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1. Introduction

The origin of this work is found in the study of automorphisms of domains
D in Cn, n > 1. For example, suppose for the moment that D is relatively
compact and recall that in this case the group Aut(D) of all holomorphic auto-
morphisms is a Lie group acting properly on D in the compact-open topology
([6], see also [19]). It is important to underline the fact that this group is totally
real so that, compared to holomorphic actions of complex Lie groups, there is
a lack of naturality.

The actions of compact subgroups K ⊂ Aut(D) extend to the holomorphic
actions of their complexifications. For example, consider the action of K = S1

on an annulus D in the complex plane. A holomorphic function f ∈ O(D) has
a Fourier (Laurent) series expansion with respect to this action. This can be
regarded as a formal series on DC = C∗, where the complexification KC = C∗

acts holomorphically. In fact, as a special case of Heinzner’s Complexification
Theorem ([12],see also [13]), any domain D equipped with a compact group K
of holomorphic transformations is naturally contained as a K-stable domain in
a Stein manifold DC where the reductive group KC acts holomorphically. If
D is Stein, then it is just a domain of convergence for some “Fourier series” in
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2 ALAN HUCKLEBERRY AND DMITRI ZAITSEV

DC. Thus, except for convergence questions, in the case of compact groups we
are really confronted with actions of reductive groups. In this case the theory
of algebraic transformation groups provides us with very stong tools.

For a non-compact subgroup G ⊂ Aut(D) the situation is substantially
different. First of all, as is seen in the simplest example of the disk D in the
complex plane, it is rational functions which play an important role. Secondly,
since orbits are non-compact, one is led to study the action near the boundary.
Without loss of generality we may assume that G is closed in Aut(D) so that
it acts properly and let p ∈ ∂D be in the closure of some orbit z ∈ D. The
geometry of the action near p is extremely rich. In fact, under reasonable
regularity assumptions, it might happen that knowledge of the local action near
p determines D itself and general classification results can be proved. There are
numerous indications of this (see e.g. [8,17,21,22,31,32]) with Rosay’s Theorem
being the easiest to state: If p is a strongly pseudoconvex boundary point, then
D is biholomorphically equivalent to the unit ball Bn := {

∑

|zi|
2 < 1}. Under

far weaker assumptions scaling methods yield a local description of D near p
as also being defined by polynomial inequalities.

It is therefore reasonable to begin the study of G-actions on domains by
considering the case were D is defined by polynomial inequalities. In this case,
if there is a smooth boundary point where the Levi form is non-degenerate, by
combining results of Diederich-Pinchuk ([7]) with those in [33], it follows that
G = Aut(D) is a Nash group and its action on D is compatible with the Nash
structure. Thus we find ourselves in the setting of real algebraic geometry.

Our main results are stated in sections 2−3. However, before going to this,
we would like to underline some essential points. In general, suppose that G
acts effectively by holomorphic transformations on D which extend to rational
transformations of the ambient projective variety V ⊂ Pn (e.g., if D satisfies
Webster’s condition (W ) below). The graph of every such transformation de-
fines an n-dimensional cycle in Pn × Pn for some integer N . In this way we
obtain a set-theoretic embedding of G in the Chow scheme Cn of n-dimensional
cycles in Pn × Pn. Under certain conditions, which are made precise in the
sequel, we show that G lies in finitely many components of Cn. The group
operation on G extends rationally to its Zariski closure Q in Cn and endows
Q with a structure of a pre-group in sense of A. Weil, which is not a group in
general. The action G×D → D extends also to a rational action Q× V → V .
Again, this is a pre-transformation space in sense of Weil which, in general, is
not a transformation space.

Using basic techniques of Weil, we regularize the “action” Q × V → V ,
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i.e. construct an algebraic group G̃ and an algebraic variety X , birationally
equivalent to Q and V respectively, such that the induced action G̃×X → X is
regular (Theorems 1.1, 1.3 and 1.4). As a consequence the action of G extends
to a global holomorphic action of the universal complexification GC on X .

Further, we employ a “lifting procedure” to show that G̃ is a linear algebraic
group. Then a result of Sumihiro ([16,27]) yields an equivariant embedding
of D in a projective space with a linear action of G̃ (Theorem 2). In case
of Siegel domains, such equivariant embeddings were obtained by W. Kaup,
Y. Matsushima and T. Ochiai ([14], Theorem 9).

In the case D is contractible and homogeneous under the real analytic ac-
tion of a connected Lie group G of birationally extedible automorphisms, R.
Penny ([20]) has shown that the G-action extends to a rational action of a real
algebraic group on the ambient space Cn. This is a special case of Theorem 1
below.

We would like to conclude this introduction with an application concerning
G-invariant meromorphic functions on D. For x ∈ D, let d(x) denote the
codimension of TxGx+ iTxGx in TxD and d := max

x∈D
d(x). If f1, . . . , fm are G-

invariant analytically independent meromorphic functions, then clearly m ≤ d.
Now if G̃ exists as above and G is Nash, e.g. under the conditions of Corollary 2,
then the bound d is realized. This follows by applying Rosenlicht’s quotient
Theorem ([23]) to the G̃-action on X .

As indicated above , we draw our methods from cycle space theory and al-
gebraic group actions. On the other hand, our main motivation is of a complex
analytic or representation theoretic nature. Thus we have included details of
results which might be standard in one subject and not so well-known in the
other.

2. Algebraic extensions

Here we establish conditions for the existence of the above extensions which
are birationally equivalent to the ambient space V ⊃ D. A topological group
will always assumed to have a countable basis at every point.

Definition 2.1 An algebraic extension of a topological group G of holo-
morphic transformations of a domain D ⊂ V consists of a homomorphism from
G into a complex algebraic group G̃, an algebraic variety X birationally equiv-
alent to V via ψ:V → X , such that ψ|D is a biregular embedding, and the
extension of the action of G to a regular action G̃×X → X .
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The existence of algebraic extensions implies, in particular, that the auto-
morphisms of D which are elements of G extend to birational mappings from V
into itself. In this case we say that G is a group of birationally extendible
automorphisms.

One condition for the existence of algebraic extensions is given by the
following result.

Theorem 1. Let V be a projective variety, D ⊂ V an open set and G a
Lie group of birationally extendible automorphisms of D. Suppose that G has
finitely many connected components. Then there exists an algebraic extension
of G.

The existence of an algebraic extension is also equivalent to the existence
of a projective linearization in the following sense.

Definition 2.2 A projective linearization of a topological group G of
holomorphic transformations of an open set D ⊂ V consists of a (continuous)
linear representation of G on some CN+1 and a birational (onto the image)
mapping i:V → PN such that the restriction i|D is biholomorphic and G-
equivariant.

Remark. By a rational mapping between two algebraic varieties V1 and
V2 we mean a morphism from a Zariski open dense subset U ⊂ V1 into V2. The
image is defined to be the (Zariski) closure of the image of U . In general, a
point x ∈ V1 \ U may not correspond to a point of V2.

Theorem 2. Let V be a rational (i.e. birationally equivalent to Pn) pro-
jective variety, D an open subset of the regular locus of V and G a topological
group of birationally extendible automorphisms of D. Then G has an algebraic
extension if and only if it has a projective linearization.

Remark. The condition of rationality of V is perhaps too strong. How-
ever, some condition is needed. If e.g. D = V = G are elliptic curves and G
acts on V by translations, this action coincides with its algebraic extension but
has no projective linearization, because G is a compact complex group.

Another sufficient condition for the existence of algebraic extensions is
the boundness of the degree of the automorphisms defined by elements of
G, i.e. the degree of the graphs Zf ⊂ V × V of the corresponding birational
automorphisms with respect to fixed embedding ν:V × V →֒ Pk. We also
identify V × V with its image in Pk.
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The boundness of the degree means that the graphs lie as cycles in finitely
many components of the cycle space C(V × V ). Therefore, the condition of
boundness is independent of the choice of the embedding ν.

Theorem 3. Let V be a projective variety, D ⊂ V an open subset and
G a topological group of birationally extendible automorphisms of D. Then
G has an algebraic extension if and only if the degree of the automorphisms
φg:D → D defined by g ∈ G is bounded.

