
Adaptive Architectures to Support Highly
Configurable Value Chains

 Ray Richardson1, Aidan Boran1, Tomas Vitvar2, Paavo Paavo Kotinurmi2

David Lewis3, John Keeney3, Declan O’Sullivan3

Bell Labs Ireland1, Digital Enterprise Research Institute Galway2,
Centre for Telecommunications and Value Chain Research, Knowledge and

Data Engineering Group, Trinity College Dublin3

Abstract Existing Business-to-Business (B2B) infrastructure is primarily
focussed on the secure, reliable, and scaleable transfer of information
between business partners. The time and effort taken to establish these
B2B connections has meant that the resulting business relationships tend
to be long-term and rigid in nature. More recently, however, the
configurability of the value chain connecting business partners has been
seen as a key to competitiveness. There is increasing pressure to establish
more transient ad-hoc relationships whereby dynamic decisions can be
made to, for instance, exchange one partner with a more competitive
alternative. This dynamic business model introduces considerable
complexity both in the need to deal with heterogeneous partner interfaces
and the need to support dynamic decision-making. In this paper we
explore how semantic web service technology can be combined with
policy-based management to infuse adaptivity into existing B2B
infrastructure. This adaptivity enables organisations to effectively deal
with the increasing levels of heterogeneity and change expected with next
generation e-business

1. Introduction

The current de facto approach to B2B integration is to employ a standards
based e-business framework such as RosettaNet, EDI, ebXML, etc. [3]. The
implementation of the framework is a non-trivial task with backend integration
required to ensure internal systems can produce and consume the pre-agreed
documents and considerable effort required to ensure inter-organisation
message exchange takes place as expected, [4]. The infrastructure lends itself
to a particular business model in which long term rigid partnerships are
established between organisations. For many organisations, however, there is

increasing pressure to establish more transient ad-hoc relationships whereby
dynamic decisions can be made to, for instance, exchange one partner with a
more competitive alternative, [1,5].

This dynamic business model introduces considerable complexity both in the
need to deal with heterogeneous partner interfaces and the increased
operational complexity associated with dynamic decision-making, [7].
Organisations participating in these fluid value chains need a highly adaptive
B2B infrastructure to address the additional complexity. In our research we are
investigating the use of an integrated semantic web service (SWS) and policy-
based management approach to infusing adaptivity into existing e-business
framework implementations. Semantic web service technology is used to
mediate process and data conflicts within partner interfaces. Ontologically
encoded policies are used to automatically or semi-automatically enforce
human governance on dynamic decisions relating to service selection, pricing,
levels of service, and so on. Specific contributions of the paper include:

• a description of the challenges facing businesses in their efforts deal
with changing business models (section 2)

• an overview of a system architecture which incorporates a transparent
integration of semantic web services (SWS) technology, widely
deployed e-business frameworks, and policy engineering techniques
(section 3.1).

• an account of how the approach delivers adaptivity in a specific use
case scenario (section 3.2)

• an insight into how a high performance decision engine can be utilised
to to enforce organizational policies in decision making related to
service selection, parameter setting, and constraint enforcement
(section 4).

2 Problem domain - Use Case Scenario

To illustrate the problem domain we consider a use case in which a small-scale
supplier, organisation A, supplies widgets to a considerably larger electronics
manufacturer, organisation B. Organisation A and B have a long term B2B
relationship with fixed terms (pricing, shipping locations, etc..) and IT support
through a RosettaNet e-business framework. Organisation A would like to
lessen its dependence on organisation B as its main customer and has recently
been approached by other electronics manufacturers requesting quotes for its
widget product.

The nature of this new business is somewhat different insofar as requests are
more ad-hoc and terms more variable, e.g. pricing, service level, shipping
locations, and so on can vary greatly. Specific difficulties exist in that the B2B
interfaces to each of the electronics manufacturers are different and additional
overheads exist due to the requirement to make on-the-fly decisions on pricing,
levels of service, etc..

