n \times n$ complex matrices, or the bounded linear operators on the standard n-dimensional Hilbert space \mathbb{C}^{n}. Our Hilbert spaces H are all complex and H^{n} means the orthogonal direct sum of n copies of H, or the space of n-tuples of elements of H with the natural inner product. $\mathcal{B}(H)$ denotes the bounded linear operators on $H . M_{n}(A)$ means the $n \times n$ matrices with entries in A.

The CB norm of a linear map $T: A \rightarrow A$ is defined as $\|T\|_{c b}=\sup _{k \geq 1}\|T\|_{k}$ where $\|T\|_{k}=\left\|T^{(k)}\right\|$ and $T^{(k)}: M_{k}(A) \rightarrow M_{k}(A)$ is defined via

$$
T^{(k)}\left(x_{i j}\right)_{i, j=1}^{k}=\left(T\left(x_{i j}\right)\right)_{i, j=1}^{k} .
$$

If $A \subset \mathcal{B}(H)$ then we can regard $M_{k}(A)=A \otimes M_{k}$ as a C^{*}-subalgebra of $\mathcal{B}(H) \otimes M_{k}=\mathcal{B}\left(H \otimes \mathbb{C}^{k}\right)=\mathcal{B}\left(H^{k}\right)$ and in this way there is a unique
C^{*} norm on each $M_{k}(A)$ (compatible with the natural algebra structure and involution). There is an extensive literature relating to the CB norm and we cite [18], [10], [11] as general references.

We will use $\mathcal{E} \ell(A)$ for the elementary operators on A, M_{n}^{+}for the positive semidefinite $n \times n$ matrices.

Acknowledgement. The author thanks R. Archbold for suggesting several detailed corrections and improvements to an earlier draft. Part of this work was done during a visit by the author to the University of Edinburgh, to whom thanks are due for their hospitality.

2. Joint numerical ranges

Our terminology here is motivated by concepts of Stampfli [22] and does not follow standard terminology exactly (see [6, Chapter 7]).

Definition 2.1. For a tuple $\left(c_{1}, c_{2}, \ldots, c_{\ell}\right)$ of operators $c_{i} \in \mathcal{B}(H)$, we denote by $W_{m}\left(c_{1}, c_{2}, \ldots, c_{\ell}\right)$ the 'matrix numerical range'

$$
W_{m}\left(c_{1}, c_{2}, \ldots, c_{\ell}\right)=\left\{\left(\left\langle c_{j}^{*} c_{i} \xi, \xi\right\rangle\right)_{i, j=1}^{\ell}: \xi \in H,\|\xi\|=1\right\} \subset M_{\ell}
$$

We will also consider a subset of the closure of W_{m} which we call the 'extremal matrix numerical range' and denote by

$$
W_{m, e}\left(c_{1}, c_{2}, \ldots, c_{\ell}\right)=\left\{\alpha \in \overline{W_{m}\left(c_{1}, c_{2}, \ldots, c_{\ell}\right)}: \operatorname{trace}(\alpha)=\left\|\sum_{i=1}^{\ell} c_{i}^{*} c_{i}\right\|\right\}
$$

Fixing any preferred linear order for the ℓ^{2} entries of an $\ell \times \ell$ matrix, our W_{m} is the joint spatial numerical range W of $[6, \mathrm{p} .137]$ for the ℓ^{2}-tuple $c_{j}^{*} c_{i}$. For future use, note that $\left\langle c_{j}^{*} c_{i} \xi, \xi\right\rangle=\left\langle c_{i} \xi, c_{j} \xi\right\rangle$.

We will sometimes abbreviate $W_{m}\left(c_{1}, c_{2}, \ldots, c_{\ell}\right)$ as $W_{m}(\mathbf{c})$ with \mathbf{c} denoting the ℓ-tuple (and usually viewed as a column).

Proposition 2.2. For $c_{1}, c_{2}, \ldots, c_{\ell} \in \mathcal{B}(H), W_{m}\left(c_{1}, c_{2}, \ldots, c_{\ell}\right)$ is contained in M_{ℓ}^{+}and $W_{m, e}\left(c_{1}, c_{2}, \ldots, c_{\ell}\right)$ is nonempty and consists of those elements of the closure $\overline{W_{m}}$ of maximal trace.

Proof. To show the positivity, consider $\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \mathbb{C}^{\ell}$ and observe

$$
\sum_{i, j} z_{i} \overline{z_{j}}\left\langle c_{j}^{*} c_{i} \xi, \xi\right\rangle=\left\|\sum_{i=1}^{\ell} z_{i} c_{i} \xi\right\|^{2} \geq 0
$$

The fact that $W_{m, e}\left(c_{1}, c_{2}, \ldots, c_{\ell}\right) \neq \emptyset$ is easy to verify, as are the other assertions.

REmARK 2.3. Arveson [5] gives another definition of (a sequence of) mat-rix-valued numerical ranges associated with a fixed operator. For $T \in \mathcal{B}(H)$, $\mathcal{W}_{n}(T)$ is the set of all possible values $\phi(T)$ where $\phi: C^{*}(T) \rightarrow M_{n}$ is a completely positive unital map on the C^{*}-algebra generated by T.

Our $W_{m}\left(c_{1}, c_{2}, \ldots, c_{\ell}\right)$ is contained in $\mathcal{W}_{\ell}(T)$ when we take $T=\left(c_{j}^{*} c_{i}\right)_{i, j=1}^{\ell}$ in $M_{\ell}(\mathcal{B}(H))=\mathcal{B}\left(H^{\ell}\right)$. To see this note that for $\xi \in H$ of norm one, $\phi_{\xi}: \mathcal{B}(H) \rightarrow \mathbb{C}$ given by $\phi_{\xi}(x)=\langle x \xi, \xi\rangle$ is a (pure) state on $\mathcal{B}(H)$ so that it is a completely positive unital map. We have $W_{m}\left(c_{1}, c_{2}, \ldots, c_{\ell}\right)=\left\{\phi_{\xi}^{(\ell)}(T)\right.$: $\xi \in H,\|\xi\|=1\}$.

If we take $e_{i j} \in M_{\ell+1}$ to be the matrix with 1 in the (i, j) place and zeros elsewhere, and $c_{i}=e_{1 i}$ then $W_{m}\left(c_{1}, c_{2}, \ldots, c_{\ell}\right)$ consists of all positive semidefinite rank one matrices of trace ≤ 1. In this case the convex hull of W_{m} coincides with $\mathcal{W}_{n}(T)$, but because $\mathcal{W}_{n}(T)$ is invariant under conjugation by unitary matrices one can see that the convex hull of W_{m} is in general smaller than $\mathcal{W}_{n}(T)$.

Proposition 2.4. Let $\mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{\ell}\right)$ with $c_{i} \in \mathcal{B}(H)$. Denote by $c_{i}^{(k)}=c_{i} \otimes I_{k} \in M_{k}(\mathcal{B}(H))=\mathcal{B}\left(H^{k}\right)$ the block diagonal $k \times k$ matrix with c_{i} in the diagonal blocks. Let $\mathbf{c}^{(k)}$ denote the corresponding ℓ-tuple $\left(c_{i}^{(k)}\right)_{i=1}^{\ell}$. Then

$$
W_{m}\left(\mathbf{c}^{(k)}\right)=\left\{\sum_{j=1}^{k} t_{j} \alpha_{j}: \alpha_{j} \in W_{m}(\mathbf{c}), t_{j} \geq 0, \sum_{j} t_{j}=1\right\}
$$

(the set of convex combinations of k elements of $W_{m}(\mathbf{c})$). A similar statement holds for $W_{m, e}$.

Moreover, for $k=\min (\ell, \operatorname{dim}(H)), W_{m}\left(\mathbf{c}^{(k)}\right)$ is convex, and $W_{m, e}\left(\mathbf{c}^{(k)}\right)$ is convex and closed.

Proof. A simple calculation shows that if $\xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{k}\right) \in H^{k}$ is a unit vector, then

$$
\left\langle\left(c_{i}^{(k)}\right) \xi,\left(c_{j}^{(k)}\right) \xi\right\rangle=\sum_{r} t_{r}\left\langle c_{i} \xi_{r}^{\prime}, c_{j} \xi_{r}^{\prime}\right\rangle
$$

where $t_{r}=\left\|\xi_{r}\right\|^{2}$ and ξ_{r}^{\prime} is the unit vector in the direction of ξ_{r}.
Alternatively if we denote by $\xi_{i}^{*} \otimes \xi_{i}$ the rank one operator on H given by $\theta \mapsto\left\langle\theta, \xi_{i}\right\rangle \xi_{i}$ we can see that $y=\sum_{i=1}^{k} \xi_{i}^{*} \otimes \xi_{i}$ is a positive operator of trace $\sum_{i=1}^{k}\left\|\xi_{i}\right\|^{2}=1$ and of rank at most k. Every such y can be written in the form $\sum_{i=1}^{k} \xi_{i}^{*} \otimes \xi_{i}$. Moreover

$$
\left(\left\langle\left(c_{i}^{(k)}\right) \xi,\left(c_{j}^{(k)}\right) \xi\right\rangle\right)_{i, j=1}^{\ell}=\left(\operatorname{trace}\left(c_{j}^{*} c_{i} y\right)\right)_{i, j=1}^{\ell}
$$

To show that $W_{m}\left(\mathbf{c}^{(k)}\right)$ is convex we need only show that $W_{m}\left(\mathbf{c}^{(k+1)}\right)=$ $W_{m}\left(\mathbf{c}^{(k)}\right)$ and if $k=\operatorname{dim} H$ that is clearly true. For $k=\ell<\operatorname{dim} H$, start with
$\alpha=\left(\operatorname{trace}\left(c_{j}^{*} c_{i} y_{0}\right)\right)_{i, j=1}^{\ell} \in W_{m}\left(\mathbf{c}^{(k+1)}\right)$ where $y_{0}=\sum_{i=1}^{k+1} \xi_{i}^{*} \otimes \xi_{i}$ is positive, of trace 1 and rank at most $k+1$. If the rank of y_{0} is $<k+1$ we are done and so we assume that the rank is $k+1$. We will work within the span of the ξ_{i}, by taking P to be the orthogonal projection onto the span, temporarily restricting H to $P H$ and considering $c_{i j}=P c_{j}^{*} c_{i} P \in \mathcal{B}(P H)$ in place of $c_{j}^{*} c_{i}$. Note that $c_{i j}^{*}=c_{j i}$.

