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The exact calculation of the rise transient of the birefringence and the corresponding relaxation times by
different theoretical methods is described, in particular the Kerr-effect response of an assembly of nonpolar but
anisotropically polarizable molecules following the imposition of a constant electric field is studied by solving
the Smoluchowski equation. This equation is transformed into a set of differential recurrence relations con-
taining Legendre polynomials of even order only. By taking the Laplace transform of the birefringence func-
tion, it is shown that the singularity ats50 ~zero-frequency limit! may be removed so that the relaxation time
for the rise process may be exactly expressed as a sum of products of Kummer functions and its first deriva-
tives. The second approach is based on a matrix method where the spectrum of eigenvaluesl2 j and their
associated amplitudesA2 j ~extracted from the first components of eigenvectors! are calculated allowing one to
express the relaxation time as(A2 j (l 2 j

21). Numerical values of this time are tabulated for a large range ofg
values~0,g,40!, g being the parameter measuring the ratio of the orientational energy arising from the
electrical polarizabilities to the thermal energy. It is thus demonstrated that the lowest eigenvalue~l2! domi-
nates almost completely the rise process. The effective relaxation time is also calculated exactly and expressed
very simply as the ratio of two Kummer functions. Its evolution as a function ofg leads to behavior similar to
that of the relaxation time obtained either from the Kummer functions or from the eigenvalue method. It is
characterized by a maximum situated aroundg52, which is interesting in view of experimental applications.
@S1063-651X~96!01307-4#

PACS number~s!: 42.70.Df, 05.40.1j, 78.20.Fm, 78.20.Jq

I. INTRODUCTION

The exact solution for the dielectric after-effect response
following the sudden removal of a dc field for a system of
noninteracting polar molecules with uniaxial anisotropy
~nematic liquid crystals! has been given by Coffeyet al. @1#.
This has been accomplished by adapting methods used for
the solution of the analogous problem of superparamagnetic
relaxation @2#. The calculation proceeds by expanding the
solution of the Fokker-Planck equation as a series of Leg-
endre polynomials which in turn leads to differential recur-
rence relations which govern the decay of the electric polar-
ization or magnetization. This set of differential recurrence
relations may be solved exactly in terms of a continued frac-
tion whence the frequency dependence of the susceptibility
may be calculated by means of linear response theory. The
area under the curve of the decay of the polarization is, since
the response is linear, the correlation timeT of the first Leg-
endre polynomial. This timeT provides a global measure of
the relaxation behavior of the system@3#. It has also been
demonstrated thatT may be expressed in closed form as a
sum of products of confluent hypergeometric functions
~Kummer functions!. In turn T may be expressed exactly in
integral form since the product of two Kummer functions
may be expressed as an integral@2#.

The analysis that we have just given pertains to linear
response only since it is confined to the behavior of the first
Legendre polynomial in the absence of an applied field. It is
the purpose of this paper to show how the method we have
developed may also be applied to a nonlinear problem of