B2B heterogeneities occur across three layers – network, data, and process.
The network layer is the most straightforward to deal with as many of the
manufacturers are willing to provide smaller suppliers with B2B software
clients which can handle the encoding and transportation of messages
according to their standard protocol. Data conflicts are more troublesome.
Even for manufacturers sharing the same e-business standard it’s quite common
for data conflicts to arise. For instance one manufacturer may expect contact
phone numbers that include area and country codes whereas another simply
expects phone numbers to have an area code. Perhaps more serious would be a
situation where two manufacturers have different standard units of measure for
the same product (e.g. one uses a 5 pack whereas another uses 10 pack). These
mismatches are only apparent by inspecting the content of messages or even
worse as a result of an investigation following unexpected events. Process
heterogeneities relate to differences in the specific message exchange
sequences. One manufacturer may issue multi-line orders as a series of
individual requests whereas another may bundle them together into a single
request. Again even within the same e-business standards differences can arise.

Organisation A’s plans to diversify its customer base and grow production is
good for business, but requires significantly increased adaptivity in its B2B
function. The option to standardise B2B operations across its customers is not
realistic, primarily due to the company’s size relative to its customers. The
organisation needs to ensure that profits from its new business are not wiped
out by the overhead associated with managing the additional operational
complexities.

3 High Level Architecture Overview

Our approach to addressing the particular demands of the use case scenario is
to implement an integration of SWS technology, policy engineering
techniques, and existing e-business frameworks.

3.1 Overview of Solution

Fig 1: High-level view of architecture

Key elements of the architecture include:

• WSMX - we make use of the Web Services eXecution Environment

(WSMX) as our SWS platform, [2]. It provides core support for semantic
service discovery, data meditation, process mediation, and service
invocation. WSMX resides entirely within organisation A. This allows us
to avoid making any assumptions on the semantic technology capability of
partner organisations. WSMX makes use of the Web Services Modelling
Language (WSML) [8] for all internal processing.

• e-business framework ontologies – these ontologies are flat WSML
representations of e-business framework (RossettaNet, ebXML, EDI, etc.)
message contents. XSLT is used to automatically construct these

ontologies from an XML schema representation of the e-business standard.

…
<ProductLineItem>
 <UnitOfMeasureCode>12-pack <UnitOfM../>

 …
concept productLineItem
 nonFunctionalProperties

Organisation A
 RNI
Adapter

Create

Intern
Shipp
SWS

Exter
Sine
ITem

Create Ontology
Mappings

Adapter

WSML Adapter

 Shipping
Decision Point
 SWS

 Shipping
Decision Point
 SWS

Domain
Ontology

 e-business
WSML Models

Order
 Mgt
 SWS

 Shipping
Decision Point
 SWS

Build Order

Policy
Engine

 WSMX SWS Platform

Manu F

Manu E

Manu D

 EDI
Adapter

 cXML
Adapter

Org B

 <LineNumber>1</LineNumber>
 <requestedQuantity>
 <ProductQuantity>10</ProductQuantity>
 </requestedQuantity>
…

 dc#title hasValue "…"
 endNonFunctionalProperties
 lineno ofType (0 1) _integer
 unitcode ofType UnitOfMsre
 qty ofType (0 1) Quantity

• e-Business Adapters – these exist to translate or ‘lift’ e-business standard

messages into a WSML format, making use of concepts defined in the e-
business framework ontologies. For messages going in the opposite
direction the WSML concepts are ‘lowered’ to become e-business standard
messages. These adapters are also responsible for creating WSML goals on
receipt of ‘kick-off’ messages.