In the proof we proceed as follows. Theorem 2 is proven in section 4. If G̃ is
the algebraic extension, the rationality of V is used to show that G̃ is a linear
algebraic group. Then the linearization follows from a theorem of Sumihiro
([16]). The converse in Theorem 2 is straightforward.

Section 5 is devoted to the proof of Theorem 3. There we exploit the idea
that an action of G̃ by rational automorphisms on D ⊂ V induces an (almost
everywhere defined) mapping φG̃ from G̃ into the cycle space C(V × V ) which
can be regarded as a subvariety of the Chow scheme of an ambient projective
space Pk. Here we use the universal property of the cycle space ([1], see also
[5], Proposition 2.20). The mapping φG̃: G̃ → Cn(Pk) is rational and the
boundness of the degree follows from the local constancy of it on the Chow
scheme.

The induced mapping φG from G into the cycle space C(V ×V ) is continu-
ous only on an open dense subset U ⊂ G, but the group operation of G extends
to a rational “group operation” on the Zariski closure of φG(U) in C(V × V ).
This operation is defined via composition of graphs. The objects with rational
“group operations” were introduced by Weil ([30]) and called pre-groups. The
main property is the existence of regularizations of pre-groups, i.e. algebraic
groups which are birationally equivalent to given pre-groups and the “group
operations” are compatible with the equivalences. This property is used to
obtain the algebraic group G̃ for the algebraic extension.

The next step is to prove that the composition of φ:U → C(V × V ) and
the birational equivalence with G̃ extends to a continuous homomorphism from
G into G̃.

The induced “action” of G̃ on V is in general also rational. Such objects
were also introduced by Weil ([30]) and called pre-transformation spaces.
Also in this case he proves the existence of regularizations, i.e. the (regular) ac-
tions of the same group on algebraic varieties which are birationally equivalent
to the original pre-transformation spaces such that the actions are compatible
with the equivalences. In our case, such regularizations X yield the required
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algebraic extensions.

An exposition for pre-groups and pre-transformation spaces (also not irre-
ducible) is given in [34]. There, one also studies the points where the above
regularizations are biregular. This helps in proving that D is embedded biholo-
morphically in the context of Definitions 1.1 and 1.2.

Theorem 1 is proven in section 6. For this we use a result of Kazaryan
([15]) to show that the action G×D → D extends to a meromorphic mapping
G̃ × V → V , where G̃ is a complex manifold with G totally really embedded.
Then we prove the boundness of the degree using Proposition 5.1 and the lower
semi-continuity of the degree (Lemma 5.1). Finally, the statement follows from
Theorem 3.

3. Semialgebraic domains and Nash automorphisms

In general, a domain D ⊂ Cn may have no non-trivial holomorphic auto-
morphisms. On the other hand, in many interesting cases the automorphism
group is very large. The classical examples are bounded homogeneous domains.
Vinberg, Gindikin and Piatetski-Shapiro ([28]) classified them and found their
canonical realizations as Siegel domains of II kind. Rothaus ([24]) proved that
such realizations are given by (real) polynomial inequalities. For such reasons,
as well as those mentioned in the introduction, we are intereseted in studiy-
ing domains defined in this way. In fact, we consider more general case of a
projective variety V and an open set D ⊂ V which is a finite union of the
domains given by finitely many homogeneous polynomial inequalities. Such set
are considered in real algebraic geometry and are called semialgebraic (see
e.g. [2] for the elementary introduction to the theory of semialgebraic sets).

The following Proposition shows that, for D semialgebraic, the condition
given in Theorem 1 is in some sense also necessary .

Proposition 3.1. Let V be a projective variety, D ⊂ V a semialgebraic
open subset and G a topological group of birationally extendible automor-
phisms of D. Suppose that there exists an algebraic extension of the action of
G. Then G is a subgroup of a Lie group G̃ of birationally extendible automor-
phisms of D which extends the action of G to a real analytic action G̃×D → D
and has finitely many connected components.

Semialgebraic sets are closely related to the Nash manifolds and Nash
groups. The Nash category is obtained from the real analytic when we assume
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all mappings are Nash. A Nash mapping f :D → D is a real analytic map-
ping, such that the graph Γ ⊂ D × D of f is semialgebraic or, equivalently,
Zariski closure Zf of Γ in V × V has dimension n = dimV . The reader is
refered to [18] and [26] for the precise definitions.

For a semialgebraic subset D ⊂ V we prove also the following criterion.

Theorem 4. Let V be a projective variety, D ⊂ V a semialgebraic open
subset and G a topological group of birationally extendible automorphisms of
D. The following properties are equivalent:
1) G is a subgroup of a Nash group G̃ of birationally extendible automor-

phisms of D which extends the action of G to a Nash action G̃×D → D;
2) G is a subgroup of a Nash group G̃ such that the action G × D → D

extends to a Nash action G̃×D → D;
3) G has an algebraic extension.

Remarks.
1) In condition 2 the automorphisms defined by elements of G̃ \ G are not

necessarily birationally extendible.
2) Since every Nash group is a Lie group with finitely many components,

Proposition 3.1 is a Corollary of Theorem 4.
The proof of Theorem 4 is given in section 7.
In the remainder of the present paragraph we mention several applications

of Theorem 4 for the bounded semialgebraic domains. In [33] we gave sufficient
conditions on D and G such that G is a Nash group and the action G×D → D
is Nash. The domain D is assumed to satisfy the following nondegeneracy
condition:

Definition 3.1 A boundary of a domain D ⊂ Cn is called Levi nonde-
generate if it contains a smooth point where the Levi form is nondegenerate.

The group G is taken to be the group Auta(D) of all holomorphic Nash
(algebraic) automorphisms of D. It was proven in [33] that, if D is a semialge-
braic bounded domain with Levi nondegenerate boundary, the group Auta(D)
is closed in the group Aut(D) of all holomorphic automorphisms and carries a
unique structure of a Nash group such that the action Auta(D) × D → D is
Nash with respect to this structure.

Now let G = Autr(D) ⊂ Auta(D) be the group of all birationally ex-
tendible automorphisms of D. Then G satisfies the property 2 in Theorem 4
with G̃ = Auta(D). By property 1, G is a subgroup of a Nash group of bi-
rationally extendible automorphisms of D. Since G contains all birationally
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extendible automorphisms of D, G is itself a Nash group with the Nash action
on D. We therefore obtain the following corollary.

Corollary 1. Let D ⊂ Cn be a bounded Nash domain with Levi nonde-
generate boundary. Then the group Autr(D) possesses an algebraic extension.

We now explain sufficient conditions (due to Webster [29]) such that all
algebraic automorphisms of D are birationally extendible. Let D be as in
Corollary 1. The existence of finite stratifications for semialgebraic sets (see [2],
(2.4.4)) implies that the boundary ∂D is contained in finitely many irreducible
real hypersurfaces. Several of them, let us say M1, . . . ,Mk, have generically
nondegenerate Levi forms. If ∂D is nondegenerate in the sense of Definition 3.1,
such hypersurfaces exist. The complexification MC

i of Mi is defined to be the
complex Zariski closures of Mi in Cn ×Cn where Mi is embedded as a totally
real subvariety via the diagonal map z 7→ (z, z̄). It follows that MC

i is an
irreducible complex hypersurface. The Segre varieties Qiw, w ∈ Cn, associated
to Mi are defined by

Qiw := {z ∈ Cn | (z, w̄) ∈MC

i }.

These complexifications and Segre varieties are important biholomorphic in-
variants of D and play a decisive role in the reflection principle which can be
used to obtain birational extensions.

Definition 3.2 A semialgebraic domain is said to satisfy the condition
(W ) if, for all i, the Segre varieties Qiw uniquely determine z ∈ Cn and Qiw

is an irreducible hypersurface in Cn for all z in the complement of a proper
subvariety Vi ⊂ Cn.

A result of Webster ([29], Theorem 3.5) can be formulated in the following
form:

Theorem 5. Let D ⊂ Cn be a semialgebraic domain with Levi nonde-
generate boundary which satisfies the condition (W ). Further, let f ∈ Aut(D)
be an automorphism which is holomorphically extendible to a smooth bound-
ary point with nondegenerate Levi form. Then f is birationally extendible to
Cn.