electro-optics, i.e., the exact calculation of the transient bire-
fringence due to the induced dipole Kerr effect. Thus we
shall consider an assembly of nonelectrically interacting non-
polar molecules and we shall suppose that a strong step elec-
tric field is applied at the instantt50, and subsequently the
molecules only interact through the induced dipole moment.
We shall demonstrate how the rise transient of the birefrin-
gence may be calculated exactly by expressing the Laplace
transform of the birefringence, i.e., the rise transient in terms
of continued fractions and we shall demonstrate how the re-
laxation time defined as the area under the curve of the rise
transient may again be exactly expressed in terms of Kum-
mer functions. We remark that this problem, unlike the one
considered in Refs.@1, 2#, is truly nonlinear and so the con-
cept of relaxation time should be used rather than the corre-
lation time. Furthermore, there is no longer any connection
between the transient response and the ac response. We also
remark due to the symmetry of the potential arising from the
induced moments that the differential recurrence relations
decouple into two sets, one for the even Legendre polynomi-
als and the other for the odd Legendre polynomials. The
analysis described in Refs.@1, 2# is for the odd set as the
even one is in thermodynamic equilibrium. The opposite
situation obtains here where the time behavior of the even set
is the quantity of interest. The present problem has also been
considered by Watanabe and Morita@4#. However, they did
not give exact expressions for the relaxation time, merely
calculating that quantity under certain limiting approxima-
tions; neither did they solve the three-term recurrence rela-
tions for the rise transient in continued fraction form.
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Since the calculation of the relaxation time is not as
straightforward as in the dielectric response, we shall first
illustrate our method by considering the simple problem of
the calculation of the relaxation time of a series inductance
(L) –resistance (R) circuit when a step field is suddenly ap-
plied. Then, we shall transpose this definition to our problem
of Kerr-effect relaxation and we shall show how the transient
response may be obtained by two methods, one by express-
ing the Laplace transform of the rise transient as a sum of
products of continued fractions and calculating the relaxation
time in terms of the zero-frequency limit of this quantity, and
the other by expressing the set of differential recurrence re-
lations in the form of a setẊ(t)5AX (t), and calculating the
eigenvalues and corresponding eigenvectors of this set as
detailed in Refs.@1, 2#. This will verify the exact solutions
which we have obtained.

II. GENERAL EXPRESSIONS FOR THE RISE TIME

The Fokker-Planck~or Smoluchowski! equation for an
assembly of noninteracting and anisotropically polarizable
molecules at timet after the imposition of a step electric field
E(t)5E0U(t) ~t.0! is

2tD
]W

]t
5

1

sinq

]

]q FsinqS ]W

]q
1

1

kT

]V

]q
WD G , ~1!

where the orientational potential energyV~q! is

V~q!52kTgU~ t !cos2q, ~2!

tD is the Debye dielectric relaxation time,U(t) is the unit
step ~Heaviside! function, and the nondimensional factorg
comparing the potential energy to the thermal energy is de-
fined as

g5
a i2a'

2kT
E0
25

Da

2kT
E0
2, ~3!

ai anda' representing the principal electric polarizabilities
parallel and perpendicular to the symmetry axis of the mol-
ecule, respectively.

The distribution functionW(q,t) of orientations is axially
symmetric and may therefore be expanded as a series of
Legendre polynomials to give just as in Refs.@1, 2# the dif-
ferential recurrence relation
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2gU~ t !

~2l21!~2l13!G f l
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where
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1
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a0
5^Pl~cosq!&, ~5!

the angular brackets denoting the expectation value ofPl
with respect to the distributionW, and theal ’s are the
Fourier-Laplace coefficients arising from the expansion in
zonal harmonics

W~q,t !5(
l50

`

al~ t !Pl~cosq!.

This recurrence relation decouples into odd and even sets,
and the even set appropriate to Kerr-effect relaxation is

tD
k~2k11!
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The Laplace transform of the homogeneous solution of this
is

S2k~s!
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2g~2k21!

16k221
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where

S2k~s!5
F2k~s!

F2k22~s!
, ~8!

andF2k(s) is the Laplace transform off 2k(t) such that

F2k~s!5E
0

`

f 2k~ t !e
2stdt. ~9!

The inhomogeneous solution is determined by noting that all
initial conditions vanish savek50 when f 0(t)5 f 0~0!51,
whence we easily find that the Laplace transform of the in-
homogeneous solution appropriate for Kerr-effect relaxation
~k51! is
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3
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35
S4~s!

. ~10!

This is the Laplace transform of the growth of the birefrin-
gence. We also note by the final value theorem of Laplace
transformation that

lim
s→0

sF2~s!5

2g

15

12
2g

21
1
8g

35
S4~0!

5 lim
t→`

f 2~ t !5 f 2~`!.

~11!

It now remains to extract a formula for the relaxation time
from this solution. First, we remark that the Laplace trans-
form ~denoted byL! of the rise transient is
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L@ f 2~`!2 f 2~ t !#5
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The area under this curve is

E
0
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On inspection, this equation would appear to have a singu-
larity at s50. This is not so, however, as we illustrate first of
all by considering a series ofR, L circuits with an emfe(t)
5EU(t) suddenly applied att50. The instantaneous current
i (t) flowing through these passive elements is

i ~ t !5
e~ t !