• Semantic web service

descriptions representing back-
end information systems (Order
Mgt., Shipping, etc..) within
organisation A. The
descriptions eliminate semantic
ambiguity by binding input and
output parameters to specific
concepts within an
accompanying domain
ontology. Another adapter
exists to ‘lift’ and ‘lower’
messages received and sent
between back office systems
and their corresponding
semantic web services.

webService OrderMgt

importsOntology { _"http://www.orgA.com/OM" }

capability OrderMgtSWSCapability
 sharedVariables {?request}

 precondition
 definedBy
 //A request to create an order
 ?request memberOf mn#createOrderRequest or
 //A request to add a lineitem to an order
 …

 postcondition

…
 interface OrderManagementInterface
 choreography OrderManagementChoreography
 stateSignature
 …

• Design time ontology mappings - these mappings identify equivalences and
relationships between concepts in each of the e-business ontologies and the
domain ontology. A data mediation tool exists to support the process.

• The Policy decision engine is used to enforce organisational policies in
decision making processes. Decision points are exposed as semantic web
services using concepts from the domain ontology (or possibly another
ontology linked to the domain ontology via mappings). The policy decision
engine is discussed in greater detail in section 4.

3.2 Simple walk through

In this section we provide a simple walkthrough of the architecture described
previously. For the walkthrough we assume we are dealing with a purchase
order request received from a customer who utilises RosettaNet. We further

assume there are backend services to both build an order (ProcessOrder) and to
deal with shipping (InternalShip and ExternalShip). As part of the decision to
broaden its business activities org A has introduced an external shipping
function that can be used in place of its internal shipping function for certain
situations. The basic flow of activity for processing a purchase order is shown
below.

Fig 2: Overview of message flow.

Key points include:

• RosettaNet purchase Order request message, PIP 3A1, is ‘lifted’ by the RNI

adapter into an equivalent WSML format. The receipt of this message
triggers the adapter to formulate a WSML goal from a set of pre-defined
templates. The goal seeks to have a purchase order processed.

• The WSMX Discovery component matches the WSML goal against
existing service capabilities. There may be capabilities to quote a price, to
create an order, to ship an order, etc.. This match may be quiet simple in
practice with inputs/outputs simply checked – data mediation is invoked
where necessary. In some cases it may be the case there is no direct match
between a goal and the available service descriptions. For instance in this
example there is no single service to process an order. However by
composing the Build Order and one of the Ship Order services the goal can
be achieved.

• The service selection step, in particular which shipping service to utilise can
be partially or fully controlled by policy based management. Further detail

WSMX Adapters WSML
Adapter

RNI
Adapter WSMX

Discovery
WSMX
Data
Med’n

WSMX
Process
Med’n

Policy
Mgt

1. PO Request

2. WSMLGoal

3. Invoke Data Med

Manufacturer

4. Policy enforcement on selection

Org A

WSMX
Selection

WSMX
Invocation

6. Process Mediation handles mismatches e.g. need for PO ACK

7. Calls to back-end services – ProcessOrder, Ship

5. Calls to Process Mediation
 during backend service invocations

on how this may take place can be found in section 4. The use of policy
based management in this way introduces a significant level of adaptivity
into operations management and provides a consistent scaleable solution to
the increasing operational complexities found when dealing with additional
business partners.

• The mappings defined between the base and domain ontologies are
executed as part of the SWS invocations. The mappings ensure RosettaNet
concepts/attributes such as AddressLine1, CityName, etc., are appropriately
translated into their backend equivalents, e.g. Street, City, etc..

• Process mediation is a further service offered by the WSMX environment.
WSMX is capable of analysing the process choreographies of the goal and
the individual service descriptions to identify and reconcile process
heterogeneities. For instance the RossettaNet message process purchase
order expects to receive an acknowledgement following the issue of a
purchase order message (PIP 3A1). This acknowledgment may not be
provided by the back-end BuildOrder service, the process mediator is thus
responsible for auto-generating the acknowledgement message. Abstract
state machines are used at runtime to keep track of process executions.

• During the service execution WSML individuals will be lowered into a
message format that can be consumed by the Order Mgt and Shipping back-
end services.