Remark. The mentioned statement of Webster assumes that f extends
biholomorphically to a smooth boundary point where the Levi form is non-
degenerate. By a result of Diederich and Pinchuk ([7]), this holds for all auto-
morphisms.
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Corollary 2. Let D ⊂ Cn be a bounded semialgebraic domain which
satisfies condition (W ). Then the whole group Aut(D) possesses an algebraic
extension.

Acnowledgement. The authors wish to thank D. Barlet, K. Diederich,
D. Panyshev and B. Shiffman for useful discussions.

4. Linearization

In the present paragraph we prove Theorem 2. Assume we are given a
projective linearization i:V → PN . Let X denote the (Zariski) closure of the
(constructible) image i(V ). The subgroup G̃ ⊂ GLN (C) of all linear automor-
phisms of PN which preserve X is a complex algebraic subgroup. Then the
pair (G̃,X) yields the required algebraic extension.

The other direction is less trivial. If G has an algebraic extension, we can
assume without loss of generality that G coincides with the complex algebraic
group G̃. For the convenience of reader we reformulate here the conclusion we
need to prove.

Theorem 2’. Let G be an complex algebraic group operating regularly
on a rational algebraic variety X . Let D be an open set contained in the regular
locus of a quasi-projective subvariety U ⊂ X . Then there exists a projective
linearization.

Theorem 2′ will follow from Lemma 4.1., Proposition 4.2. and Sumihiro’s
Theorem (see below). Since the regular locus of X is G-invariant, we can
replace X with this locus and Proposition 4.2 can be applied.

Definition 4.1. A line bundle L on an algebraic variety X is called
birationally very ample if there exists a finite-dimensional subspace W ⊂
Γ(X,L) which yields a birational mapping iW from X into the corresponding
projective space.

Lemma 4.1. Let G be a (complex) algebraic group with a regular action
ρ:G ×X → X on a nonsingular (not necessarily projective) algebraic variety
X . Then there exists a birationally very ample line bundle L on X such that,
for every g ∈ G, ρ∗gL

∼= L. If U ⊂ X is an open quasi-projective subvariety, the
bundle L and subspace W ⊂ Γ(X,L) can be chosen such that iW is regular on
U .

Proof. Without loss of generality, U is an open dense quasi-projective
subvariety of X . Then the inclusion ϕ:U → X is birational. Let C be a very
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ample divisor on U and v0, . . . , vN a collection of rational functions on U which
yields a basis of OU (C). The rational functions v0 ◦ϕ

−1, . . . , vN ◦ϕ−1 define a
birational (onto the image) mapping from X into PN . Let C′ be the union of
polar divisors of all [ṽi] and LC′ ∈ Pic(X) be the corresponding line bundle.
Then ṽi’s can be regarded as sections in LC′ which is therefore birationally
very ample.

It remains to obtain the property ρ∗gL
∼= L. The birational mapping

ϕ:Pn → X is, by definition, a biregular mapping between Zariski open subsets
U ⊂ Pn and U ′ ⊂ X . Set E := Pn \ U and E′ := X \ U ′ and let E1, . . . , Ek

and E′

1, . . . , E
′

l be the irreducible components of E and E′ respectively. One
has the following exact sequences:

⊕iZ[Ei] → Pic(Pn) → Pic(U) → 0,

⊕iZ[E′

i] → Pic(X) → Pic(U ′) → 0.

Since Pic(Pn) ∼= Z, it follows that Pic(U) ∼= Pic(U ′) is discrete. This im-
plies that Pic(X) is discrete. The algebraic group G has finitely many con-
nected components. Therefore, its orbits in Pic(X) are finite. Thus G(LC′) =
{L1, . . . , Ls} as an orbit in Pic(X). Since the Lj ’s are birationally very ample,
their tensor product L := ⊗jLj is also birationally very ample and satisfy the
property ρ∗gL

∼= L. QED
We now state and prove a sequence of Lemmas which will yield the proof

of Proposition 4.1.

Lemma 4.2 . Let G and X be arbitrary nonsingular algebraic varieties
and X be birationally equivalent to Cn. Let LG×X be a line bundle on G×X .
Then there exist line bundles LG on G and LX on X such that LG×X

∼=
π∗

GLG ⊗ π∗

XLX .

Proof. The special case X = C is contained in Proposition 6.6. of Chap-
ter 2 in [11]. By the induction, we obtain the Lemma for X = Cn. In the
general case one has isomorphic Zariski open subsets U ⊂ Cn and U ′ ⊂ X .
Set E := Cn \ U and E′ := X \ U ′ and let E1, . . . , Ek and E′

1, . . . , E
′

l be the
irreducible components of E and E′ respectively. Let LG×X |G× U ′ be the re-
striction and LG×U its pullback on G×U ∼= G×U ′. Since LG×U corresponds to
a divisor C on G×U , it is a restriction of a line bundle LG×Cn on G×Cn which
corresponds to the closure of C in G × Cn. Applying the Lemma to LG×Cn ,
we obtain its splitting which yields a splitting LG×U ′

∼= π∗

GLG ⊗ π∗

XLU ′ . The
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required splitting for LG×X is implied now by the surjectivity of the following
map:

⊕iZ[G× E′

i] ⊕ Pic(G× U ′) → Pic(G×X).

QED

Lemma 4.3. Let 1 → G1 → G → G2 → 1 be an exact sequence of
algebraic groups. Let either G or both G1 and G2 be linear. Then all of groups
are linear.

See e.g. [23] for the proof.

Lemma 4.4. Let G be an algebraic group with an effective algebraic
action ρ:G×X → X , where X is a nonsingular algebraic variety with O∗(X) ∼=
C∗. Let L be a birationally very ample line bundle on X such that, for every
g ∈ G, ρ∗gL

∼= L. Then there exists an algebraic group G̃ with a surjective

homomorphism π: G̃→ G such that
1) the action G̃ × X → X defined by π is lifted to an action G̃ × L → L,

which preserves the fibres and is linear there;
2) the kernel of π acts effectively on L.

Proof. Let φ: ρ∗L → π∗

GLG ⊗ π∗

XLX be the isomorphism in Lemma 4.2.
Since ρ∗gL

∼= L, one has LX
∼= L.

Let G̃ ⊂ LG be the complement of the zero section. Our goal now is to
define an algebraic group structure on G̃ and to construct an algebraic action
G̃× L→ L. The action ρ̃: G̃× L→ L is defined as the composition

(4.1) LG × L→ π∗

GLG ⊗ π∗

XL→ ρ∗L→ L,

where the first mapping is given by two isomorphisms LG×X → π∗

GLG and G×
L→ π∗

XL. The composition (4.1) makes the following diagram commutative:

G̃× L → L
↓ ↓

G×X → X

Let g ∈ G be fixed. Then the fibre (L∗

G)g(∼= C∗) of G̃ over g defines a 1-
dimensional family of automorphisms of L which lift the automorphism ρg:X →
X defined by the action of G. (By an automorphism of L we mean an alge-
braic isomorphism of L onto itself which takes fibres in fibres and is linear on
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them.) Since O∗(X) ∼= C∗, such automorphisms of L form a 1-dimensional
family which coincides therefore with the family defined by (L∗

G)g. We obtain

a one-to-one correspondence between the elements of G̃ and the liftings of the
automorphisms ρg:X → X for g ∈ G.

The set of all automorphisms of L which lift ρg for some g ∈ G forms a
group in a natural way. The above one-to-one correspondence transfers this
group structure to G̃. The regular mapping in (4.1) defines a group action
G̃× L→ L with respect to this structure.

Now we wish to prove that the group operation G̃ × G̃ → G̃, (g, h) → gh
is algebraic. Since the action ρ̃: G̃× L→ L is algebraic, the map

α: G̃× G̃× L→ L, (g, h, l) 7→ ρ̃(g, ρ̃(h, l))

is also algebraic. We find the product t := gh ∈ G̃ from the relation

(4.2) α(g, h, l) = ρ(t, l).