R
~12e2t/t!, ~14!

whence

E
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and so the time constantt characterizing this electrical cir-
cuit is
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whereI (s) is the Laplace transform ofi (t).
Now,

I ~s!5
E

L

1

s~s11/t!
, ~17!

so that on decomposition ofI (s) into partial fractions we
have

t5
1
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as is well known.

We may use an analogous result for the definition of the
relaxation time in our Kerr-effect relaxation problem. We
have
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Equation ~19!, which yieldsT, is not defined fors50. In
order to overcome this difficulty, we remark thatS4(s) is a
continued fraction of the form

A

Bs1C1DS6~s!
,

whereA, B, C, andD are constants independent ofs. The
functionS6(s) is again a continued fraction which depends
on S8(s) and so on, so that after reduction to the same de-
nominator, the numerator ofsF2(s) will always be one de-
gree less than that of the denominator because of the pres-
ence of the first degree termBs. This can therefore be
written in the polynomial form as

f 2~`!

s
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1

s

2g/15

122g/211~8g/35!S4~0!
5
1

s
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~21!

F2~s!5
1

s

2g/15

stD/31122g/211~8g/35!S4~s!

5
1

s
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n

c01c1s1•••1cn11s
n11 ,

where thebn’s and thecn11’s are the polynomial coefficients
of the numerator and the denominator, respectively, so that

T5
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F1s S b0c02
b01b1s1•••1bns

n
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n
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This demonstrates how the apparent singularity ats50 disappears, in such a manner thatT may be rendered by the formula

T5
1

f 2~`!
lim
s→0

F f 2~`!

s
2F2~s!G . ~23!

Equation ~22! is very simple and gives the exact relaxation time for the birefringence rise transient. In order to express
explicitly the coefficientsb0, b1, c0, c1, we can expandS4(s) as a Laurent series about the points50, namely,
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where

S4
~n!~0!5
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With the aid of Eqs.~10!, ~11!, and~24! and after some calculation, we obtain
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which on taking the zero-frequency limit~s→0! yields the
exact formula
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1
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1
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, ~26!

whereS48(0) is the limit ass→0 of the first derivative of
S4(s) with respect tos. Equation~26! may also be expressed
in closed form@see Eq.~C3! of Ref. @2# #, namely,

Sn~0!512
M „~n21!/2,n1 1

2 ,g…

M „~n21!/2,n2 1
2 ,g…

, ~27!

where the Kummer~or confluent hypergeometric! function
M (a,b,z) is given by
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whence
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2 ,

7
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. ~29!

In order to obtain an expression which is convenient for the
numerical calculation ofT, we can write

Sn~s!5
An

sBn1Cn1DnSn12~s!
, ~30!

where

An52g
n21

4n221
, Bn5

2tD
n~n11!

,

~31!

Cn512
2g

~2n21!~2n13!
, Dn52g

n12

~2n11!~2n13!
,

so that the derivative ofSn(s) with respect tos can be ex-
pressed in the form of a recurrence relation, namely,

Sn8~0!52An

Bn1DnSn128 ~0!

@Cn1DnSn12~0!#2

52
1

An
@Sn~0!#2@Bn1DnSn128 ~0!#, ~32!

which for n54 becomes equal to~see Appendix A!

FIG. 1. Comparison of the evolution of the different reduced
relaxation timesT8 ~curvea! andTef f8 ~curveb! as a function of the
electrical anisotropy parameterg. Curve a: from Eq. ~35!,
gmax51.69; curveb: from Eq. ~49!, gmax52.18.

54 855CALCULATION OF THE RISE TRANSIENT AND RELAXATION . . .



S48~0!52
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where we have used the gamma functionG defined by

G~z11!5zG~z!.