4. Policy based management
In our research we propose policy-based management to support dynamic
decision making. Declarative rules are used to enforce organizational policies
in decision making related to service selection, parameter setting, and
constraint enforcement. The Vortex rules engine [18] is being used as the
decision engine. Vortex is a high performance, acyclic, forward chaining rules
engine that supports reasonably rich policy management for real time
environments.

Policies, in their simplest form, are event-condition-action rules.
Correspondingly Vortex rules have a simple :

 If(Condition) then
 action1,
 action2,
 action3,
 …
 end

format. The rules language is strongly typed with support for both atomic and
complex typed variables. Vortex is packaged with an extensible range of
support functions that can be called from any rule condition or action.
Permitted actions include assigning a value to a variable, appending a value to a
list variable and removing a value from a list variable. Rules are organized
into what are known as rule sets, i.e. the set of rules that should be used for a
given ‘decision request’. Each rule set has an explicit input/output signature.
From an architectural perspective we expose rule sets as individual services
with ontologically bound input/output parameters. In some cases data
mediation may be necessary as part of decision request processing.

In order to provide an insight into how the decision engine is utilised we build
on the scenario developed in previous sections. In this scenario one of the
decisions required is to select the most appropriate shipping options.
Organisational policies should be adhered to in compiling these options.
Information from the purchase order and candidate shipping services are
forwarded with the decision request – it itself being a WSML goal. The
decision engine is capable of issuing requests to external sources to retrieve
additional information required to evaluate the conditions of all rules. The
information returned from the decision service consists of a set of shipping
options that comply with organisational policies pertaining to the shipping
request. A human administrator may make the ultimate shipping decision from
this short list of valid choices. Alternatively the selection may be based on
some simple criteria such as the cheapest conforming shipping service.

Rule sets begin with a declaration of input, output, and intermediate variables.
In our simplified shipping decision rule set input variables include the list of
concrete shipping candidates, the name of the purchasing organisation, the time
the shipment will be available for pickup, the shipment destination, etc..
 variables:
 purchasingOrgName : string;
 availableForPickup : string;
 shipmentDestination : list Record of { location : string };
 shippingCandidates : list of Record { identity : String;
 pickup_Time : string;
 pickup_Date : string;
 cost : string;
 setdown : string; };

An adapter takes care of lowering WSML concepts to become input variables.
In some cases the set of input variables are extended as a result of additional
domain knowledge held in the ontology. For example a single
shipmentDestination of Kista would have the additional locations of Stockholm

and Sweden added as Kista is located in Stockholm which is in turn located in
Sweden. This expanded list of locations results in more robust rule sets.

Intermediate variables are used to store temporary values during the rule set
execution. In some cases these temporary values are populated as a result of
rule actions to retrieve information from external sources.

 shipmentChannel : string;
 internalShippingCapacity : string
 filteredFromInHrs, filteredFromPerf, filteredFromPickup,
 filteredFromPerferred, blacklisted :
 list of Record { identity : String;
 pickup_Time : string;
 pickup_Date : string;
 cost : string;
 setdown : string;
 priority : string; };
 onTimePerf : list of Record {identity : string;
 channel : string;
 perf_Rating : string; };
 preferredVendorList : list of Record {identity : string;
 channel : string; };

The single output variable in this case is the list of shipping options that adhere
to all organizational policies.

 validShippingServices : list of Record { identity : String;
 pickup_Time : string;
 pickup_Date : string;
 cost : string;
 setdown : string;
 priority : string; };
The actual rules are typically organized into groups with the initial group
setting intermediate variables, e.g. :

 shipmentChannel = “lane1”;
 if(shipmentDestination[$i] == “USA” || shipmentDestination[$i] == “UK”) then
 shipmentChannel = “lane2”
 end

The shippingDestination[$i] syntax leads to an evaluation of the rule for each
member of the shippingDestination list value.