For a fixed arbitrary point l0 ∈ G̃, the mapping

ı := π × ρ(·, l0): G̃→ G× L

is a regular embedding. By (4.2), t = gh can be expressed as follows:

t(g, h) = ı−1 ◦ (π(g)π(h), α(g, h, l0).

This proves the algebraicity of the group operation on G̃. It remains to
prove that the inverse map G̃→ G̃, g 7→ g−1 is also regular. For this consider

Γ := {(g, h) ∈ G̃× G̃ | ρ̃(g, ρ̃(h, l)) = l for all l ∈ L}.

This is the graph of g 7→ g−1 which projects bijectively on both factors G̃.
Since Γ is an algebraic subset and G̃ is nonsingular, the inverse mapping is
regular. QED

The following is a foundational result for algebraic group actions.

Lemma 4.5. Let G × X → X be an algebraic action of an algebraic
group G on an algebraic variety X which lifts to an action on a line bundle L
on X . Then the induced action on the space of sections Γ(X,L) is rational and
locally finite.

The proof coincides with the proof of Lemma 2.5. in [16], where G is
regarded as an arbitrary algebraic group.
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Proposition 4.1. Let G be an algebraic group with an effective algebraic
action ρ:G×X → X , where X is a rational nonsingular algebraic variety with
O∗(X) ∼= C∗. Let L be a birationally very ample line bundle on X such that,
for every g ∈ G, ρ∗gL

∼= L. Then G is linear algebraic.

Proof. Let W ⊂ Γ(X,L) be the finite dimensional subspace in Defini-
tion 4.1. By Lemma 4.5. applied to the group G̃, W generates a finite dimen-
sional invariant subspace W̃ ⊂ Γ(X,L) which also yields a birational mapping
iW̃ :X → P(W̃ ∗). We obtain a representation of G̃ in W̃ ∗. Let K ⊂ G̃ be its
kernel. An element k ∈ K acts trivially on iW̃ (X) and therefore on X . Since
the action G×X → X is effective, this implies that K ⊂ Ker π. But the kernel
of π acts effectively on Γ(X,L) which implies K = {e}.

Thus, G̃ is a linear algebraic group. Since G is a homomorphic image of
G̃, it is also linear algebraic. QED

Lemma 4.6. Let X be a rational nonsingular algebraic variety and
ρ:G ×X → X be an algebraic action of an algebraic group G which satisfies
the property O∗(G) ∼= C∗. Let L be a birationally very ample line bundle on
X such that for every g ∈ G, ρ∗gL

∼= L. Then the action of G on X is trivial.

Proof. We prove the Lemma by induction on dimX . The condition
O∗(G) ∼= C∗ implies the connectedness and irreducibility of G. Let dimX = 0.
Then X is discrete and the action is trivial.

Now assume dimX ≥ 1. Let x0 ∈ X be an arbitrary point and define

F (x0) := {x ∈ X | ∀f ∈ O∗(X), f(x) = f(x0)} ⊂ X.

Since O∗(G) ∼= C∗, the orbit Gx0 lies in F (x0). This is true for any
orbit Gx with x ∈ F (x0) and therefore F (x0) is G-invariant. Let X0 ⊂ X
be an irreducible component with x0 ∈ X0. Since G is irreducible, X0 and
F ′(x0) := X0 ∩ F (x0) are also G-invariant.

Now two cases are possible. If dimF ′(x0) < dimX , the action on F ′(x0) is
trivial by induction. If dimF ′(x0) = dimX , then F ′(x0) = X0 and O∗(X0) ∼=
C∗. By Proposition 4.1, Ĝ := G/Ker(ρ|X0

) is a linear algebraic group. The
condition O∗(G) ∼= C∗ for G implies the same condition for Ĝ. Since Ĝ is linear
algebraic, it is trivial. Thus, Ker(ρX0

) = G which means that the action on
X0 is trivial.

In summary we obtain that, for every x0 ∈ X and g ∈ G, gx0 = x0. This
means that G acts trivially. QED

The following is straightforward.
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Lemma 4.7. Let G be an algebraic group and e ∈ G the unit. Then the
subvariety

F (e) := {g ∈ G | ∀f ∈ O∗(G), f(g) = f(e)}

is an algebraic subgroup.

Lemma 4.8. Let G be an algebraic group such that the global invertible
regular functions separate its points. Then G is linear algebraic.

This is a corollary of the following lemma:

Lemma 4.9. Let G be an algebraic group such that the global regular
functions separate points of it. Then G is linear algebraic.

Proof. By Corollary 3. in [23], page 431, there exists an algebraic sub-
group D ⊂ G such that the quotient G/D is linear and such that the kernel
of any algebraic homomorphism from G into a linear group contains D. It is
enough to prove that D = {e}.

Assume the contrary. Let g 6= e be an arbitrary point inD. Since the points
of G are separated by global regular functions, there exists a function f ∈ O(G)
such that f(g) 6= f(e). By Lemma 4.5, f generates a finite dimensional G-
invariant subspace W ⊂ O(G). The canonical representation of G in W is a
homomorphism from G into a linear group such that its kernel does not contain
g. This contradicts to the property of D and the fact that g ∈ D. QED

Now we drop the assumption O∗(X) ∼= C∗ in Proposition 4.1.

Proposition 4.2. Let G be an algebraic group with an effective algebraic
action ρ:G×X → X on an algebraic variety X . Let L be a birationally very
ample line bundle on X such that, for every g ∈ G, ρ∗gL

∼= L. Then G is linear
algebraic.

Proof. We proceed by induction on dimG. The Proposition is trivial for
dimG = 0.

By Lemma 4.3, we can assume G to be connected. Let F (e) be the algebraic
subgroup defined in Lemma 4.7. If dimF (e) = dimG, it follows that F (e) = G
which implies O∗(G) ∼= C∗. Then, by Lemma 4.6, G acts trivially. Since it
acts also effectively it is trivial (and of course linear algebraic).

If dimF (e) < dimG, the subgroup F (e) is linear by the induction. The
group G/F (e) satisfies conditions of Lemma 4.8 and is also linear algebraic.
Then, by Lemma 4.3, G itself is linear. QED
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Sumihiro’ Theorem. Let G be a linear algebraic group operating
regularly on a rational algebraic variety X . Let D be an open set contained in
the regular locus of a quasi-projective subvariety U ⊂ X . Then there exists a
projective linearization.

The original proof ([16,27]) is given for the case D is an orbit or U is G-
invariant. In the general case we take a birationally very ample bundle L given
by Lemma 4.1 and follow the proof in [16].

5. Algebraic extensions for bounded degree

The goal of this section is to prove Theorem 3.
Recall that by the degree of φg with respect to a fixed (biregular) embedding

ν:V × V → Pk we mean the degree of the closed graph Zg ⊂ V × V of ρg

embedded in Pk via ν.

We use the following universal property of the cycle space ([1], see also [5],
Proposition 2.20):

Proposition 5.1 . Let X and S be irreducible complex spaces. There
exist a natural identification between:

1) meromorphic maps φ:S → Cn(X), and

2) S-proper pure (d+ n)-dimensional cycles F of S ×X (d = dimS).

Let G̃ be an algebraic extension of G as in Definition 2.1 and Γ ⊂ G̃ ×
V × V be the graph of the rational “action” of the algebraic group G̃. By
Proposition 5.1, this action induces a rational mapping µ: G̃ → Cn(Pk). The
finiteness of the number of irreducible components of G̃ implies the boundness
of the degree of φg for all g in an open dense subset of G̃. The global boundness
is obtained by the following lemma.

Lemma 5.1. The degree is a lower-semicontinuous function on G.

Proof. Let g0 ∈ G be an arbitrary point and gm, m ∈ N an arbitrary
sequence with gm → g0. It is enough to prove that deg(Zgm

) ≥ deg(Zg0
) up

to finite set of m ∈ N. Assume on the contrary that deg(Zgm
) < deg(Zg0

) for
a subsequence which is again denoted by gm. By a theorem of Bishop ([3]),
Zgm

can be assumed to converge to some cycle Z0 with deg(Z0) < deg(Zg0
).