Consider

$$
S_{k+1}=\left\{y \in \mathcal{B}(P H): y>0, \operatorname{trace} y=1, \operatorname{trace}\left(c_{i j} y\right)=\alpha_{i j} \text { for } 1 \leq i, j \leq \ell\right\}
$$

Note that this set is compact (a closed subset of the trace one and positive definite matrices). The total number of real linear equations to be satisfied by $y \in S_{k+1}$ is $1+\ell^{2}$ and we are working inside the hermitian elements of $\mathcal{B}(P H)$, a space of dimension $(\operatorname{dim} P H)^{2}=(\ell+1)^{2}>1+\ell^{2}$. More precisely we have $S_{k+1} \subset\left\{y=y^{*} \in \mathcal{B}(P H)\right.$, trace $\left.y=1\right\}=\Pi_{k+1}$, an affine space of dimension $(\ell+1)^{2}-1 . \quad S_{k+1}$ is the intersection of the convex set Σ_{k+1} of positive elements of Π_{k+1} with an affine subspace of Π_{k+1} of codimension ℓ^{2}. $S_{k+1} \neq \emptyset$ because of y_{0}. Thus S_{k+1} must contain some point y which is not a relative interior point of $\Sigma_{k+1} \subset \Pi_{k+1}$. Such a y must have rank $\leq k$ and so $\alpha=\left(\operatorname{trace}\left(c_{j}^{*} c_{i} y\right)\right)_{i, j=1}^{\ell} \in W_{m}\left(\mathbf{c}^{(k)}\right)$.

The statement about $W_{m, e}$ now follows.

REMARK 2.5. The argument above is a proof of a remnant of convexity for the joint (spatial) numerical range of the finite list of operators on $\mathcal{B}(H)$. The Toeplitz-Hausdorff theorem asserts that the numerical range of a single operator is convex. That is known to be false in general for the joint numerical range of two operators $\left\{\left(\left\langle x_{1} \xi, \xi\right\rangle,\left\langle x_{2} \xi, \xi\right\rangle\right): \xi \in H,\|\xi\|=1\right\}$, though it is true for two hermitian operators x_{1}, x_{2}. The argument above shows that the set of all convex combinations of k elements of the joint numerical range of n operators $x_{1}, x_{2}, \ldots, x_{n} \in \mathcal{B}(H)$ is convex provided $(k+1)^{2}>1+d$ for d the dimension of the real span of the real and imaginary parts of the x_{i} (or $k=\operatorname{dim} H)$.

There is a case where the joint numerical range is known to be convex, that is for a commuting n-tuple of normal operators $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ (see $[6$, p. 137]). It follows that if $c_{j}^{*} c_{i}$ are commuting operators, then $W_{m}(\mathbf{c})$ is convex.

3. Norms of elementary operators on $\mathcal{B}(H)$

The Haagerup estimate (2) can be derived from the following matrix formulation of the representation (1)

$$
T x=\left[a_{1}, a_{2}, \ldots, a_{\ell}\right]\left(x \otimes I_{\ell}\right)\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{\ell}
\end{array}\right]=\mathbf{a}\left(x \otimes I_{\ell}\right) \mathbf{b}
$$

where $x \otimes I_{\ell}$ is the block diagonal element of $M_{\ell}(A)=A \otimes M_{\ell}$ with x 's along the diagonal. We will use this row (a) and column (b) notation often. From $T x=\mathbf{a}\left(x \otimes I_{\ell}\right) \mathbf{b}(x \in A), T^{(k)}(X)=\mathbf{a}^{(k)}\left(X \otimes I_{\ell}\right) \mathbf{b}^{(k)}\left(X \in M_{k}(A)\right)$ where

$$
\mathbf{a}^{(k)}=\left[a_{1} \otimes I_{k}, a_{2} \otimes I_{k}, \ldots, a_{\ell} \otimes I_{k}\right]
$$

and $\mathbf{b}^{(k)}$ is similarly related to \mathbf{b}. We get the estimate (2) from $\|T\|_{k} \leq$ $\left\|\mathbf{a}^{(k)}\right\|\left\|\mathbf{b}^{(k)}\right\|=\|\mathbf{a}\|\|\mathbf{b}\|$. From (2) we get

$$
\begin{equation*}
\|T\|_{c b} \leq \frac{1}{2}\left(\left\|\sum_{j=1}^{\ell} a_{j} a_{j}^{*}\right\|+\left\|\sum_{j=1}^{\ell} b_{j}^{*} b_{j}\right\|\right) \tag{3}
\end{equation*}
$$

As a simple argument shows, this estimate is essentially equivalent to (2) because of the ambiguity in the choice of a_{i} and b_{i} in (1).

This ambiguity extends at least to the bilinearity of $x \mapsto a x b$ in a and b and we can say that every $T \in \mathcal{E} \ell(A)$ can be represented in the form (1) with linearly independent $\left(a_{i}\right)_{i=1}^{\ell}$ and $\left(b_{i}\right)_{i=1}^{\ell}$. For general A, further ambiguity can arise (for example from the centre of the multiplier algebra $M(A)$-see [1], [8]) but if we simplify to the case of $A=\mathcal{B}(H)$ then no further ambiguity can arise.

An argument using polar decompositions given in [11, Lemma 9.2.3] shows that the infimum of the right hand side of (3) over all possible representations (1) of T is the same as the infimum with $\left(a_{i}\right)_{i=1}^{\ell}$ and $\left(b_{i}\right)_{i=1}^{\ell}$ assumed linearly independent. In the case of $A=\mathcal{B}(H)$ we can relate all such linearly independent representations of T to one another via an invertible matrix $\alpha=\left(\alpha_{i j}\right)_{i, j=1}^{\ell}$ of scalars:

$$
T x=\sum_{i=1}^{\ell} a_{i}^{\prime} x b_{j}^{\prime}=\mathbf{a}^{\prime}\left(x \otimes I_{\ell}\right) \mathbf{b}^{\prime}=\mathbf{a} \alpha^{-1}\left(x \otimes I_{\ell}\right) \alpha \mathbf{b}
$$

We have

$$
\begin{align*}
W_{m}\left(\mathbf{b}^{\prime}\right) & =\alpha W_{m}(\mathbf{b}) \alpha^{*} \tag{4}\\
W_{m}\left(\left(\mathbf{a}^{\prime}\right)^{*}\right) & =\left(\alpha^{-1}\right)^{*} W_{m}\left(\mathbf{a}^{*}\right) \alpha^{-1} \tag{5}
\end{align*}
$$

by simple calculations. If we assume that α is unitary, then the trace is invariant and we have similar relations for $W_{m, e}$, the elements of $\overline{W_{m}}$ of maximal trace:
(6) $\quad W_{m, e}\left(\left(\mathbf{a}^{\prime}\right)^{*}\right)=\alpha W_{m, e}\left(\mathbf{a}^{*}\right) \alpha^{*}, W_{m, e}\left(\mathbf{b}^{\prime}\right)=\alpha W_{m, e}(\mathbf{b}) \alpha^{*} \quad\left(\alpha^{*}=\alpha^{-1}\right)$.

An important fact we will use is that there is a representation of T with the right hand side of (3) attaining the minimum possible. A more general statement is shown in [11, Lemma 9.2.7], but the fact we use can be shown by elementary means.

Proposition 3.1. Let $A=\mathcal{B}(H)$ and let $T \in \mathcal{E} \ell(\mathcal{B}(H))$ be given by (1). Then we have equality in

$$
\|T\| \leq\|T\|_{c b} \leq \frac{1}{2}\left(\left\|\sum_{j=1}^{\ell} a_{j} a_{j}^{*}\right\|+\left\|\sum_{j=1}^{\ell} b_{j}^{*} b_{j}\right\|\right)
$$

if and only if the intersection

$$
W_{m, e}\left(a_{1}^{*}, a_{2}^{*}, \ldots, a_{\ell}^{*}\right) \cap W_{m, e}\left(b_{1}, b_{2}, \ldots, b_{\ell}\right)
$$

is nonempty.
Proof. Consider first the case when H is finite-dimensional and the intersection is non-empty. Thus there exist unit vectors $\xi, \eta \in H$ with $\left\langle a_{j} a_{i}^{*} \xi, \xi\right\rangle=$ $\left\langle b_{j}^{*} b_{i} \eta, \eta\right\rangle$ for $1 \leq i, j \leq \ell$ and

$$
\sum_{i}\left\langle a_{i} a_{i}^{*} \xi, \xi\right\rangle=\left\|\sum_{i} a_{i} a_{i}^{*}\right\|=\left\|\sum_{i} b_{i}^{*} b_{i}\right\|
$$

Then $u\left(b_{j} \eta\right)=a_{j}^{*} \xi$ specifies a unique unitary map u from the span of $b_{j} \eta$ to the span of $a_{j} \xi$. (To make the argument more easy to follow we can assume that $\left(\left\langle b_{j}^{*} b_{i} \eta, \eta\right\rangle\right)_{i, j}$ is a diagonal matrix by using a unitary matrix α and replacing $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{\ell}\right)$ by $\mathbf{a} \alpha^{*}$ and $\mathbf{b}=\left[b_{1}, b_{2}, \ldots, b_{\ell}\right]^{t}$ by $\left.\alpha \mathbf{b}.\right)$