The remainder of Eq.~33! may be set equal to zero for the orderk5N, so that from a numerical point of view it is sufficient
to calculate the alternating series, that is,

S48~0!52
tD
g

@S4~0!#2H 21202 7Ap
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~21!k11~4k19!
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We have verified that this equation is rapidly convergent and that a very good precision is obtained forN55. Substituting Eq.
~34! into Eq. ~26! we can write down the final expression for the reduced relaxation timeT8 normalized to unity,

T85
T
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20 (
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12
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21
1
8g

35
S4~0!

, ~35!

which if so desired may be expressed in terms of Kummer functions as the derivativeS2N148 (0) is no longer involved. The
calculation ofT ~or T8! is thus much more involved than in the dielectric case. The reverse is true of the Laplace transform of
the Kerr functionF2(s). The evolution ofT8 is presented in Fig. 1 for differentg values varying in the range 0–40.

III. CALCULATION OF THE RISE TIME AND RISE TRANSIENT USING MATRIX METHODS

Having illustrated how one may evaluate the rise transient and the relaxation time by continued fraction methods, we
consider how these quantities may be calculated by matrix methods. In order to accomplish this, we arrange our set of
recurrence relations in the form

ḟ2k52
1

2tD
Mf 2k1BU~ t !, k51,2,... ~36!

where ḟ2k, f2k, andB are column matrices such as

ḟ2k~ t !5S ḟ 2~ t !

ḟ 4~ t !
A

ḟ 2k~ t !
•••

D , f2k~ t !5S f 2~ t !
f 4~ t !

A
f 2k~ t !
•••

D , B5
1

2tD S 4g

5
0
0
0

•••

D , ~37a!

andM is ann3n matrix characteristic of the rise transient birefringence,

856 54J. L. DÉJARDIN, P. BLAISE, AND W. T. COFFEY



M51
6S 12

2g
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35
0 0 0 •••

2
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21
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77D 80g
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0 2
420g
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0 •••

0 0 2
336g

85
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2g
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2 . ~37b!

The general solution of this matrix equation is

f2k~ t !5exp~M 8t !f2k~0!1E
0

t

exp@M 8~ t2t8!BU~ t8!#dt8,

~38!

where

M 852
1

2tD
M .

For the purpose of the calculation of the relaxation time, we
are interested in the transient part of this solution which is
given by the integral in Eq.~38!. For k51, the matrix ele-
ments may be expressed in the form

(
j
A2 jexp~2l2 j t !, j51,2,3,... .

Since we are concerned here with the rise transient, the re-
laxation modes of the Kerr function may be written as

f 2~ t !5 f 2~`!F12(
j
A2 jexp~2l2 j t !G , ~39!

where theA2 j denote the amplitudes of the first components
of the successive eigenvectors associated to the eigenvalues
l2 j . The longitudinal relaxation time is then the area under
this curve, viz.,

Ti5 lim
s→0

F1s2
F2~s!

f 2~`!G5 lim
s→0

F1s2S 1s2(
k

A2 j

s1l2 j
D G

5(
j
A2 jl2 j

21. ~40a!

In Table I, we present the amplitudes and the eigenvalues of
the first four modes for different values of the parameterg up
to g540. The eigenvalues arise from the solution of the
secular equation

det$sI2M 8%50,

whereI represents the usual identity matrix.
Since the eigenvalues are presented in the forml2 j /6tB

~tB is the birefringence relaxation time equal totD/3!, the
reduced relaxation timeTi8 is given by

Ti85
Ti

tB
56(

j
A2 jl2 j

21. ~40b!

We also remark that the amplitudes of rankj52l ~l51,2,...!
are negative, which was not observed for the dielectric re-
sponse. Satisfactory convergence was obtained using a
30330 matrix in all cases. It is apparent from Table I that the
lowest eigenvaluel2 provides an accurate enough represen-
tation of the relaxation time since the amplitudes of the other
modes~A4, A6, andA8! become smaller and smaller in com-
parison with that of the first one~A2!. This behavior is rather
similar to that of the dielectric response governed byl1, l3,
l5, etc. where the mode characterized byl1 dominates the
response.