Subsequent rule groups actually enforce the organizational policies. In our
simplified scenario we assume the following policies exist :

1. A preferred vendor list exists for each shipping lane. Company policy

states for any given shipment the selected shipper must be on the
preferred list for the shipments shipping lane.

2. A shipper must have an on time performance of greater than 95% for the
the shipping channel in question

3. Shippers are required to make pickups within regular hours
4. The pickup cannot be more than 4 days after availableForPickup date
5. Shipments for organization B take priority in the case of the internal

shipment service

Generally speaking policies act to filter the allowable list of shipment services.
The corresponding rules for each of the policies are presented below :

 rule: Rule_1
 if(shippingCandidates[$i].identity == PreferredVendorList[$j].identity &&
 PreferredVendorList[$j].ShippingChannel == shipmentChannel)
 filteredFromPreferred += ShippingCandidates[#i];

 rule: Rule_2
 if(filteredFromPreferred [$i].identity == onTimePerf[$j].identity &&
 onTimePerf [$j].channel == shipmentChannel && onTimePerf [$j] > 0.95)
 filteredFromPerf += filteredFromPreferred[#i]

 rule: Rule_3
 if(Time::between(filteredFromPerf[$i].pickupTime, “08:00”, “18:00”))
 filteredFromInHrs += filteredFromPerf[#i];

 rule: Rule_4
 if(Time::numberOfDaysBetween(filteredFromInHrs[$i].pickupDate,
 availForPickup) < 4)
 filteredFromPickup += filteredFromInHrs[#i];

 rule: Rule_5
 if(filteredFromPickup[$i].identity == “Internal” &&
 internalShippingCapacity < 0.2 && requestingOrg != “Org B”)
 blacklisted += filteredFromPickup[#i]

 rule: Rule_6
 if(! (filteredFromPickup[$i] in blacklisted))
 validShippingServices += filteredFromPickup[#i]

Relating organisational policy semantics to the semantics used to define both
back-end systems and partner interfaces has obvious benefits in ensuring policy
constraints operate as expected. By enforcing policies in service selection and

parameter setting an organisation can flexibly and consistently control how it
interoperates with partners. Semantically encoded policies are themselves
more adaptable to change and heterogeneity and are considerably easier to
encode. For instance a policy that states “during public holidays pickups must
take place between 9:00am and 12:00am” can take advantage of domain
knowledge for what constitutes a public holiday to simplify the encoding.
Data mediation further enables policies to adapt to heterogeneity, e.g. a
concrete service description might encode a pickup time using a 24 hour format
in place of the standard 12 hour clock used internally. A mediator can
automatically mediate this.

5. Related Work

Much work has been carried out both in industry and research communities
that demonstrate approaches to support adaptivity in the supply chain.
Research efforts have shown how various B2B standards can be ontologised
[11,12]. Other research work has focused on applying SWS technologies to
B2B integration [13,14]

Many XML based B2B interactions standards have grown up such as cXML,
ebXML, RosettaNet[3]. Achieving smooth B2B connections requires an
integration platform. Many commercial offerings have entered the market
(such as Oracle Application Server Integration[15], webMethods[16], Cape
Clear ESB[17]).

This diversity of standard and platform only increases the need for strong
adaptivity in the supply chain support systems since neither standard nor
platforms embrace the semantic model in a significant way.

6. Conclusions and future work

In this paper we have presented some of the problems facing organisations
attempting to participate in configurable value chain partnerships. Increased
adaptivity is required within the B2B function to address interface
heterogeneities and operational complexities introduced by the more dynamic
business model. An integration of SWS technology and policy-based
management are proposed to deliver the required adaptivity. Internally
deployed semantic web services are employed to address data and process
heterogeneities present in partner interfaces. Semantically encoded policies are
used to ease difficulties associated with the dynamic decision-making.