We can then extend u to a unitary (or unitary times orthogonal projection) map on H and compute that

$$
\langle T(u) \eta, \xi\rangle=\sum_{i=1}^{\ell}\left\langle u b_{i} \eta, a_{i}^{*} \xi\right\rangle=\sum_{i=1}^{\ell}\left\langle a_{i} a_{i}^{*} \xi, \xi\right\rangle=\|\mathbf{a}\|=\|\mathbf{b}\| .
$$

Thus we have

$$
\|T\| \geq(1 / 2)(\|\mathbf{a}\|+\|\mathbf{b}\|) \geq\|T\|_{c b} \geq\|T\|_{1}=\|T\|
$$

forcing equality all around in this case.
When H is infinite dimensional we have to modify the argument only slightly to take account of that fact that we can only find unit ξ and η so as to get arbitrarily close approximations $\left\langle a_{j} a_{i}^{*} \xi, \xi\right\rangle \cong\left\langle b_{j}^{*} b_{i} \eta, \eta\right\rangle$ for $1 \leq i, j \leq \ell$ and

$$
\sum_{i}\left\langle a_{i} a_{i}^{*} \xi, \xi\right\rangle \cong\left\|\sum_{i} a_{i} a_{i}^{*}\right\|=\left\|\sum_{i} b_{i}^{*} b_{i}\right\| .
$$

We can then say that our u will have norm approximately 1 .
For the converse, if $\left\|\sum_{i} a_{i} a_{i}^{*}\right\| \neq\left\|\sum_{i} b_{i}^{*} b_{i}\right\|$, then we have strict inequality between the right hand sides of (2) and (3). So we may suppose equality and normalise $\left\|\sum_{i} a_{i} a_{i}^{*}\right\|=\left\|\sum_{i} b_{i}^{*} b_{i}\right\|=1$.

We know that $\|T\|=\sup \|T(u)\|$ over u unitary (by the Russo-Dye theorem [21], [12], or the more elementary fact that the each element of the open
unit ball of $\mathcal{B}(H)$ is an average of unitaries [15, p. 253]). Now $\|T(u)\|=$ $\sup \Re\langle T(u) \eta, \xi\rangle$ over unit vectors $\xi, \eta \in H$ and we note that

$$
\Re\langle T(u) \eta, \xi\rangle=\sum_{i=1}^{\ell} \Re\left\langle u b_{i} \eta, a_{i}^{*} \xi\right\rangle
$$

Let $\zeta_{i}=u b_{i} \eta$ and $\theta_{i}=a_{i}^{*} \xi$. Now

$$
\left(\left\langle\zeta_{i}, \zeta_{j}\right\rangle\right)_{i j}=\left(\left\langle b_{j}^{*} b_{i} \eta, \eta\right\rangle\right)_{i j} \in W_{m}(\mathbf{b})
$$

while $\left(\left\langle\theta_{i}, \theta_{j}\right\rangle\right)_{i j} \in W_{m}\left(\mathbf{a}^{*}\right)$.
Clearly

$$
\begin{aligned}
\Re\langle T(u) \eta, \xi\rangle & =\sum_{i=1}^{\ell} \Re\left\langle\zeta_{i}, \theta_{i}\right\rangle \leq \sum_{i=1}^{\ell}\left\|\zeta_{i}\right\|\left\|\theta_{i}\right\| \\
& \leq \sqrt{\sum_{i=1}^{\ell}\left\|\zeta_{i}\right\|^{2}} \sqrt{\sum_{i=1}^{\ell}\left\|\theta_{i}\right\|^{2}} \leq 1
\end{aligned}
$$

and we have strict inequality unless $\zeta_{i}=\theta_{i}$ for all i and $\sum_{i=1}^{\ell}\left\|\zeta_{i}\right\|^{2}=$ $\sum_{i=1}^{\ell}\left\|\theta_{i}\right\|^{2}=1$, which forces the desired condition

$$
\left(\left\langle\zeta_{i}, \zeta_{j}\right\rangle\right)_{i j}=\left(\left\langle\theta_{i}, \theta_{j}\right\rangle\right)_{i j} \in W_{m, e}\left(\mathbf{a}^{*}\right) \cap W_{m, e}(\mathbf{b}) \neq \emptyset
$$

Our aim is to quantify the inequality when the intersection is empty and show $\sum_{i=1}^{\ell} \Re\left\langle\zeta_{i}, \theta_{i}\right\rangle<1-\varepsilon$ where $\varepsilon>0$ depends on $W_{m}\left(\mathbf{a}^{*}\right)$ and $W_{m}(\mathbf{b})$. The following argument is essentially a proof of the Cauchy-Schwarz estimate just above. With an eye to reusing this argument later, we prove a little more than we need just now. Applying the lemma to the closures $W_{\theta}=\overline{W_{m}}\left(\mathbf{a}^{*}\right)$ and $W_{\zeta}=\overline{W_{m}}(\mathbf{b})$ gives the desired inequality.

Lemma 3.2. Let W_{θ} and W_{ζ} be two closed subsets of M_{ℓ}^{+}, where the maximum value of the trace on each set is 1 and $W_{\theta} \cap W_{\zeta}$ has no elements of trace 1. Then there are $\varepsilon>0$ and open subsets U_{θ} and U_{ζ} of the positive definite $\ell \times \ell$ matrices with $W_{\theta} \subset U_{\theta}$ and $W_{\zeta} \subset U_{\zeta}$ so that for any vectors θ_{i}, ζ_{i} in any Hilbert space H such that $\left(\left\langle\theta_{i}, \theta_{j}\right\rangle\right)_{i, j=1}^{\ell} \in U_{\theta},\left(\left\langle\zeta_{i}, \zeta_{j}\right\rangle\right)_{i, j=1}^{\ell} \in U_{\zeta}$ we always have

$$
\Re \sum_{i=1}^{\ell}\left\langle\theta_{i}, \zeta_{i}\right\rangle<1-\varepsilon
$$

Proof. Let $W_{\theta, e}$ be the intersection of W_{θ} with the matrices of trace 1, and similarly for $W_{\zeta, e}$. There is a positive shortest distance $\delta_{0}>0$ between points of the sets of $W_{\theta, e}$ and $W_{\zeta, e}$. (We measure the distance in the L^{2} or Hilbert-Schmidt norm $\|\cdot\|_{2}$ on M_{ℓ}.) We can find $r_{0}<1$ so that

$$
\alpha \in W_{\theta}, \operatorname{trace}(\alpha) \geq r_{0} \Rightarrow \operatorname{dist}\left(\alpha, W_{\theta, e}\right)<\delta_{0} / 4
$$

(If not, a compactness argument produces extra points in $W_{\theta, e}$.) We can make a similar claim for $W_{\zeta, e}$ and we choose r_{0} to work for both. Of course

$$
\alpha, \beta \in M_{\ell}^{+}, \operatorname{dist}\left(\alpha, W_{\theta, e}\right)<\frac{\delta_{0}}{4}, \operatorname{dist}\left(\beta, W_{\zeta, e}\right)<\frac{\delta_{0}}{4} \Rightarrow\|\alpha-\beta\|_{2}>\delta_{0} / 2
$$

We can further find $r_{1}<1$ so that $r_{1}<t \leq 1$ implies

$$
\min \left(\left\|\alpha-t^{2} \beta\right\|_{2},\left\|t^{2} \alpha-\beta\right\|_{2}\right)>\delta_{1}=\delta_{0} / 4
$$

for all such α and β. Choose $\varepsilon_{1}>0$ with

$$
1+\varepsilon_{1}<\min \left(\frac{1}{r_{0}}, \frac{1}{r_{1}}, 2\right) \text { and }\left(1+\varepsilon_{1}\right)\left(1+\varepsilon_{1}-\delta_{1}^{2} / 8\right)<1
$$

We take

$$
\begin{aligned}
U_{\theta}= & \left\{\alpha \in M_{\ell}^{+}: \operatorname{trace}(\alpha)<r_{0}\right\} \\
& \cup\left\{\alpha \in M_{\ell}^{+}: \operatorname{trace}(\alpha)<1+\varepsilon_{1} \text { and } \operatorname{dist}\left(\alpha, W_{\theta, e}\right)<\frac{\delta_{0}}{4}\right\} \\
U_{\zeta}= & \left\{\beta \in M_{\ell}^{+}: \operatorname{trace}(\beta)<r_{0}\right\} \\
& \cup\left\{\beta \in M_{\ell}^{+}: \operatorname{trace}(\beta)<1+\varepsilon_{1} \text { and } \operatorname{dist}\left(\beta, W_{\zeta, e}\right)<\frac{\delta_{0}}{4}\right\}
\end{aligned}
$$

and we claim these open sets have the desired properties.
By the choice of r_{0}, we have $W_{\theta} \subset U_{\theta}$ and $W_{\zeta} \subset U_{\zeta}$.
Consider now vectors θ_{i}, ζ_{i} in any Hilbert space H such that

$$
\alpha=\left(\left\langle\theta_{i}, \theta_{j}\right\rangle\right)_{i, j=1}^{\ell} \in U_{\theta} \text { and } \beta=\left(\left\langle\zeta_{i}, \zeta_{j}\right\rangle\right)_{i, j=1}^{\ell} \in U_{\zeta}
$$

By the symmetry of the situation so far, it is enough to verify the claim in the case $\operatorname{trace}(\alpha)=\sum_{i}\left\|\theta_{i}\right\|^{2} \leq \operatorname{trace}(\beta)=\sum_{i}\left\|\zeta_{i}\right\|^{2}$. If trace $(\alpha) \leq r_{0}$ we can use trace $(\beta)<1+\varepsilon_{1}$ to get $\sum_{i=1}^{\ell} \Re\left\langle\theta_{i}, \zeta_{i}\right\rangle<\sqrt{r_{0}\left(1+\varepsilon_{1}\right)}<1$.