By the continuity of the action ρ, one has Zg0
∩ D × D ⊂ Z, which implies

Zg0
⊂ Z0. On the other hand, by the continuity of degree (which is equivalent
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to the continuity of the volume), deg(Z0) < deg(Zg0
), which contradicts the

above inclusion. QED

1. Formulation.

The other less trivial direction in Theorem 3 will be a corollary of the
following statement:

Theorem 3′. Let D ⊂ V be an open subset in a projective variety V , G
a topological group and ρ:G×D → D a continuous action such that, for every
g ∈ G, the homeomorphism ρg:D → D extends to a birational mapping from
V into itself (which we also denote by ρg). Assume that the set of degrees of
all ρg, g ∈ G is bounded. Then there exist:

1) an algebraic group G̃,
2) a continuous homomorphism φ:G→ G̃,
3) an algebraic variety X ,
4) an algebraic action G̃×X → X ,
5) a birational mapping ψ:V → X such that ψ|D is biholomorphic and G-

equivariant.

2. Properties of the group G.

We begin by noting an elementary basic fact.

Lemma 5.2. Let G be a topological space and f :G → Z a lower-
semicontinuous function which is bounded from above. Then the set U ⊂ G
of all local maximums of f is open and dense in G. Moreover, f |U is locally
constant.

Let Z ⊂ G×V ×V and ν(Z) ⊂ G×Pk be the families of all Zg and ν(Zg),
g ∈ G, respectively. We denote by U ⊂ G the set of all local maxima of the
degree, which is open dense by Lemma 5.2.

Lemma 5.3. Let U be a topological space and {φg}g∈U a continuous
family of automorphisms of D which exted to birational mappings from V to
V with (closed) graphs Zg. Assume that the degree of Zg is locally constant
on U . Let the automorphisms depend continuously on u ∈ U . Then the family
Z is closed in U × V × V .

Proof. Let (g0, z0) ∈ U × V × V be a point and (gm, zm) → (g0, z0)
a sequence with zm ∈ Zgm

. By a theorem of Bishop ([3]), the sequence of
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cycles Zgm
can be assumed to converge to some Z0. By the continuity of

the automorphisms, one has Zg0
⊂ Z0. Since g0 ∈ G is a local maximum

of the degree and the degree is a continuous function on cycles, one obtains
degZ0 ≤ degZg0

. This means Zg0
= Z0 and (g0, z0) ∈ Z. QED

Using the family Z∩(U×V ×V ) ⊂ U×Pk we define a continuous mapping
φ from U into the Chow scheme C of cycles in Pk (see [10,25]). We recall
briefly the construction of the components of C. Let Zg, g ∈ P be an arbitrary
family of irreducible subvarieties of Pk of fixed dimension n and degree d,
parameterized by a set U . The n+1-tuples (H0, . . . , Hk) of hyperplanes in Pk

are parameterized by S := (P∗

k)n+1. We define Vg ⊂ Pk × S by

Vg := {(z,H0, . . . , Hn | z ∈ Zg ∩H0 ∩ · · · ∩Hn,

and denote by π(Vg) ⊂ S its projection. Then all Vg’s, g ∈ U and, therefore,
all π(Vg)’s are irreducible subvarieties. Moreover, π(Vg)’s are of codimension 1
and of multidegree (d, . . . , d). They are given uniquely up to multiplications
by constants by multihomogeneous polynomials Rg ⊂ C[S]d,... ,d of multidegree
(d, . . . , d).

Let PN = P(C[S]d,... ,d) denote the projectivization of the space of such
polynomials and NR ⊂ S,R ∈ PN the family of zero sets of them. Therefore
we obtain a mapping φ:U → PN which associates to every g ∈ U the Chow
coordinates [R] = [Rg] ∈ PN of Zg such that π(Vg) = NR.

We utilize the following topological universal property of the Chow scheme:

Proposition 5.2. Let U be a topological space and Zg ∈ Pk, g ∈ U , a
closed family, i.e. the subset

Z = {(g, z) | z ∈ Zg} ⊂ U ×Pk

is closed. Suppose that the dimension and degree of Zg are constant. Then
φ:U → C is a continuous mapping.

Proof. The closedness of Zg, g ∈ U , implies the closedness of Vg, g ∈ U ,
because the latter is defined by a closed condition. Since the projective space
Pk is compact, the family of projections π(Vg) is also closed. The graph Γ ⊂
U × PN of the mapping φ is defined by the condition

Γ = {(g, [R]) | Zg ⊂ NR}.

It is sufficient to prove that Γ ⊂ U × PN is closed.
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Let (g0, [R0]) be a point in the complement of Γ. This means that R0(z0) 6=
0 for some z0 ∈ Zg0

. Then there exist a neighborhood U(z0) ⊂ Pk of z0 and
a neighborhood U(R0) ⊂ PN of [R0] such that R(z) 6= 0 for all z ∈ U(z0) and
[R] ∈ U(R0). We claim that there exists a neighborhood U(g0) ⊂ U such that
U(z0) ∩ Zg 6= ∅ for all g ∈ U(z0). Indeed, otherwise there would be a sequence
gm → g0 without this property for Zgm

. By a theorem of Bishop ([3]), one has,
passing if necessary to a subsequence, Zgm

→ Zg0
, which is a contradiction.

Therefore, the whole neighborhood U(p0) × U(R0) of (g0, [R0]) belongs to
the complement of Γ. This proves the closedness of the graph Γ which means
the continuity of the mapping φ. QED

The Chow scheme C is a collection of projective varieties parameterized
by the dimension and degree of cycles. In Theorem 5.4 we assume that the set
of all degrees of Zg, g ∈ G is bounded. Therefore, the image φ(U) is contained
in finitely many components of the Chow scheme. Let Q denote the Zariski
closure of φ(U) in C. It is a projective variety. Let F ⊂ Q × Pk denote the
universal family over Q. Since Fv ⊂ V × V for all v from the Zariski dense
subset φ(U), one has F ⊂ Q× V × V .

Lemma 5.4. Let Q be an algebraic variety and F ⊂ Q× V × V a closed
algebraic family of subvarieties Fv ⊂ V × V, v ∈ Q, of pure dimension n. For
every v from a Zariski dense subset φ(U) ⊂ Q, assume that the fibre Fv is the
closed graph of a birational mapping ρv:V → V . Then this is true for all v
from a Zariski open dense subset Q′ with φ(U) ⊂ Q′ ⊂ Q. Moreover, there
exists a Zariski open subset F ′ ⊂ F which intersects every graph Fv, v ∈ Q′,
along a Zariski dense graph of a biregular mapping φ′v.

Proof. Let Q1 ⊂ F be the set of all (v, x) ∈ Q × V such that the fibres
F(v,x) ⊂ V are finite. Since the fibre dimension is upper-semicontinuous, Q1 is
a Zariski open subset of Q × V . The family F is a finite ramified covering of
Q1. The set

R := {(v, x) ∈ Q× V | ρv is biregular at x }.

is a dense subset of Q1 and the fibres F(v,x) over R consist of single points.
Therefore the covering F has only one sheet and every fibre F(v,x), (v, x) ∈ Q1,
consists of a single point. If, for some v ∈ Q, ({v}×V )∩Q1 is dense in ({v}×V ),
this means that Fv ⊂ V ×V is the graph of a rational mapping ρv:V → V . This
is true for all v from a Zariski open dense subset Q′

1, φ(U) ⊂ Q′

1 ⊂ Q, which
can be taken to be the intersection of the projections of irreducible components
of Q1 on Q.
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Similarly, using the projection on the product of Q and the other copy of V ,
we can construct Zariski open dense subsets Q2 ⊂ Q×V , Q′

2, φ(U) ⊂ Q′

2 ⊂ Q,
such that φ−1

v is regular at x ∈ V for all (v, x) ∈ Q2 and Fv is a graph of
a mapping φv with rational inverse for all v ∈ Q′

2. Then the intersection
Q′ := Q′

1 ∩Q
′

2 satisfies the required properties.
The required Zariski open subset F ′ ⊂ F can be given by the formula

F ′ := π−1
1 (Q1) ∩ π

−1
2 (Q2),

where π1, π2:F → Q × V denote the projection on the product of Q and the
first (resp. the second) copy of V . QED

Now we wish to extend the group operation U × U → G to a rational
mapping Q×Q→ Q. Let Q′ ⊂ Q be given by Lemma 5.4.