The focus of our work is currently on investigating the options available to
integrate the policy management and semantic web services onto a single
platform, preparing an evaluation framework for the architecture, and building
supporting tools. The tools include :

- model driven approach to adapter generation. We currently employ custom

built XSLT transformations for adapters, it should be possible to
automatically generate adapters from XML Schema descriptions.

- support in the auto-generation of SWS stubs from WSDL descriptions
- tools to support the auto-generation of policies from non-functional

properties of WSML goals and service descriptions
- support for resolution of conflicting policies and alignment of policies

operating at varying levels of granularity within the organisation
- enhanced data mediation toolkit. Currently the ability to auto-generate

mappings is quite limited
- tools to support the change management process, e.g. tracking and in some

cases automating the update of models following the introduction of change
- tools to support semi-automated generation of composite services

References

1. T. Friedman, The World is Flat: A Brief History of the Twenty First

Century, Farrar, Straus and Giroux, 2005.
2. Haller, E. Cimpian, A. Mocan, E. Oren, and C. Bussler. WSMX – A

Semantic Service-Oriented Architecture. In Proceedings of the 3rd
International Conference on Web Services, pages 321 – 328, Orlando,
Florida, USA, 2005.

3. Medjahed, B. Benatallah, A. Bouguettaya, A. H. H. Ngu, and A. K.
lmagarmid. Business-to-business interactions: issues and enabling
technologies. VLDB Journal, 12(1):59–85, 2003.

4. G Olsen, An overview of B2B Integration, eAI Journal, May 2000, p 28-
36.

5. Y Sheffi, The Resilient Enterprise - overcoming vulnerability for
competitive advantage, The MIT Press, 2005.

6. M. Kerrigan, The WSML Editor Plug-in to the Web Services Modeling
Toolkit. In Proceedings of 2nd WSMO Implementation Workshop
(WIW2005). Innsbruck, Austria, 2005.

7. C. Preist, J. E. Cuadrado, S. Battle, S. Williams, and S. Grimm.
Automated

8. Business-to-Business Integration of a Logistics Supply Chain using
Semantic Web Services Technology. In ISWC ’05: Proceedings of 4th
International Semantic Web Conference, 2005.

9. J de Bruijn, H. Lausen, and D. Fensel, The WSML Family of
Representation Languages, http://www.wsmo.org/TR/d16/d16.1

10. E Cimpian, and A. Mocan, Process Mediation in WSMX,
http://www.wsmo.org/TR/d13/d13.7/v0.2

11. N. Anicic, N. Ivezic, and A. Jones. An Architecture for Semantic
Enterprise Application Integration Standards. In Interoperability of
Enterprise Software and Applications, pp. 25–34. Springer, 2006

12. D. Foxvog and C. Bussler. Ontologizing EDI: First Steps and Initial
Experience. In International Workshop on Data Engineering Issues in E-
Commerce (DEEC 2005), pp. 49–58. 2005.

13. C. Preist, et al. Automated Business-to-Business Integration of a Logistics
Supply Chain using Semantic Web Services Technology. In Proceedings
of 4th Int. Semantic Web Conference. 2005.

14. D. Trastour, C. Preist, and D. Coleman. Using Semantic Web Technology
to Enhance Current Business-to-Business Integration Approaches. In
Proceedings of the Int. Enterprise Distributed Object Computing
Conference, pp. 222–231. 2003.

15. OracleCorporation, Application Server 10g - integration
 http://www.oracle.com/technology/products/integration/index.html
16. webMethods, webMethods for B2B Gateway. www.webmethods.com
17. Cape Clear, Enterprise Service Bus (ESB). www.capeclear.com
18. Richard Hull, Francois Llirbat, Francois Llirbat, Eric Simon, Jianwen Su,

Guozhu Dong, Bharat Kumar, and Gang Zhou, Declarative Workflows
that Support Easy Modification and Dynamic Browsing, International
Joint Conference on Work Activities Coordination and Collaboration
(WACC) held in San Francisco, February, 1999, pp. 69-78.