IV. COMPARISON OF MATRIX SOLUTIONS
WITH THE CONTINUED FRACTION SOLUTIONS

The solution for the relaxation time rendered by a matrix
method which may be implemented with a minimum of
analysis agrees exactly~within rounding errors! with the
continued fraction solution rendered by Eq.~26! for all g
values~see the last column of Table I and the second and
fourth columns of Table II!. The most interesting result of
our theoretical approach is that the solution is again domi-
nated by the first mode~l2!. The Kerr-effect relaxation time,
unlike the dielectric one, passes through a maximum at a
certain value ofg ~which may be a useful factor in experi-
ments! before decreasing monotonically to zero for increas-
ing g values. This behavior has also been observed by Morita
and Watanabe~see their Fig. 4 in Ref.@4#!.

We also compare our solution for the rise transient for the
relaxation time with that rendered by the effective eigen-
value. This method may be used here since the rise transient
of the electric birefringence for the pure induced dipole
mechanism may be approximated by a single exponential
term @4# characterized by an effective relaxation timeTeff . It
is well known, indeed, that when the orientation of the mol-
ecules is only due to the anisotropy of the electrical polariz-
abilities, the Kerr-effect response may be considered as
linear—at least for weak fields—according to Kerr’s law
which relates the birefringenceDn to the square electric field
E2. On the contrary, this is not true for the process arising
from pure permanent~field-off! moments which is, in es-
sence, a nonlinear response and needs two effective relax-
ation times.

Thus the time behavior of the orientational factor may be
written as
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f 2~ t !5^P2~cosq!&~ t !5 f 2~`!F12(
j
A2 jexp~2l2 j t !G ,

~41!

which in terms of the effective eigenvalueleff becomes

f 2~ t !5 f 2~`!@12exp~2lefft !#, ~42!

so that the effective relaxation timeTeff is then

Teff5leff
215

^P2~cosq!&~0!

^P2~cosq!&~`!
5

ḟ 2~0!

f 2~`!
5S (

j
A2 jl2 j D 21

,

~43a!

and the reduced effective relaxation time is

Teff8 5
Teff
tB

56S (
j
A2 jl2 j D 21

. ~43b!

From Table II, it is apparent thatTeff8 given by Eq.~43b!
based on the effective eigenvalue technique is a little differ-
ent from the numerical values of the relaxation times ob-
tained using continued fraction or matrix methods, and so
does not provide a rigorous representation of the rise tran-
sient birefringence phenomenon. In particular, this method
leads to higher values of the relaxation time asg becomes
greater than 1. As already mentioned by Coffey, Kalmykov,

TABLE I. Eigenvaluesl2 j in the forml2 j /6tB of the first four modes of the rise of the birefringence as a value of the parameterg and
corresponding amplitudesA2 j , j51,2,3...@Ti8 is the reduced relaxation time given by Eq.~40b!#. E denotes values of 102n.