Lemma 5.5. There exist rational mappings α, α1, α2:Q× Q → C such
that for all (v, w) ∈ Q′ × Q′, where α (resp. α1 and α2) is defined, the fibre
Fα(v,w) (resp. Fα1(v,w) and Fα1(v,w)) coincides with the closed graph of the
birational correspondence ρv ◦ ρw (resp. ρv ◦ ρ−1

w and ρ−1
w ◦ ρv).

In the construction of the mappings α, α1 and α2 we use the following
algebraic universal property of the Chow scheme. Recall that C denotes the
Chow scheme of Pk and F ⊂ C × Pk the universal family over C.

Proposition 5.3. Let X be a quasi-projective variety, Z ⊂ X × Pk a
closed pure-codimensional subvariety. Then there exists a rational mapping
i:X → C with Zg = Fi(v) for all v ∈ X , such that i is regular at v.

This is a consequence of Proposition 5.1 and Chow’s theorem ([9], p. 167).
Proof of Lemma 5.5. We construct here the extension α1 of the mapping

(g, h) 7→ gh−1. The construction of α and α2 is completely analogous.
The idea of construction is to consider the family of graphs of gh−1:V → V

over Q × Q and to utilize the above universal property for it. Let W1, W2

and W3 denote different copies of V and π1 ,π2 and π3 be the projections of
W1 ×W2 ×W3 onto W2 ×W3, W1 ×W3 and W1 ×W2 respectively. Then, for
g1, g2 ∈ U , the graph of φg1g−1

2

is equal to the closure of

(5.1) Z ′

g1g−1

2

= π2(π
−1
3 (Z ′

g2
) ∩ π−1

1 (Z ′

g1
)),

where Z ′

g1
⊂W2 ×W3 and Z ′

g2
⊂ W2 ×W1 are the regular parts of the graphs

of ρg1
:W2 → W3 and ρg2

:W2 → W1 respectively.
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Using formula (5.1) we define a constructible family F̃ ⊂ Q′×Q′×W1×W3:

(5.2) F̃ = π2(π
−1
3 F ′

2 ∩ π
−1
1 (F ′

1)),

where F ′

1 ⊂ Q × W2 × W3 and F ′

2 ⊂ Q × W2 × W1 are different copies of
F ′ ⊂ Q× V × V . This is given by Lemma 5.4

By the choice of F ′ and Q′, every fibre F̃v1,v2
, v1, v2 ∈ Q′ is purely n-

dimensional. Therefore the family F̃ is closed and of locally constant degree
in a Zariski open dense subset Q′′ ⊂ Q′ ×Q′. By Proposition 5.3, there exists
a rational mapping α1:Q

′′ → C with F̃(v1,v2) = Fα1(g). Since Q′′ is Zariski
open and dense, α1 extends to a rational mapping Q×Q → C which has the
required properties. QED

Since the maps α and α1 extend the group operations, we write α(v, w) =
vw and α1(v, w) = vw−1 whenever these values are defined.

Lemma 5.6. The mapping (v, w) 7→ (vw, w) is injective on Q′ ×Q′.

Proof. Let v, w ∈ Q′ be arbitrary points. By Lemma 5.4, the fibres Fv, Fw

are closed graphs of birational mappings ρv, ρw:V × V . By Lemma 5.5, the
fibre Fvw is the closed graph of the composition ρv ◦ ρw. If v1w = v2w, their
fibres are also equal which implies the equality ρv1

◦ ρw = ρv2
◦ ρw. Since

ρw:V → V is birational, we obtain ρv1
= ρv2

, which means v1 = v2. QED
The following Lemma states the existence of right and left divisions of

“generic” elements.

Lemma 5.7. The mappings (v, w) 7→ (vw, w) and (v, w) 7→ (wv, w) are
birational mappings from Q×Q into itself with the inverses (v, w) 7→ (vw−1, w)
and (v, w) 7→ (w−1v, w). The variety Q is pure-dimensional.

Proof. We prove the statement for the first mapping. The proof for the
second one is completely analogous. We first wish to prove that the closed
image of Q × Q under the mapping (v, w) 7→ (vw, w) lies in Q × Q. Since
φ(U) is Zariski dense in Q, φ(U) × φ(U) is Zariski dense in Q×Q. Then the
subset W of φ(U)×φ(U), where vw is defined, is also Zariski dense. Since the
mapping G×G→ G×G, (g, h) → (gh, h) is a homeomorphism, the preimage
U ′ of U × U is open dense in G×G and therefore U ′′ := U ′ ∩ φ−1(W ) is open
dense in φ−1(W ). This implies that Q′′ := (φ× φ)(U ′′) is Zariski dense in W
and thus in Q×Q.

Let (v, w) = (φ(g), φ(h)) ⊂ Q′′ be an arbitrary point. By Lemma 5.5, the
fibre Fvw is the closed graph of the composition ρv ◦ ρw. The latter birational
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mapping coincides with the automorphism ρgh defined by gh ∈ U . This means
that vw ∈ Q. Since Q′′ is Zariski dense, this inclusion is valid for all (v, w) ∈
Q ×Q where vw is defined. Thus the mapping (v, w) 7→ (vw, w) is a rational
mapping from Q×Q into itself.

The projective variety Q has finitely many irreducible components. Let
Q0 ⊂ Q be a component of maximal dimension and Q1 an arbitrary component.
Then (vw, w) ∈ Q2 ×Q1 for (v, w) ∈ Q0×Q1, where Q2 is also a component of
Q. By the choice of Q0, dimQ2 ≤ dimQ0. Since the restriction on Q0 ⊂ Q1 of
the mapping in Lemma 5.6 is injective on the open subset (Q0×Q1)∩(Q′×Q′),
its closed image coincides with Q2×Q1. Therefore the composition of (v, w) 7→
(vw, w) and (v, w) 7→ (vw−1, w) is defined in an open dense subset Q′′ of
Q0×Q1. It is equal to the identity on the Zariski dense subset Q′′×φ(U), i.e. it
is the identity. By the injectivity in Lemma 5.6, the mapping (v, w) 7→ (vw, w)
is birational from Q0 ×Q1 into Q2 ×Q1 with the inverse (v, w) 7→ (vw−1, w).
In particular, dimQ2 = dimQ1.

Now, by Lemma 5.6, the components Q2 are different for different Q1 and
fixed Q0. If Q1 runs through all components, Q2 also does. This implies that
Q is pure-dimensional. Thus, we can take for Q0 and Q1 any two components
and repeat the above proof. QED

Lemma 5.8. Let Q′ ⊂ Q be as in Lemma 5.4 and vw be defined and in
Q′ for v, w ∈ Q′. Then ρvw = ρv ◦ ρw.

Proof. In case v = φ(g), w = φ(h) for g, h, gh ∈ U one has ρvw = ρgh =
ρg ◦ ρh = ρv ◦ ρw. Since the set of above points (v, w) ∈ Q′ × Q′ is Zariski
dense, the required relation is valid in general. QED

We now establish the associativity of the operation (v, w) → vw.

Lemma 5.9. Let u, v, w ∈ Q be arbitrary points. Then (uv)w = u(vw)
whenever both expressions are defined.

Proof. By Lemma 5.7, the above expressions are defined on a Zariski open
dense subset Q′′ ⊂ Q3. For u, v, uv, vw ∈ Q′ the fibres of both expressions are
the graphs of ρu ◦ ρv ◦ ρw by Lemma 5.8. The latter set is Zariski dense. QED

Lemma 5.10. The operation (v, w) → vw induces a group structure on
the set S of all irreducible components of Q.

Proof. The associative property follows from Lemma 5.9. Lemma 5.7
implies the existence of right division in S. The existence of left division is
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proved analogously by using the birational correspondence (v, w) → (v, v−1w).
QED

It follows from Lemmas 5.7 and 5.9 that Q is an algebraic pre-group in
sense of [34]. Recall that an algebraic pre-group is an algebraic variety V
with a rational mapping V × V → V , written as (v, w) 7→ vw, such that:
1) for generic (u, v, w) ∈ V × V × V both expressions (uv)w and u(vw) are

defined and equal (generic associativity condition);
2) the mappings (v, w) 7→ (v, vw) and (v, w) 7→ (v, wv) from V ×V into itself

are birational (generic existence and uniqueness of left and right divisions).
The regularization theorem for the algebraic pre-groups can be stated as

follows (see [30]; [34], Theorem 3.1).