Let

$$
t=\frac{\sum_{i=1}^{\ell} \Re\left\langle\theta_{i}, \zeta_{i}\right\rangle}{\sum_{i}\left\|\zeta_{i}\right\|^{2}}
$$

From $\operatorname{trace}(\alpha) \leq \operatorname{trace}(\beta)$ we must have $t \leq 1$. Note that if $t \leq r_{1}$ we have $\sum_{i=1}^{\ell} \Re\left\langle\theta_{i}, \zeta_{i}\right\rangle \leq r_{1} \sum_{i}\left\|\zeta_{i}\right\|^{2} \leq r_{1}\left(1+\varepsilon_{1}\right)<1$.

Finally for $t>r_{1}$, trace $(\alpha)>r_{0}$ (and hence trace $\left.(\beta)>r_{0}\right)$ we must have $\operatorname{dist}\left(\alpha, W_{\theta, e}\right)<\delta_{0} / 4$ and $\operatorname{dist}\left(\beta, W_{\theta, e}\right)<\delta_{0} / 4$ and hence

$$
\begin{aligned}
\delta_{1}^{2} & \leq\left\|\left(\left\langle\theta_{i}, \theta_{j}\right\rangle\right)_{i j}-t^{2}\left(\left\langle\zeta_{i}, \zeta_{j}\right\rangle\right)_{i j}\right\|_{2}^{2} \\
& =\sum_{i j}\left|\left\langle\theta_{i}, \theta_{j}\right\rangle-t^{2}\left\langle\zeta_{i}, \zeta_{j}\right\rangle\right|^{2} \\
& =\sum_{i j}\left|\left\langle\theta_{i}-t \zeta_{i}, \theta_{j}\right\rangle+\left\langle t \zeta_{i}, \theta_{j}-t \zeta_{j}\right\rangle\right|^{2} \\
& \leq 2\left(\sum_{i j}\left|\left\langle\theta_{i}-t \zeta_{i}, \theta_{j}\right\rangle\right|^{2}+\left|\left\langle t \zeta_{i}, \theta_{j}-t \zeta_{j}\right\rangle\right|^{2}\right) \\
& \leq 2\left(\sum_{i}\left\|\theta_{i}\right\|^{2}+t^{2}\left\|\zeta_{i}\right\|^{2}\right) \sum_{j}\left\|\theta_{j}-t \zeta_{j}\right\|^{2} \\
& \leq 4\left(1+\varepsilon_{1}\right)\left(\sum_{j}\left\|\theta_{j}\right\|^{2}-t^{2} \sum_{j}\left\|\zeta_{j}\right\|^{2}\right)
\end{aligned}
$$

(using our choice of t). Hence

$$
\begin{aligned}
\left(\Re \sum_{i=1}^{\ell}\left\langle\theta_{i}, \zeta_{i}\right\rangle\right)^{2} & <\left(1+\varepsilon_{1}-\frac{\delta_{1}^{2}}{8}\right) \sum_{i}\left\|\zeta_{i}\right\|^{2} \\
& \leq\left(1+\varepsilon_{1}-\frac{\delta_{1}^{2}}{8}\right)\left(1+\varepsilon_{1}\right) \\
& =1-\varepsilon_{2}<1
\end{aligned}
$$

in this case. In all cases, we have

$$
\Re \sum_{i=1}^{\ell}\left\langle\theta_{i}, \zeta_{i}\right\rangle \leq \max \left(\sqrt{1-\varepsilon_{2}}, r_{1}\left(1+\varepsilon_{1}\right), \sqrt{r_{0}\left(1+\varepsilon_{1}\right)}\right)=1-\varepsilon,
$$

as claimed.
Theorem 3.3. Let $A=\mathcal{B}(H)$ and let $T \in \mathcal{E} \ell(\mathcal{B}(H))$ be given by (1). Then we have equality in (3) if and only if the intersection of the convex hulls of $W_{m, e}\left(a_{1}^{*}, a_{2}^{*}, \ldots, a_{\ell}^{*}\right)$ and $W_{m, e}\left(b_{1}, b_{2}, \ldots, b_{\ell}\right)$ is nonempty.

Moreover $\|T\|_{c b}=\|T\|_{k}$ with $k=\min (\ell, \operatorname{dim}(H))$.
Proof. It follows from Propositions 2.4 and 3.1 that for $k=\min (\ell, \operatorname{dim}(H))$, $\|T\|_{k}=\|T\|_{c b}=$ the right hand side of (3) if the convex hulls intersect.

We know we can represent T in such a way as to get the minimum possible on the right hand side of (3). Fix $k=\min (\ell, \operatorname{dim}(H))$. We claim that in that
case $W_{m, e}\left(\left(\mathbf{a}^{(k)}\right)^{*}\right) \cap W_{m, e}\left(\mathbf{b}^{(k)}\right) \neq \emptyset$. Assume we have normalised T so that

$$
\left\|\sum_{i} a_{i} a_{i}^{*}\right\|=\left\|\sum_{i} b_{i}^{*} b_{i}\right\|=1
$$

As the sets $W_{m, e}\left(\left(\mathbf{a}^{(k)}\right)^{*}\right)$ and $W_{m, e}\left(\mathbf{b}^{(k)}\right)$ are convex and closed by Proposition 2.4 , if they do not intersect they can be separated by an \mathbb{R}-linear functional ρ on the hermitian matrices. That is,

$$
\sup \left\{\rho(\alpha): \alpha \in W_{m, e}\left(\left(\mathbf{a}^{(k)}\right)^{*}\right)\right\}<\inf \left\{\rho(\beta): \beta \in W_{m, e}\left(\mathbf{b}^{(k)}\right)\right\}
$$

As the trace is constant on these sets, we can subtract a multiple of the trace from ρ and assume there is $\delta>0$ with

$$
\sup \left\{\rho(\alpha): \alpha \in W_{m, e}\left(\mathbf{a}^{*}\right)\right\} \leq-\delta<\delta \leq \inf \left\{\rho(\beta): \beta \in W_{m, e}(\mathbf{b})\right\}
$$

Such an \mathbb{R}-linear functional can be written as

$$
\rho(\alpha)=\sum_{i, j=1}^{\ell} \gamma_{j i} \alpha_{i j}=\operatorname{trace}(\gamma \alpha)
$$

with $\gamma^{*}=\gamma$. Arguing as in the proof of Lemma 3.2 we can find $r<1$ so that

$$
\alpha \in W_{m}\left(\mathbf{a}^{*}\right), \operatorname{trace}(\alpha) \geq r \Rightarrow \rho(\alpha)<-\frac{\delta}{2}
$$

and

$$
\beta \in W_{m}(\mathbf{b}), \operatorname{trace}(\beta) \geq r \Rightarrow \rho(\beta)>\frac{\delta}{2}
$$

Now consider a new representation of T as $T x=\sum_{i} a_{i}^{\prime} x b_{i}^{\prime}$ where

$$
\mathbf{a}^{\prime}=\mathbf{a} e^{t \gamma}, \quad \mathbf{b}^{\prime}=e^{-t \gamma} \mathbf{b}
$$

and $t>0$ is very small. From (4), elements of $\left.W_{m}\left(\mathbf{b}^{\prime}\right)\right)$ have the form

$$
\beta^{\prime}=e^{-t \gamma} \beta e^{-t \gamma}
$$

with $\beta \in W_{m}(\mathbf{b})$. For $\operatorname{trace}(\beta) \leq r$ we can assume t is small enough that $\operatorname{trace}\left(\beta^{\prime}\right) \leq(1+r) / 2<1$. For $\operatorname{trace}(\beta) \geq r$ we have
$\left.\frac{d}{d t}\right|_{t=0} \operatorname{trace}\left(e^{-t \gamma} \beta e^{-t \gamma}\right)=-\operatorname{trace}(\gamma \beta+\beta \gamma)=-2 \operatorname{trace}(\gamma \beta)=-2 \rho(\beta)<-\delta$.
Thus, by uniform continuity of the derivative as a function of t at such $\beta \in$ $W_{m}(\mathbf{b})$, for t small enough trace $\left(\beta^{\prime}\right)<1-(\delta / 2) t$. Similarly for small t, $\operatorname{trace}\left(\alpha^{\prime}\right)<1-(\delta / 2) t$ if $\operatorname{trace}(\alpha) \geq r$ while $\operatorname{trace}(\alpha) \leq(1+r) / 2$ for trace $(\alpha) \leq$ r. Thus, when $t>0$ is small we have

$$
\left\|\left(\mathbf{a}^{\prime}\right)^{*}\right\|<\left\|\mathbf{a}^{*}\right\| \text { and }\left\|\mathbf{b}^{\prime}\right\|<\|\mathbf{b}\|
$$

contradicting the choice of \mathbf{a} and \mathbf{b} to minimise the right hand side of (3).

Remark 3.4. For $T \in \mathcal{E} \ell(\mathcal{B}(H))$ the above gives a more constructive proof that $\|T\|_{c b}$ is the infimum of the estimates (3) or (2) than those in [20, Theorem 4.3], [7, Corollary 2] and (for the finite dimensional case) [10, p. 418]. The result is due to Haagerup [14] and his proof is published in [2, §5.4].