g l2 l4 l6 l8 A2 A4 A6 A8 Ti8

1 5.6143 19.6181 41.6215 71.6229 1.003 777 823.781 8E203 3.961 1E206 21.855 3E209 1.071 577 5
2 5.5955 19.5135 41.5049 71.5026 1.014 927 221.498 9E202 6.207 5E205 21.157 7E207 1.083 701 4
3 5.9333 19.6898 41.6521 71.6400 1.034 660 323.498 1Ee202 3.225 5E204 21.346 9E206 1.035 678 3
4 6.6126 20.1517 42.0657 72.0368 1.065 760 526.683 9E202 1.086 6E203 28.026 4E206 0.947 277 9
5 7.6121 20.9061 42.7493 72.6952 1.111 749 920.114 614 8 2.898 0E203 23.328 5E205 0.843 808 5
6 8.9031 21.9636 43.7075 73.6180 1.175 822 120.182 358 9 6.645 1E203 21.094 3E204 0.743 499 3
7 10.4483 23.3388 44.9461 74.8085 1.259 597 020.272 955 0 0.013 659 3 20.000 305 1 0.654 957 0
8 12.2020 25.0504 46.4721 76.2709 1.361 733 820.386 791 5 0.025 796 6 20.000 751 0 0.580 222 2
9 14.1122 27.1189 48.2945 78.0098 1.476 850 120.520 698 2 0.045 489 6 20.001 675 9 0.518 225 2
10 16.1255 29.5606 50.4239 80.0308 1.595 816 920.668 191 5 0.075 741 3 20.003 453 7 0.466 908 4
11 18.1945 32.3799 52.8738 82.3401 1.708 249 120.821 791 7 0.120 003 5 20.006 663 2 0.424 193 5
12 20.2839 35.5630 55.6606 84.9450 1.806 147 620.976 288 2 0.181 861 7 20.012 158 9 0.388 311 9
13 22.3724 39.0748 58.8040 87.8538 1.886 130 121.130 298 5 0.264 425 1 20.021 148 2 0.357 857 1
14 24.4500 42.8623 62.3267 91.0759 1.948 976 321.284 829 0 0.369 400 0 20.035 269 6 0.331 740 3
15 26.5144 46.8604 66.2515 94.6225 1.997 658 621.440 246 3 0.496 063 9 20.056 654 5 0.309 124 5
16 28.5666 51.0004 70.5967 98.5066 2.035 568 121.594 023 4 0.640 768 9 20.087 945 6 0.289 365 1
17 30.6088 55.2187 75.3691 102.7434 2.065 603 021.740 738 2 0.797 740 9 20.132 229 3 0.271 960 9
18 32.6432 59.4649 80.5565 107.3511 2.089 935 221.874 213 2 0.961 177 7 20.192 812 2 0.256 519 4
19 34.6717 63.7051 86.1241 112.3509 2.110 095 021.990 150 2 1.127 292 6 20.272 767 0 0.242 728 8
20 36.6956 67.9216 92.0156 117.7664 2.127 136 022.087 412 5 1.294 653 1 20.374 205 1 0.230 339 6
21 38.7161 72.1086 98.1590 123.6214 2.141 785 322.167 523 8 1.462 613 9 20.497 393 6 0.219 149 6
22 40.7338 76.2668 104.4757 129.9351 2.154 553 222.233 336 8 1.629 242 8 20.640 115 6 0.208 993 5
23 42.7493 80.4001 110.8907 136.7161 2.165 807 022.287 885 7 1.790 394 4 20.797 882 8 0.199 734 7
24 44.7630 84.5130 117.3409 143.9543 2.175 818 022.333 784 7 1.940 622 2 20.965 282 2 0.191 259 8
25 46.7752 88.6095 123.7815 151.6162 2.184 792 322.373 062 3 2.075 207 1 21.137 794 4 0.183 473 4
26 48.7862 92.6929 130.1864 159.6444 2.192 890 222.407 213 4 2.191 785 9 21.312 750 3 0.176 295 2
27 50.7961 96.7659 136.5449 167.9631 2.200 238 622.437 319 0 2.290 620 4 21.488 692 6 0.169 656 7
28 52.8052 100.8305 142.8565 176.4865 2.206 940 222.464 162 5 2.373 764 6 21.663 768 0 0.163 499 4
29 54.8134 104.8881 149.1256 185.1296 2.213 078 922.488 320 1 2.443 972 9 21.834 524 7 0.157 772 8
30 56.8210 108.9398 155.3586 193.8182 2.218 724 422.510 225 4 2.503 921 9 21.996 103 5 0.152 433 3
31 58.8279 112.9867 161.5618 202.4964 2.223 934 922.530 212 4 2.555 851 5 22.143 699 6 0.147 443 1
32 60.8343 117.0294 167.7405 211.1292 2.228 759 622.548 544 8 2.601 495 2 22.274 194 7 0.142 768 9
33 62.8403 121.0685 173.8992 219.6999 2.233 240 522.565 434 7 2.642 144 3 22.386 879 3 0.138 381 7
34 64.8458 125.1044 180.0413 228.2050 2.237 413 622.581 056 4 2.678 748 4 22.483 060 7 0.134 255 9
35 66.8510 129.1376 186.1696 236.6489 2.241 309 922.595 554 9 2.712 009 4 22.565 131 8 0.130 368 9
36 68.8558 133.1683 192.2862 245.0391 2.244 956 322.609 052 6 2.742 454 6 22.635 722 5 0.126 700 4
37 70.8603 137.1968 198.3927 253.3839 2.248 376 522.621 653 5 2.770 488 5 22.697 199 6 0.123 232 6
38 72.8646 141.2234 204.4907 261.6906 2.251 590 922.633 447 2 2.796 429 1 22.751 479 3 0.119 949 5
39 74.8686 145.2483 210.5811 269.9658 2.254 617 422.644 510 7 2.820 530 5 22.800 036 3 0.116 836 6
40 76.8723 149.2716 216.6648 278.2145 2.257 473 322.654 912 9 2.843 004 6 22.843 960 3 0.113 881 2
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and Massawe@5#, this is due to the loss of information on the
different time regions of relaxation that are involved. In fact,
the second expression in Eq.~43a! represents the initial slope
of the rise of the birefringence, which is always interesting
experimentally. It is also possible to find another expression
for Teff starting from the set of differential recurrence equa-
tions. This has the advantage just as in the transverse dielec-
tric response@1# of providing a simple analytic formula for
the relaxation time. Settingk51 in Eq. ~6!, one obtains