Lemma 5.11. There exists a birational homomorphism τ between Q
and an algebraic group G̃.

Remark. By a birational homomorphism we mean a birational corre-
spondence τ such that τ(uv) = τ(u)τ(v) whenever all expressions are defined
(cf. [34], Definition 3.2).

3. Properties of the action on V .

Lemma 5.12. There exists a rational action ρ̃:Q×V → V , i.e. ρ̃(vw, x)
= ρ̃(v, ρ̃(w, x)) for generic choice of (v, w, x) ∈ Q×Q×V such that the following
diagram is commutative whenever the mappings are defined:

G× V
ρ

−→ V




y

φ×id





y

id

Q× V
ρ̃

−→ V

Proof. By Lemma 5.4, there exists a Zariski open dense subset Q′ ⊂ Q
such that, for every v ∈ Q′, the fibre Fv is the closed graph of a birational
mapping ρv:V → V . These birational mappings together define the action
ρ̃:Q′ × V → V which extends to a rational mapping ρ̃:Q × V → V . The
commutativity of the diagram follows from the coincidence of the closed graph
of ρg, g ∈ U , with the fibre Fφ(g).

The property ρ̃(vw, x) = ρ̃(v, ρ̃(w, x)) is true for v, w, vw ∈ φ(U) and
x ∈ D. Since the set of such (v, w, x) is Zariski dense in Q×Q×V , this is true
for generic choices of (v, w, x). QED
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To simplify the notation, we write ρ:Q× V → V instead of ρ̃:Q×V → V .
Then the property ρ̃(vw, x) = ρ̃(v, ρ̃(w, x)) can be written as the associativity
condition (vw)x = v(wx).

The “action” Q× V → V is rational. Furthermore, it may happen that an
element v ∈ Q does not define a birational automorphism of V . This is not the
case, however, if we replace Q by G̃.

Lemma 5.13. Let G̃×V → V be the rational action which is induced by
the action ρ:Q×V ×V via the birational homomorphism τ :Q→ G̃. Then, for
every element v ∈ G̃, the restriction ρv:V → V is a birational automorphism
of V and the product vw in G̃ corresponds to the composition ρv ◦ ρw of these
automorphisms. Moreover, the action of G̃ is effective.

Proof. Let Q′ ⊂ Q be the open dense subset given by Lemma 5.4 Q′′ ⊂
Q′ an open dense subset where the birational homomorphism τ :Q → G̃ is
biregular. We can regard Q′′ as a Zariski open dense subset of G̃.

Let v ∈ G̃ be arbitrary and w ∈ vQ′′ ∩Q′′. Then v = wu−1 for w, u ∈ Q′′.
By Lemma 5.4, the fibres Fw and Fu coincide with closed graphs of ρw and
ρu. Therefore there exist points in w × V and u × V where ρ is defined. By
Lemma 5.8, ρv = ρw ◦ ρ−1

u , which is also a birational automorphism of V .
By Lemma 5.8, one has ρ(vw, x) = ρ(v, ρ(w, x)) for all (v, w, x) in a Zariski

dense subset of G̃ × G̃ × V . Therefore this is true for all values of (v, w, x)
whenever the expressions are defined. This implies ρvw = ρv ◦ ρw for all v, w ∈
G̃.

Assume that ρ: G̃ × V → V has a kernel K and take k 6= 1 ∈ K. Let
Q′′ ⊂ Q be a Zariski open dense subset where the birational homomorphism
τ :Q → G̃ is biregular. We can regard Q′′ as a Zariski open dense subset of
G̃. Let v = kw ∈ Q′′ ∩ kQ′′ be an arbitrary point. Since k is in the kernel,
ρkw = ρw. On the other hand, w and kw are different points in the Chow
scheme C ⊃ Q′′ with different fibres. Since the fibres are the closed graphs of
corresponding automorphisms, this is a contradiction. QED

Recall that V is an algebraic pre-transformation G̃-space ([34], Defini-
tion 4.1) if
1) for generic (v, w, x) ∈ G̃× G̃× V , both expressions (vw)x and v(wx) are

defined and equal (generic associativity condition);
2) the mapping (v, x) 7→ (v, vx) from Q× V into itself is birational.

Corollary 5.1. V is an algebraic pre-transformation G̃-space.

4.The homomorphism from G into G̃.
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Up to now we constructed an open dense subset U ⊂ G and a local homo-
morphism φ:U → Q. We wish to extends φ to a homomorphism from G into
G̃, which is compatible with the action on V .

Lemma 5.14. Let Q′′ ⊂ Q be a Zariski open dense subset.
1) For every g ∈ G there exist two points v, w ∈ Q′′ such that ρg = ρv ◦ ρ

−1
w ;

2) The points v, w can be chosen to be in φ(U);
3) If gm → g0 is any convergent sequence in G, the corresponding sequence
vm, wm ∈ Q′′ can be chosen to converge to some v0, w0 with ρg0

= ρv0
◦ ρ−1

w0
.

Proof. Let g ∈ G be fixed and Q′ ⊂ Q be given by Lemma 5.4. We
can assume Q′′ ⊂ Q′. Let F ⊂ Q′′ × V × V be the universal family over Q′′,
which, by Lemma 5.4, consists of closed graphs of birational automorphisms
ρv:V → V . Analogous to the formula (5.2) we can consider the family F ′ of
compositions ρg ◦ ρv, v ∈ Q′′. Let Q0 denote an irreducible component of Q.
As in the proof of Lemma 5.5, we conclude that the fibre F ′

v coincides with the
closed graph of ρg ◦ ρv for all v from a Zariski open subset Q′′

g ⊂ Q′′ ∩Q0. By
Proposition 5.3, this family yields a rational mapping rg:Q

′′

g → C.
We wish to prove that rg(Q

′′

g) ⊂ Q. For this we return to our group G. Let
U ⊂ G be the chosen open dense subset. Then the translation gU is also an
open dense subset of G and so is the intersection U ′ := gU ∩ U . This implies
that φ(U ′) is Zariski dense in Q and therefore φ(U ′) ∩ Q′′ is Zariski dense in
Q′′. Now, for every v = φ(h) ∈ φ(U ′) ∩ Q′′, h ∈ U ′ the fibre F ′

v is the closed
graph of ρgh. Since gh ∈ U , one has rg(v) = φ(gh) ∈ Q. By the density of
φ(U ′) ∩Q′′

g , the image of rg(Q
′′

g ) lies in Q.
Since the compositions of ρg with different automorphisms of V are differ-

ent, the mapping rg:Q
′′

g → Q is injective. Therefore the image rg(Q
′′

g ) intersects
the open dense subset Q′′. Let v ∈ Q′′ ∩ rg(Q

′′

g) be an arbitrary point. The
fibre Fv is the closed graph of the birational automorphism ρv and, at the same
time, is the closed graph of ρg ◦ ρw, where w ∈ Q′′. This means ρg = ρv ◦ ρ−1

w

which finishes the proof of the part 1.
The point v ∈ Q′′ ∩ rg(Q

′′

g) can be chosen to lie in φ(U ∩ gU). Then
v, w ∈ φ(U) and the part 2 is also proven.

If we are given a convergent sequence gm → g0, we can choose a point
v ∈ Q′′ such that v ∈ rgm

(Q′′

gm

) for all m = 0, 1, . . . . Then all wm ∈ Q′′

gm

lie in
the component Q0 which is included in a single component of the Chow scheme.
This means that the degree of ρwm

is constant. The convergence ρgm
→ ρg0

implies ρwm
→ ρw0

. By Lemma 5.3, the family of closed graphs of ρwm
is

closed. By Proposition 5.2, wm → w0, m→ ∞. This proves the part 3. QED
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Lemma 5.15. There exists a continuous homomorphism φ:G→ G̃, such
that ρφ(g) = ρg for all g ∈ G. The image ρ(G) is Zariski dense in G̃.