Example 3.5. Consider the map $T: M_{n} \rightarrow M_{n}$ where $T x$ has its first column the same as the transpose x^{t} / \sqrt{n} but zeros in all other columns. Then

$$
T x=\sum_{i=1}^{n} e_{i 1} x\left(e_{i 1} / \sqrt{n}\right)
$$

where $e_{i j}$ is as before (Remark 2.3). So in this case $a_{i}=\sqrt{n} b_{i}=e_{i 1}, a_{j} a_{i}^{*}=$ $e_{j i}, b_{j} b_{i}^{*}=\delta_{i j} e_{11} / n$ (where $\delta_{i j}$ is the Kronecker symbol). Thus the estimate (2) says $\|T\|_{c b} \leq 1$.

Taking the element of $M_{n}\left(M_{n}\right)$ with $e_{1 i}$ in the $(i, 1)$ block and zeros elsewhere, shows that $\|T\|_{n}=1$. One can check that $W_{m}\left(\mathbf{a}^{*}\right)$ consists of rank one projections while $W_{m, e}(\mathbf{b})$ is exactly $\left\{I_{n} / n\right\}$ ($I_{n}=$ the $n \times n$ identity matrix). It is clear then that for $k<n, W_{m, e}\left(\left(\mathbf{a}^{(k)}\right)^{*}\right)$ contains only matrices of rank at most k and does not intersect $W_{m, e}\left(\mathbf{b}^{(k)}\right)$. Hence $\|T\|_{k}<\|T\|_{c b}=\|T\|_{n}$ for $k<n$.

This example shows that the value $k=\ell$ in the theorem cannot be reduced (that is, with large $\operatorname{dim}(H)$).

EXAMPLE 3.6. We can relate our results to those of Stampfli [22] for the 'generalised derivations' $T x=a x-x b$. To have a balance between the left and right, we prefer to have it expressed as

$$
T x=(a / \sqrt{\|a\|}) x \sqrt{\|a\|}+\sqrt{\|b\|} x(-b / \sqrt{\|b\|})=a_{1} x b_{1}+a_{2} x b_{2}
$$

Then the estimate (3) becomes $\|T\|_{c b} \leq\|a\|+\|b\|$. In this case the matrices in $W_{m, e}\left(\mathbf{a}^{*}\right)$ and $W_{m, e}(\mathbf{b})$ have diagonals $(\|a\|,\|b\|)$ and Stampfli shows that the off-diagonal entries form convex sets. The criterion that $W_{m, e}\left(\mathbf{a}^{*}\right) \cap W_{m, e}(\mathbf{b}) \neq$ \emptyset reduces to Stampfli's criterion [22, Theorem 7] for $\|T\|=\|a\|+\|b\|$. Stampfli shows that this equality is satisfied for some alternative representation of T as $T x=(a-\lambda) x-x(b-\lambda)$ with $\lambda \in \mathbb{C}$.

Corollary 3.7. Let $A=\mathcal{B}(H)$ and let $T \in \mathcal{E} \ell(\mathcal{B}(H))$. Then there is a choice of $a_{i}, b_{i} \in \mathcal{B}(H)$ so that T is given by (1), each of $\left(a_{i}\right)_{i=1}^{\ell}$ and $\left(b_{i}\right)_{i=1}^{\ell}$ is linearly independent and for $k=\min (\ell, \operatorname{dim}(H))$

$$
W_{m, e}\left(\left(a_{1}^{(k)}\right)^{*},\left(a_{2}^{(k)}\right)^{*}, \ldots,\left(a_{\ell}^{(k)}\right)^{*}\right) \cap W_{m, e}\left(b_{1}^{(k)}, b_{2}^{(k)}, \ldots, b_{\ell}^{(k)}\right) \neq \emptyset
$$

Proof. We showed this in the course of the proof of the theorem.

Corollary 3.8. Let $A=\mathcal{B}(H)$ and let $T \in \mathcal{E} \ell(\mathcal{B}(H))$ be given by (1). Let $k=\min (\ell, \operatorname{dim}(H))$. Then

$$
\|T\|_{c b}=\|T\|_{k}=\sup \left\{\left\|T^{(k)}(u)\right\|: u \in \mathcal{B}\left(H^{k}\right),\|u\| \leq 1, \operatorname{rank}(u) \leq \ell\right\}
$$

Proof. Choose a_{i} and b_{i} so that the conclusions of the previous corollary hold. Recall $T^{(k)}(x)=\sum_{i} a_{i}^{(k)} x b_{i}^{(k)}$. In the proof of Proposition 3.1 we found that the norm of $T^{(k)}$ is the supremum in the statement.

Corollary 3.9. Let $A=\mathcal{B}(H)$ and let $T \in \mathcal{E} \ell(\mathcal{B}(H))$ be given by (1). Let $k \geq 1$. Then

$$
\|T\|_{k}=\sup \Re \sum_{i=1}^{\ell}\left\langle\zeta_{i}, \theta_{i}\right\rangle
$$

where the supremum is taken over all choices of vectors $\theta_{i}, \zeta_{i} \in H^{k}$ such that

$$
\left(\left\langle\theta_{i}, \theta_{j}\right\rangle\right)_{i j} \in W_{m}\left(\left(\mathbf{a}^{(k)}\right)^{*}\right), \quad\left(\left\langle\zeta_{i}, \zeta_{j}\right\rangle\right)_{i j} \in W_{m}\left(\mathbf{b}^{(k)}\right)
$$

Proof. This is part of the proof of Proposition 3.1, when we apply it to $T^{(k)}(X)=\sum_{i=1}^{\ell} a_{i}^{(k)} X b_{i}^{(k)}$. We had $\theta_{i}=\left(a_{i}^{(k)}\right)^{*} \xi, \zeta_{i}=u b_{i}^{(k)} \eta$.

Example 3.10. One may wonder whether the results can be improved if one restricts to $T \in \mathcal{E} \ell(\mathcal{B}(H))$ with the self-adjointness property $T^{*}(x)=$ $T\left(x^{*}\right)^{*}=T(x)$, and indeed we present improved bounds on k for this case below. Here are some examples with $T=T^{*}$.

The example of Choi [9] gives an elementary operator T of length n^{2} (on $M_{n}, n \geq 2$) which is $(n-1)$-positive but not n-positive (and is unital up to scaling: $T(x)=(n-1)(\operatorname{trace} x) I-x, T(I)=(n(n-1)-1) I)$. Thus for $m<n$ we have $\|T\|_{m}=\|T(I)\|<\|T\|_{n}$. One may check that in this case T can be written $T x=\sum_{j=1}^{n^{2}-1} b_{j}^{*} x b_{j}-b_{n^{2}}^{*} x b_{n^{2}}$.

Modifying Example 3.5 consider $T: M_{n+1} \rightarrow M_{n+1}$ where

$$
T x=\sum_{j=2}^{n+1} e_{j 1} x\left(e_{j 1} / \sqrt{n}\right)+\sum_{j=2}^{n+1}\left(e_{1 j} / \sqrt{n}\right) x e_{1 j}
$$

One may check that $\|T\|_{c b} \leq 1$ by the Haagerup estimate and $\|T\|_{n} \geq 1$ by taking the element of $M_{n}\left(M_{n+1}\right)$ with $e_{1, i+1}$ in the $(i, 1)$ block and zeros elsewhere. A calculation with $W_{m, e}$ shows that $\|T\|_{n-1}<1$. One can check that in this case we can rewrite T in the form $\sum_{j=1}^{n} b_{j}^{*} x b_{j}-\sum_{j=n+1}^{2 n} b_{j}^{*} x b_{j}$.

Lemma 3.11. If $T \in \mathcal{E} \ell(\mathcal{B}(H))$ has $T^{*}=T$ then T can be written as $T x=\sum_{j=1}^{m} b_{j}^{*} x b_{j}-\sum_{j=m+1}^{\ell} b_{j}^{*} x b_{j} \quad($ for $0 \leq m \leq \ell=$ the length of T) with $\|T\|_{c b}=\left\|\sum_{j=1}^{\ell} b_{j}^{*} b_{j}\right\|$.

Proof. We begin by expressing $T x=\sum_{j=1}^{\ell} \tilde{a}_{j} x \tilde{b}_{j}$ so as to have equality in the Haagerup estimate and linearly independent sets $\left\{\tilde{a}_{j}\right\}$ and $\left\{\tilde{b}_{j}\right\}$. In [17, 4.9] it is shown that we can use a unitary rewriting (so it leaves the Haagerup estimate unchanged) to get a representation of T with $\tilde{a}_{j}=\lambda_{j} \tilde{b}_{j}^{*}$ for some real scalars λ_{j}. We may assume that the terms are ordered so that the positive λ_{j} (if any) come first and the negative ones later. We then take $b_{j}=\sqrt{\left|\lambda_{j}\right|} \tilde{b}_{j}$. With $\varepsilon_{j}=\lambda_{j} /\left|\lambda_{j}\right|$ we then have the desired form of the representation $T x=\sum_{j=1}^{\ell} \varepsilon_{j} b_{j}^{*} x b_{j}$ and it remains to establish that the Haagerup bound is sharp in this representation.

$$
\begin{aligned}
\|T\|_{c b} & \leq\left\|\sum_{j=1}^{\ell} b_{j}^{*} b_{j}\right\|=\sup _{\xi \in H,\|\xi\|=1} \sum_{j=1}^{\ell}\left|\lambda_{j}\right|\left\langle\tilde{b}_{j} \xi, \tilde{b}_{j} \xi\right\rangle \\
& \leq \sup _{\xi \in H,\|\xi\|=1} \sqrt{\sum_{i=1}^{\ell}\left|\lambda_{i}\right|^{2}\left\langle\tilde{b}_{i} \xi, \tilde{b}_{i} \xi\right\rangle \sum_{j=1}^{\ell}\left\langle\tilde{b}_{j} \xi, \tilde{b}_{j} \xi\right\rangle} \\
& \leq \sqrt{\left\|\sum_{i=1}^{\ell} \tilde{a}_{i} \tilde{a}_{i}^{*}\right\|\left\|\sum_{j=1}^{\ell} \tilde{b}_{j}^{*} \tilde{b}_{j}\right\|}=\|T\|_{c b}
\end{aligned}
$$

Theorem 3.12. Suppose $T \in \mathcal{E} \ell(\mathcal{B}(H))$ has $T^{*}=T$ and length ℓ. Let $k=[\sqrt{1+2 m(\ell-m)}]$ where m is as in Lemma 3.11. Then $\|T\|_{k}=\|T\|_{c b}$.