ḟ 2~ t !52
1

2tD
F6S 12

2g

21D f 2~ t !1
48g

35
f 4~ t !G1

2g

5tD
,

~44!

which for t50 reduces to

ḟ 2~0!5
2g

5tD
~45!

since f 2(0)5 f 4(0)50 ~initial conditions!.
It remains to evaluate the asymptotic value attained by

f 2(t) as t→`, i.e., f 2~`!. The details of that calculation are
given in Appendix B. It is found that@6#

f 2k~`!5
gk

2

G~k1 1
2 !

G~2k1 3
2 !

M ~k1 1
2 ,2k1 3

2 ,g!

M ~ 1
2 ,

3
2 ,g!

, ~46!

so that fork51, one has

f 2~`!5
2g

15

M ~ 3
2 ,

7
2 ,g!

M ~ 1
2 ,

3
2 ,g!

512
M ~ 1

2 ,
5
2 ,g!

M ~ 1
2 ,

3
2 ,g!

. ~47!

This equation coincides rigorously with that obtained in an-
other form by Watanabe and Morita in their study of Kerr-
effect relaxation in high electric fields@4#, but the essential
lines of the calculation are not given. Their expression is

lim
t→`

^P2~cosq!&~ t !5
1

2 FM ~ 3
2 ,

5
2 ,g!

M ~ 1
2 ,

3
2 ,g!

21G . ~48!

Substituting Eqs.~45! and~47! into the second expression of
Eq. ~43a!, one finally finds that the effective relaxation time
may be expressed exactly as the ratio of two Kummer func-
tions, namely,

Teff8 5
Teff
tD/3

5
M ~ 3

2 ,
7
2 ,g!

M ~ 1
2 ,

3
2 ,g!

, ~49!

whereTeff8 represents a reduced relaxation time equal to 1 as
g50. The variations of this time againstg are plotted in Fig.
1. One remarks that the general behavior of this curve re-
sembles that ofT8 (g), again possessing a maximum but
slightly shifted on the right. Both these plots start fromT851
wheng50, and have a maximum situated aboutg52, and
then pass again through a particular value ofg ~3,g,5!
whereT851. This may be explained as follows: it is well
known that the stationary state birefringence for low fields is
simply given by 2g/15, which corresponds to Kerr’s law.
Equation~47! calculated for any value of the electrical pa-
rameterg shows that this stationary state is modulated by the
ratio of two Kummer functions, involving deviation from
Kerr’s law. In particular, this ratio is greater than 1 in the
range 0,g,5. Such information may be exploited experi-
mentally.

APPENDIX A: CALCULATION OF THE LAPLACE
TRANSFORM S48„0…

From Eq.~32! we have

Sn8~0!52@Sn~0!#2FtDg 4n221

~n21!n~n11!

1
~n12!~2n21!

~n21!~2n13!
Sn128 ~0!G . ~A1!