Proof. Let Q′′ ⊂ Q be a Zariski open dense subset where the birational
mapping homomorphism G̃ is biregular. We can identify Q′′ with a subset of
G̃. By Lemma 5.14, applied to the set Q′′ ⊂ Q and an element g ∈ G, one
has ρg = ρv ◦ ρ−1

w for v, w ∈ G̃. By Lemma 5.13, ρg = ρvw−1 . Then we define

φ(g) := vw−1. Since, by Lemma 5.13, the action of G̃ is effective, this definition
of φ(g) is independent of the choices of v and w.

The property ρφ(g) = ρg is satisfied by construction of φ. By Lemma 5.13,
φ is a homomorphism. The continuity of φ follows from Lemma 5.14, part 3.

The image φ(G) contains the image φ(U), which is Zariski dense in Q. If
Q′′ ⊂ Q is a Zariski open dense subset, where the isomorphism between Q and
G̃ is biregular, the intersection Q′′ ∩ φ(U) is Zariski dense in Q. The set Q′′

can be regarded as a Zariski open dense subset of G̃. This which yields the
density of Q′′ ∩ φ(U) and therefore of φ(G). QED

5. The regularization of the action G̃× V → V .

Let D ⊂ V be as in Theorem 3′. We noted in Corollary 5.1 that V is an
algebraic pre-transformation G̃-space. The theory of A. Weil (see Theorem 4.1
in [34]) gives the existence of the regularizations of algebraic pre-transformation
spaces which are regular at the so-called points of regularity. Recall that a point
x in an algebraic pre-transformation G̃-space V is called a point of regularity
if the mapping x′ 7→ ux′ from V into itself is biregular at x′ = x for generic
u ∈ G̃ (see [34], Definition 4.3).

If v ∈ φ(G), x ∈ D, then the mapping x′ 7→ vx′ is biregular at x. Since, by
Lemma 5.15, φ(G) is Zariski dense in G̃, D consists of points of regularity. By
Theorem 4.1 in [34], there exists a birational regularization ψ:V → X , i.e. G̃
acts regularly on X , the mapping ψ is birational on V , biregular on D and G̃-
equivariant. In particular, ψ|D is G-equivariant. This is exactly the conclusion
of Theorem 3′. QED

6. Algebraic extensions for the case of finitely many connected
components

In this section we prove Theorem 1. Let G be a Lie group of birationally
extendible automorphisms of D ⊂ V with finitely many connected components.
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For fixed g ∈ G we obtain an n-dimensional subvariety Zg = ν(Γg) ⊂ Pk

which corresponds to a point ρ(g) in the cycle space C(Pk) ([1,5]). In order to
apply the universality of the cycle space we embed our family Zg, g ∈ G in a

meromorphic family Zg, g ∈ G̃.
As a real analytic manifold, G can be embedded totally really and closed

into a complex manifold G′ with dimRG = dimCG
′ ([4]). We wish to extend

the action G ×D → D to a meromorphic mapping G̃ × V → V , where G̃ is a
neighborhood of G in G′. Since G is embedded totally really, the meromorpic
extension is unique. Therefore it only must be constructed locally with respect
to G. For the proof we utilize the following result of Kazaryan ([15]). A
subset E ⊂ D′ is called nonpluripolar if there are no plurisubharmonic functions
f :D′ → R ∪ {−∞} such that f |E ≡ −∞.

Proposition 6.1. Let D′ be a domain in Cn and let E ⊂ D′ be a
nonpluripolar subset. Let D′′ be an open set in a complex manifold X . If f is
a meromorphic function on D′×D′′ such that f(g, ·) extends to a meromorphic
function on X for all g ∈ E, then f extends to a meromorphic function in a
neighborhood of E ×X ⊂ D′ ×X .

We wish to prove the required extension at a point g0 ∈ G. For this we
fix a coordinate neighborhood E ∈ G′ of g0 regarded as a neighborhood in Cp,
such that G ∩ E = Rp ∩ E =: ER. The map µ = ν ◦ (id × φ):G × V → Pk

is real analytic on ER × D and extends therefore to a holomorphic map in a
neighborhood D′ ×D′′ of ER ×D ⊂ Cp × V . (Here we must replace D by a
bit smaller neighborhood D′′ ⊂ D).

The set ER, being an open subset of Rp , is nonpluripolar. We apply
Proposition 6.1 to the coordinates of the map µ in any affine coordinate chart
in Pk. We conclude that µ extends to a meromorphic map µ̃ defined in a
neighborhood of {x0}×V ⊂ G′×V into V . Since V is compact, we can choose
this neighborhood of the form G̃× V .

Now we can apply Proposition 5.1 to the meromorphic family Zg, g ∈ G̃.

We obtain a meromorphic mapping φ: G̃ → Cn(Pk). Since the number of
components of G is finite, G̃ can be also assumed to possess this property.
Then the image φ(G̃) lies also in finitely many components of Cn(Pk) which
means the boundness of the degree for all Zg with g in an open dense subset

U ⊂ G̃. By Lemma 5.1, the degree is globally bounded. Now the application
of Theorem 3 yields the algebraic extension required by Theorem 1. QED

7. The proof of Theorem 4
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1 =⇒ 2. The proof is trivial. QED

2 =⇒ 3. By Theorem 3, it is sufficient to prove the boundness of the degree.
Let G be a subgroup of a Nash group G̃ such that the action G × D → D
extends to a Nash action G̃ ×D → D. We prove the statement for arbitrary
Nash manifold G̃ and Nash map G̃ ×D → D (which is holomorphic for every
fixed g ∈ G) by induction on dim G̃. This is obvious for dim G̃ = 0.

Let U ⊂ G̃ and W ⊂ Pk be Nash coordinate charts and φj(g):D → C be
the jth coordinate in W of ν ◦ (id × φg):D → Pk for g ∈ U (taken on its set
of definition). Since the map φj :U ×D → C is Nash, it satisfies a polynomial
equation Pj(g, x, φj(g, x)) ≡ 0 of degree d. This yields nontrivial polynomial
equations of degree not larger than d for all φj(g):D → C, g ∈ U , outside
a proper algebraic subvariety N . The calculation of the required degree, i.e.
the intersection number with a linear projective subspace L of codimension n,
yields additional linear equations for the coordinates in W . For L generic and
g in the complement of another proper subvariety N ′, this intersection number
in finite. Since the degrees of polynomial equations for this intersection are
bounded, the intersection number is also bounded (Bezout theorem). This
proves the statement for G̃ = U\(N ∪N ′).

The intersection U ∩ (N ∪ N ′) admits a finite stratification in lower di-
mensional Nash manifolds (see e.g. [2]). By induction, the required degree is
bounded for every stratum. This proves the boundness of degree for g ∈ U .
Since the Nash atlas is finite, we obtain the required boundness for the Nash
manifold G̃. QED

3 =⇒ 1. Let ρ: G̃ × X → X be an algebraic extension. We identify the
open subset D with its embedding in X . Then we define G̃′ to be the subgroup
of G̃ which consists of all elements which leave D invariant. In general, this is
not an algebraic subgroup. For our statement, it is sufficient to prove that G̃′

is a Nash subgroup.
We utilize the following property of semialgebraic sets ([33], Lemma 6.2).

Lemma 7.1. Let A, B and C,C′ ⊂ A × B be semialgebraic sets. Then
the set of a ∈ A such that Ca ⊂ C′

a is semialgebraic.

Here Ca and C′

a denote the fibres {b ∈ B | (a, b) ∈ C} and {b ∈ B | (a, b) ∈
C′} respectively. Now we set A := G̃, B := D, C := (prG̃×ρ)(G̃×D), C′ := G̃×
D in Lemma 7.1. The set C is semialgebraic by the Tarski-Seidenberg Theorem
([2], Theorem 2.7.1). By Lemma 7.1, the set G1 := {g ∈ G̃ | g(D) ⊂ D} is
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semialgebraic. Again, Lemma 7.1, applied to A := G1, B := D, C := G1 ×D
and C′ := (prG1

× ρ)(G1 × D), shows that the subgroup G̃′ is semialgebraic.
Therefore it is a Nash subgroup and the statement is proven. QED
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