Proof. If we represent T as in Lemma 3.11 we have $T x=\mathbf{a}\left(x \otimes I_{\ell}\right) \mathbf{b}$ with $\mathbf{a}=\left[\varepsilon_{1} b_{1}^{*}, \varepsilon_{2} b_{2}^{*}, \ldots, \varepsilon_{\ell} b_{\ell}^{*}\right], \mathbf{b}=\left[b_{1}, b_{2}, \ldots, b_{\ell}\right]^{t}$ and $\varepsilon_{j}=1(1 \leq j \leq m), \varepsilon_{j}=-1$ $(m<j \leq \ell)$. If $m=\ell$ then T is completely positive and $\|T\|=\|T\|_{c b}$. Similarly if $m=0,-T$ is completely positive.

Consider the finite dimensional case $\operatorname{dim} H<\infty$ first. Then we know that the extremal numerical ranges $W_{m, e}(\mathbf{a})$ and $W_{m, e}(\mathbf{b})$ correspond to the joint numerical ranges of the compressions $p a_{j}^{*} a_{i} p$ and $p b_{j}^{*} b_{i} p$ to the subspace $p H$ where $p H=\left\{\xi \in H: \sum_{j=1}^{\ell} b_{j}^{*} b_{j} \xi=\left\|\sum_{j=1}^{\ell} b_{j}^{*} b_{j}\right\| \xi\right\}$ is the eigenspace of the maximal eigenvalue (and p is the orthogonal projection). We can also see a simple relationship between $W_{m, e}(\mathbf{a})$ and $W_{m, e}(\mathbf{b})$-to get from a matrix $\alpha=\left(\alpha_{i j}\right)_{i . j=1}^{\ell} \in W_{m, e}(\mathbf{a})$ change $\alpha_{i j}$ to $-\alpha_{i j}$ in the blocks $\{(i, j): i \leq m, j>$ $m\} \cup\{(i, j): i>m, j \leq m\}$. As the convex hulls of $W_{m, e}(\mathbf{a})$ and $W_{m, e}(\mathbf{b})$ intersect (by Theorem 3.3) it follows that there is an α in the intersection of the convex hulls with $\left(\alpha_{i j}\right)_{i=1}^{m}{ }_{j=m+1}^{\ell}=0$.

By Remark 2.5, if $(k+1)^{2}>1+d$ with

$$
d=\operatorname{dim} \operatorname{span}_{\mathbb{R}}\left\{\left(p b_{j}^{*} b_{i} p+p b_{i}^{*} b_{j} p\right) / 2,\left(p b_{j}^{*} b_{i} p-p b_{i}^{*} b_{j} p\right) /(2 \imath)\right\}
$$

(and here $1 \leq i \leq m, m<j \leq \ell$), then there is such an α which is a convex combination of at most k elements of the joint numerical ranges of the $p b_{j}^{*} b_{i} p$. As $d \leq 2 m(\ell-m)$, the result follows.

Now consider $\operatorname{dim}(H)=\infty, T x=T^{*} x=\sum_{j=1}^{\ell} a_{j} x c_{j}$. We can see fairly easily that $\|T\|_{k}=\sup _{p}\left\|T_{p}\right\|_{k}$ where the supremum is over all finite dimensional projections p on H and $T_{p}(x)=p T(p x p) p=\sum_{j=1}^{\ell}\left(p a_{j} p\right) x\left(p c_{j} p\right)$. Given unit vectors $\xi=\left(\xi_{i}\right)_{i=1}^{k} \in H^{k}, \eta=\left(\eta_{i}\right)_{i=1}^{k} \in H^{k}$ and a unitary $u \in \mathcal{B}\left(H^{k}\right)$ choose p so that $\left\langle T^{(k)}(u) \eta, \xi\right\rangle$ is not changed when T is replaced by T_{p}. This means the range of p should contain all $\xi_{i}, \eta_{i}, b_{j} \eta_{i}, c_{j}^{*} \xi_{i}$ and all components of $u b_{j}^{(k)} \eta$.

If we further assume that p is large enough to ensure that $\left\{p a_{j} p: 1 \leq j \leq \ell\right\}$ and $\left\{p c_{j} p: 1 \leq j \leq \ell\right\}$ are each linearly independent, then we can show as follows that $(m, \ell-m)$ must be the same for T_{p} as for T. Given any two representations of T as $T x=\sum_{j=1}^{\ell} \varepsilon_{j} b_{j}^{*} x b_{j}=\sum_{j=1}^{\ell} \tilde{\varepsilon}_{j} \tilde{b}_{j}^{*} x \tilde{b}_{j}\left(\varepsilon_{j}, \tilde{\varepsilon_{j}} \in\{ \pm 1\}\right)$ there must be an invertible $\ell \times \ell$ matrix β with

$$
\left[\tilde{b}_{1}, \tilde{b}_{2}, \ldots, \tilde{b}_{\ell}\right]^{t}=\tilde{\mathbf{b}}=\beta^{-1}\left[b_{1}, b_{2}, \ldots, b_{\ell}\right]^{t}=\beta^{-1} \mathbf{b}
$$

and

$$
\left[\tilde{\varepsilon_{1}} \tilde{b}_{1}^{*}, \tilde{\varepsilon_{2}} \tilde{b}_{2}^{*}, \ldots, \tilde{\varepsilon_{\ell}} \tilde{b}_{\ell}^{*}\right]=\tilde{\mathbf{b}}^{*} \operatorname{diag}\left(\tilde{\varepsilon_{1}}, \tilde{\varepsilon_{2}}, \ldots, \tilde{\varepsilon_{\ell}}\right)=\mathbf{b}^{*} \operatorname{diag}\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{\ell}\right) \beta
$$

It follows that

$$
\operatorname{diag}\left(\tilde{\varepsilon_{1}}, \tilde{\varepsilon_{2}}, \ldots, \tilde{\varepsilon_{\ell}}\right)=\beta^{*} \operatorname{diag}\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{\ell}\right) \beta
$$

and so the number of j with $\varepsilon_{j}=1$ must be the same as the number where $\tilde{\varepsilon_{j}}=1$.

From the finite dimensional case (T_{p} is essentially an operator on $\mathcal{B}(p H)$) we get

$$
\|T\|_{c b}=\|T\|_{\ell}=\sup _{p}\left\|T_{p}\right\|_{\ell}=\sup _{p}\left\|T_{p}\right\|_{k}=\|T\|_{k}
$$

REmARK 3.13. The examples 3.10 suggest that the optimal k for Theorem 3.12 must be at least proportional to $\sqrt{m(\ell-m)}$, or about $\ell / 2$ in the worst case. But the Theorem requires k to be about $\sqrt{2}$ times what the examples indicate.

One may check that for $\ell=3, m=1$ it is necessary to have $k=2$ in some cases. For example $T \in \mathcal{E} \ell\left(M_{2}\right), T x=b_{1}^{*} x b_{1}-\left(b_{2}^{*} x b_{2}+b_{3}^{*} x b_{3}\right)$ where

$$
b_{1}=\left(\begin{array}{cc}
1 / \sqrt{2} & 0 \\
0 & 1
\end{array}\right), b_{2}=\left(\begin{array}{cc}
1 / \sqrt{2} & 0 \\
0 & -1
\end{array}\right), b_{3}=\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right)
$$

In this case $\sum_{j=1}^{3} b_{j}^{*} b_{j}=2 I$ and the joint numerical range of $\left(b_{1}^{*} b_{2}, b_{1}^{*} b_{3}\right)$ consists of $\left\{\left(\left|\xi_{1}\right|^{2} / 2-\left|\xi_{2}\right|^{2}, \xi_{1} \overline{\xi_{2}}\right):\left|\xi_{1}\right|^{2}+\left|\xi_{2}\right|^{2}=1\right\}$. This does not contain $(0,0)$ but its convex hull does. Hence $\|T\|_{c b}=2$ by Theorem 3.3, but $W_{m}\left(b_{1},-b_{2},-b_{3}\right) \cap W_{m}\left(b_{1}, b_{2}, b_{3}\right)=\emptyset$ and so $\|T\|<2$ by Proposition 3.1.

In a recent preprint [16] it is shown that for $T \in \mathcal{E} \ell(\mathcal{B}(H))$ of the form $T x=a^{*} x b+b^{*} x a,\|T\|=\|T\|_{c b}$ (which also follows from Theorem 3.12 for $\ell=2, m=1)$.

4. Elementary operators on C^{*}-algebras

To transfer our methods from the case $A=\mathcal{B}(H)$ to general C^{*}-algebras A we can rely on the irreducible representations $\pi: A \rightarrow \mathcal{B}\left(H_{\pi}\right)$ of A. As is customary we take \hat{A} to denote the unitary equivalence classes of irreducible representations of $A, P(A)$ to be the pure states of $A, S(A)$ all the states. We denote the unitary equivalence class of an irreducible representation π by $[\pi]$. For $\phi \in P(A)$, there is an associated (irreducible) cyclic representation π_{ϕ}. We call the equivalence class $\left[\pi_{\phi}\right]$ the 'support' of ϕ in \hat{A}. We let $F_{k}(A)(k=1,2, \ldots)$ denote the k-factorial states of A, which are finite convex combinations $\phi=\sum_{j=1}^{k} t_{j} \phi_{j}$ of $\phi_{j} \in P(A)$, all with the same support.

It is well known and easy to verify that for $T \in \mathcal{E} \ell(A)$ given as in (1), we have $\|T\|=\sup _{\pi \in \hat{A}}\left\|T^{\pi}\right\|$ where $T^{\pi}: \mathcal{B}\left(H_{\pi}\right) \rightarrow \mathcal{B}\left(H_{\pi}\right)$ is given by

$$
T^{\pi}(x)=\sum_{i=1}^{\ell} \pi\left(a_{i}\right) x \pi\left(b_{i}\right)
$$

(There is a technicality involved here when $a_{i}, b_{i} \in M(A)$ and then we must know that π can be extended to a representation of $M(A)$.) It is also well known that $\|T\|_{k}=\sup _{\pi}\left\|T^{\pi}\right\|_{k}$ and $\|T\|_{c b}=\sup _{\pi}\left\|T^{\pi}\right\|_{c b}$.

From this and Corollary 3.8 we can deduce immediately that $\|T\|_{\ell}=\|T\|_{c b}$ for $T \in \mathcal{E} \ell(A)$ of length ℓ. Using Remark 2.5 we can also assert that if each of the sets $\left\{a_{j}^{*} a_{i}: 1 \leq i, j \leq \ell\right\}$ and $\left\{b_{j}^{*} b_{i}: 1 \leq i, j \leq \ell\right\}$ is commutative, then $\|T\|=\|T\|_{c b}$. (For this one must observe that the commutativity assumption is preserved when passing to $\pi\left(a_{i}\right), \pi\left(b_{j}\right)$ and still preserved when passing to a representation of T^{π} minimising the Haagerup estimate.)

For an ℓ-tuple $\mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{\ell}\right)$ of elements $c_{i} \in M(A)$ and $\pi \in \hat{A}$ we define

$$
W_{m}^{\pi}(\mathbf{c})=W_{m}(\pi(\mathbf{c})), \quad W_{m, e}^{\pi}(\mathbf{c})=W_{m, e}(\pi(\mathbf{c}))
$$

(where by $\pi(\mathbf{c})$ we mean $\left(\pi\left(c_{1}\right), \pi\left(c_{2}\right), \ldots, \pi\left(c_{\ell}\right)\right)$. From Proposition 2.4, we know that $W_{m}^{\pi}\left(\mathbf{c}^{(k)}\right)$ (strictly we should use $\pi^{(k)}$ here) is the set of convex combinations of k elements of $W_{m}^{\pi}(\mathbf{c})$, and it is convex for $k \geq \ell$. Similarly for $W_{m, e}^{\pi}\left(\mathbf{c}^{(k)}\right)$ and $k \geq \ell$.

We also define

$$
V_{m}^{\pi}(\mathbf{c})=\left\{t \alpha: \alpha \in W_{m}^{\pi}(\mathbf{c}), 0 \leq t \leq 1\right\}
$$

Lemma 4.1. For an ℓ-tuple \mathbf{c} of elements of $M(A)$ and $\pi \in \hat{A}$

$$
W_{m}^{\pi}(\mathbf{c})=\left\{\left(\phi\left(c_{j}^{*} c_{i}\right)\right)_{i, j=1}^{\ell}: \phi \in P(A),\left[\pi_{\phi}\right]=[\pi]\right\}
$$

The convex combinations of k elements of $W_{m}^{\pi}(\mathbf{c})$ are representable as the set of all $\left(\phi\left(c_{j}^{*} c_{i}\right)\right)_{i, j=1}^{\ell} \in M_{\ell}$ where $\phi \in F_{k}(A)$ and ϕ is a convex combination of pure states supported at $[\pi]$.

The convex combinations of k elements of $V_{m}^{\pi}(\mathbf{c})$ form

$$
V_{m}^{\pi}\left(\mathbf{c}^{(k)}\right)=\left\{t\left(\phi\left(c_{j}^{*} c_{i}\right)\right)_{i, j=1}^{\ell}: 0 \leq t \leq 1, \phi \in F_{k}(A) \text { supported by }[\pi]\right\} .
$$

Proof. Observe that those $\phi \in P(A)$ with $\left[\pi_{\phi}\right]=[\pi]$ take the form $\phi(x)=$ $\langle\pi(x) \xi, \xi\rangle$ with $\xi \in H_{\pi}$ a unit vector. The result follows.

On \hat{A} we can take the usual topology obtained via the hull-kernel topology on the primitive ideal space $\operatorname{Prim}(A)$ (see [19, 4.1.2] for example). In the case we deal with continuous trace algebras there is a bijection between \hat{A} and $\operatorname{Prim}(A)$ since elements of \hat{A} are characterised by their kernels (see [19, 6.1.5]).

Lemma 4.2. If A is a continuous trace C^{*}-algebra, and \mathbf{c} is an ℓ-tuple of elements of A, then the map

$$
[\pi] \mapsto V_{m}^{\pi}\left(\mathbf{c}^{(k)}\right)
$$

is an upper semicontinuous set-valued map on \hat{A} with values in the compact subsets of M_{ℓ}^{+}.

Proof. When A has continuous trace and $\pi: A \rightarrow \mathcal{B}\left(H_{\pi}\right)$ is an irreducible representation, then $\pi(A)=\mathcal{K}\left(H_{\pi}\right)=$ the compact operators [19, 6.1.11, 6.1.6]. The pure states of A supported at $[\pi] \in \hat{A}$ are then vector states $\phi(x)=\langle\pi(x) \xi, \xi\rangle$ (with $\xi \in H_{\pi}$ a unit vector). As the closed unit ball of H_{π} is weakly compact, any net of unit vectors has a subnet $\left(\xi_{\gamma}\right)_{\gamma}$ that converges weakly to a vector $\theta \in H_{\pi}$ of norm at most 1. It follows that $\left\langle\pi(x) \xi_{\gamma}, \xi_{\gamma}\right\rangle$ also converges to $\langle\pi(x) \theta, \theta\rangle$ when $\pi(x)$ has finite rank. The same conclusion for all $\pi(x) \in \mathcal{K}\left(H_{\pi}\right)$ follows by norm density of the finite ranks in $\mathcal{K}\left(H_{\pi}\right)$. This allows us to show that $V_{m}^{\pi}(\mathbf{c})$ is compact. It follows that $V_{m}^{\pi}\left(\mathbf{c}^{(k)}\right)$ is compact by considering it as made up of convex combinations of k matrices in V_{m}^{π}.

By upper semicontinuity we mean that for any open subset U of M_{ℓ} the set of $\pi \in \hat{A}$ where $V_{m}^{\pi}\left(\mathbf{c}^{(k)}\right) \subset U$ is an open subset of \hat{A}. Fix $\pi=\pi_{0}$ with the corresponding $V_{m}^{\pi}\left(\mathbf{c}^{(k)}\right) \subset U$. If $\left[\pi_{0}\right]$ fails to be an interior point of such $[\pi] \in \hat{A}$, we can find a net $\left(\phi_{\gamma}\right)_{\gamma}$ of elements of $F_{k}(A)$, a net $\left(t_{\gamma}\right)_{\gamma}$ in the unit interval $[0,1]$ so that the supports of ϕ_{γ} in \hat{A} converge to $\left[\pi_{0}\right]$ but the matrices $\left(t_{\gamma} \phi_{\gamma}\left(c_{j}^{*} c_{i}\right)\right)_{i, j=1}^{\ell}$ all lie outside U.

When A has continuous trace, \hat{A} is Hausdorff (see [19, 6.1.11]). The weak*closure of $P(A)$ is contained in the multiples of $P(A)$ by numbers $t \in[0,1]$ [13, Theorem 6], and this set of multiples of pure states is weak*-compact. If a net of pure states $\left(\psi_{\gamma}\right)_{\gamma}$ converges weak* to a nonzero multiple $t \psi$ of a pure state $\psi(0<t \leq 1)$, then the supports of ψ_{γ} converge to the support of ψ in
\hat{A} (see [19, 4.3.3] for an argument). Using these facts it is easy to see that we can extract a subnet from $\left(\phi_{\gamma}\right)_{\gamma}$ which converges weak* to a multiple of some $\phi \in F_{k}(A)$ supported at $\left[\pi_{0}\right]$. (A similar argument is given in [3, Lemma 4.2].) Passing to a further subnet ensures t_{γ} converges, and then the limit of the above matrices is an element of $V_{m}^{\pi_{0}}\left(\mathbf{c}^{(k)}\right)$ outside U-a contradiction.

THEOREM 4.3. If $k \geq 1$ and A is a continuous trace C^{*}-algebra which is not k-subhomogeneous, then there exists an elementary operator $T \in \mathcal{E} \ell(A)$,

$$
T(x)=\sum_{i=1}^{k+1} a_{i} x b_{i} \quad\left(a_{i}, b_{i} \in A \text { for } 1 \leq i \leq k+1\right)
$$

with $\|T\|_{k}<\|T\|_{c b}$.
Proof. If A is not k-subhomogeneous, then there exists an irreducible representation π of A on a Hilbert space H_{π} of dimension at least $k+1$. The basic idea of the proof is to construct T so that T^{π} looks like Example 3.5.

Fix $k+1$ orthonormal vectors $\xi_{1}, \xi_{2}, \ldots, \xi_{k+1}$ in H_{π}. We use the notation $\xi^{*} \otimes \eta$ for the operator $\langle\cdot, \xi\rangle \eta$ in $\mathcal{B}\left(H_{\pi}\right)$ (when $\xi, \eta \in H_{\pi}$). Let $e_{i j}$ denote the operator $\xi_{j}^{*} \otimes \xi_{i}$. Out aim is to construct T so that $T^{\pi}(x)=$ $\sum_{i=1}^{k+1} e_{i 1} x\left(e_{i 1} / \sqrt{k+1}\right)$ and $\|T\|_{k}<1=\left\|T^{\pi}\right\|_{k+1} \leq\|T\|_{c b}$.

Since $\pi(A)=\mathcal{K}\left(H_{\pi}\right)$ we can find $a_{i}^{\prime} \in A$ with $\pi\left(a_{i}^{\prime}\right)=e_{i 1}$. Let $b_{i}^{\prime}=$ $a_{i}^{\prime} / \sqrt{k+1}$. Apply Lemma 3.2 to $W_{\theta}=V_{m}^{\pi}\left(\left(\left(\mathbf{a}^{\prime}\right)^{*}\right)^{(k)}\right)$ and $W_{\zeta}=V_{m}^{\pi}\left(\left(\mathbf{b}^{\prime}\right)^{(k)}\right)$. We then find open neighbourhoods U_{θ} and U_{ζ} of these sets, to which we can apply the upper semicontinuity Lemma 4.2 to produce an open neighbourhood \mathcal{N} of $[\pi]$ in \hat{A} so that for $s \in \mathcal{N}$ and π_{s} a representative of s we have

$$
V_{m}^{\pi_{s}}\left(\left(\left(\mathbf{a}^{\prime}\right)^{*}\right)^{(k)}\right) \subset U_{\theta}, \quad V_{m}^{\pi_{s}}\left(\left(\mathbf{b}^{\prime}\right)^{(k)}\right) \subset U_{\zeta}
$$

By Urysohn's lemma, we can find a continuous functions $f: \hat{A} \rightarrow[0,1]$ supported in \mathcal{N} so that $f([\pi])=1$. From the Dauns Hofmann theorem we can multiply a_{i}^{\prime} and b_{i}^{\prime} by f to get a_{i} and b_{i} in A. That is $\pi_{s}\left(a_{i}\right)=f(s) \pi_{s}\left(a_{i}^{\prime}\right)$ and $\pi_{s}\left(b_{i}\right)=f(s) \pi_{s}\left(b_{i}^{\prime}\right)$. Thus

$$
\begin{array}{rrr}
V_{m}^{\pi_{s}}\left(\left(\mathbf{a}^{*}\right)^{(k)}\right)=f(s)^{2} V_{m}^{\pi_{s}}\left(\left(\left(\mathbf{a}^{\prime}\right)^{*}\right)^{(k)}\right) \subseteq & V_{m}^{\pi_{s}}\left(\left(\left(\mathbf{a}^{\prime}\right)^{*}\right)^{(k)}\right) \subset U_{\theta} \\
V_{m}^{\pi_{s}}\left(\mathbf{b}^{(k)}\right)=f(s)^{2} V_{m}^{\pi_{s}}\left(\left(\mathbf{b}^{\prime}\right)^{(k)}\right) \subseteq & V_{m}^{\pi_{s}}\left(\left(\mathbf{b}^{\prime}\right)^{(k)}\right) \subset U_{\zeta}
\end{array}
$$

for $s \in \mathcal{N}$. For other $s \in \hat{A}$ we have

$$
V_{m}^{\pi_{s}}\left(\left(\mathbf{a}^{*}\right)^{(k)}\right)=V_{m}^{\pi_{s}}\left(\mathbf{b}^{(k)}\right)=0
$$

Taking T as in the statement, for all s we have $\left\|T^{\pi_{s}}\right\|_{k}<1-\varepsilon$ by the method of proof for Proposition 3.1. On the other hand $\|T\|_{c b} \geq\left\|T^{\pi}\right\|_{k+1}=1$.

Theorem 4.4. Suppose a C^{*}-algebra A has the property (for some $k \geq 1$) that $\|T\|_{c b}=\|T\|_{k}$ for each $T \in \mathcal{E} \ell(A)$ as in (1) with $a_{i}, b_{i} \in A$. Then A is
either k-subhomogeneous or a k-subhomogeneous extension of an antiliminal C^{*}-algebra.

Proof. As shown in [4], the assumption on A implies that the same is true of any ideal of A, including the maximal postliminal ideal J of $A . J$ has an essential continuous trace ideal $J_{c}[19,2.2 .11]$ and by Theorem 4.3, J_{c} must be k-subhomogeneous. The set $k \hat{J}$ of those $s \in \hat{J}$ where the corresponding representation acts on a Hilbert space of dimension $\leq k$ is closed in $\hat{J}[19,4.4 .10,6.1 .5]$. It is also dense because it contains \hat{J}_{c}. Hence J is k-subhomogeneous.

Corollary 4.5. Let A be a C^{*}-algebra. Then the following are equivalent properties for A :
(i) $\|T\|_{c b}=\|T\|_{k}$ for each $T \in \mathcal{E} \ell(A)$;
(ii) $\|T\|_{c b}=\|T\|_{k}$ for each $T \in \mathcal{E} \ell(A)$ as in (1) with $a_{i}, b_{i} \in A$;
(iii) A is either k-subhomogeneous or an antiliminal extension of a k-subhomogeneous C^{*}-algebra.

Proof. (i) clearly implies (ii) and we have proved that (ii) implies (iii) in Theorem 4.4 above. If A is k-subhomogeneous, then it is easy to see that (i) holds by using representations and [18, Proposition 7.9]. See [4] for the remaining details of a proof that (iii) implies (i).

In [4], this result is proved for $k=1$. See [3] for an early reference to this class of C^{*}-algebras and see [24] for a further list of equivalent conditions including some dealing with k-positivity implying complete positivity of elementary operators.

References

[1] P. Ara and M. Mathieu, On the central Haagerup tensor product, Proc. Edinburgh Math. Soc. 37 (1993), 161-174. MR 94k:46108
[2] , Local multipliers of C^{*}-algebras, Springer Verlag, London, 2003. MR 1940428
[3] C. J. K. Batty and R. J. Archbold, On factorial states of operator algebras II, J. Operator Theory 13 (1985), 131-142. MR 86f:46065
[4] R. J. Archbold, M. Mathieu and D. W. B. Somerset, Elementary operators on antiliminal C^{*}-algebras, Math. Ann. 313 (1999), 609-616. MR 2000g:46069
[5] W. B. Arveson, Unitary invariants for compact operators, Bull. Amer. Math. Soc. 76 (1970), 88-91. MR 40\#4803
[6] F. F. Bonsall and J. Duncan, Numerical Ranges II, London Mathematical Society Lecture Note Series, no. 10, Cambridge University Press, Cambridge, 1973. MR 56\#1063
[7] A. Chatterjee and A. M. Sinclair, An isometry from the Haagerup tensor product into completely bounded operators, J. Operator Theory 28 (1992), 65-78. MR 95j:46065
[8] A. Chatterjee and R. R. Smith, The central Haagerup tensor product and maps between von Neumann algebras, J. Funct. Anal. 112 (1993), 97-120. MR 94c:46120
[9] M. D. Choi, Positive linear maps on C^{*}-algebras, Canad. J. Math. 24 (1972), 520-529. MR 47\#4009
[10] E. Christensen and A. M. Sinclair, A survey of completely bounded operators, Bull. London Math. Soc. 21 (1989), 417-448. MR 91b:46051
[11] E. G. Effros and Z.-J. Ruan, Operator spaces, London Mathematical Society Monographs, vol. 23, Oxford University Press, New York, 2000. MR 2002a: 46082
12] L. T. Gardner, An elementary proof of the Russo-Dye theorem, Proc. Amer. Math. Soc. 90 (1984), 171. MR 85f:46107
[13] J. Glimm, Type I C^{*}-algebras, Ann. Math. 72 (1961), 572-612. MR 23\#A2066
[14] U. Haagerup, The α-tensor product of C^{*}-algebras, unpublished manuscript, Univ. of Odense (1980).
[15] R. V. Kadison and G. K. Pedersen, Means and convex combinations of unitary operators, Math. Scand. 57 (1985), 249-266. MR 87g:47078
[16] B. Magajna, The norm of a symmetric elementary operator, Proc. Amer. Math. Soc., to appear.
[17] M. Mathieu, Elementary operators on prime C^{*}-algebras. I, Math. Ann. 284 (1989), 223-244. MR 90h:46092
[18] V. I. Paulsen, Completely bounded maps and dilations, Pitman Notes in Mathematics Series, vol. 146, Pitman, New York, 1986. MR 88h:46111
[19] G. K. Pedersen, C^{*}-algebras and their automorphism groups, Academic Press, London, 1979. MR 81e: 46037
[20] R. R. Smith, Completely bounded module maps and the Haagerup tensor product, J. Funct. Anal. 102 (1991), 156-175. MR 93a:46115
[21] B. Russo and H. Dye, A note on the unitary operators in C^{*}-algebras, Duke Math. J. 33 (1966), 413-416. MR 33\#1750
[22] J. G. Stampfli, The norm of a derivation, Pacific J. Math. 33 (1970), 737-747. MR 42\#861
[23] R. M. Timoney, A note on positivity of elementary operators, Bull. London Math. Soc. 32 (2000), 229-234. MR 2000j:47066
[24] , An internal characterisation of complete positivity for elementary operators, Proc. Edinburgh Math. Soc. 45 (2002), 285-300. MR 2003h:47067

School of Mathematics, Trinity College, Dublin 2, Ireland
E-mail address: richardt@maths.tcd.ie

[^0]: Received November 20, 2002; received in final form June 26, 2003.
 2000 Mathematics Subject Classification. Primary 47B47, 46L07. Secondary 47L25, 47A12.