Now, the next function will be

Sn128 ~0!52@Sn12~0!#2FtDg ~2n13!~2n15!

~n11!~n12!~n13!

1
~n14!~2n13!

~n11!~2n17!
Sn148 ~0!G , ~A2!

which by substitution into Eq.~A1! yields

TABLE II. Table of values of the reduced relaxation times from
the solutions given by Eqs.~35! and ~43b!.

g T8 Teff8 g T8 Teff8

0.2 1.018 240 1.018 509 13.0 0.357 781 0.507 055
0.4 1.034 718 1.035 819 14.0 0.331 624 0.475 740
0.6 1.049 221 1.051 753 15.0 0.308 955 0.447 948
0.8 1.061 562 1.066 146 16.0 0.289 129 0.423 142
1.0 1.071 578 1.078 845 17.0 0.271 646 0.400 883
1.2 1.079 141 1.089 724 18.0 0.256 111 0.380 807
1.4 1.084 161 1.098 675 19.0 0.242 216 0.362 616
1.6 1.086 591 1.105 625 20.0 0.229 710 0.346 062
1.8 1.086 425 1.110 525 21.0 0.218 392 0.330 936
2.0 1.083 701 1.113 363 22.0 0.208 099 0.317 064
2.2 1.078 499 1.114 155 23.0 0.198 696 0.304 297
2.4 1.070 933 1.112 948 24.0 0.190 070 0.292 511
2.6 1.061 154 1.109 817 25.0 0.182 128 0.281 597
2.8 1.049 337 1.104 860 26.0 0.174 790 0.271 463
3.0 1.035 678 1.098 195 27.0 0.167 988 0.262 029
3.2 1.020 389 1.089 958 28.0 0.161 667 0.253 225
3.4 1.003 688 1.080 292 29.0 0.155 775 0.244 990
3.6 0.985 793 1.069 351 30.0 0.150 271 0.237 272
3.8 0.966 921 1.057 290 31.0 0.145 117 0.230 023
4.0 0.947 278 1.044 262 32.0 0.140 281 0.223 202
5.0 0.843 808 0.969 599 33.0 0.135 734 0.216 772
6.0 0.743 499 0.889 454 34.0 0.131 452 0.210 701
7.0 0.654 956 0.812 812 35.0 0.127 411 0.204 960
8.0 0.580 220 0.743 534 36.0 0.123 592 0.199 523
9.0 0.518 219 0.682 521 37.0 0.119 978 0.194 366
10.0 0.466 895 0.629 319 38.0 0.116 553 0.189 468
11.0 0.424 168 0.582 994 39.0 0.113 302 0.184 810
12.0 0.388 266 0.542 545 40.0 0.110 213 0.180 375
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Sn8~0!52
tD
g

@Sn~0!#2H ~2n21!~2n11!

~n21!n~n11!
2

~n12!~2n21!~2n13!~2n15!

~n21!~n11!~n12!~n13!~2n13!
@Sn12~0!#2J

1
~n12!~n14!~2n21!~2n13!

~n21!~n11!~2n13!~2n17!
@Sn~0!#2@Sn12~0!#2Sn148 ~0!. ~A3!

Since we are only interested here with even values ofn, we can setn52m ~m51,2,...! so that Eq.~A3! may be written as

S2m8 ~0!52
tD
g

~4m21!~4m11!

~2m21!2m~2m11!
@S2m~0!#21@S2m~0!#2(

k51

N21

~21!k11

3
~4m14k11!!!

~4m23!!!

~4m21!!!

~4m14k21!!!

~2m23!!!

~2m12k11!!!

~2m12k22!!!

~2m!!! )
j51

k

@S2 j12m~0!#2

1~21!N
4m21

4m14N21

~2m23!!!

~2m12N23!!!

~2m12N!!!

~2m!!! )
j51

N

@S2 j12~0!#2S2N12m8 ~0!. ~A4!

On noting that@7#

G~n1 1
2 !5

~2n21!!!

2n
Ap,

~A5!
~2m12n!!!52m1n~m1n!!,

and settingm52 in Eq. ~A4!, we find the desired result for
S48(0) given by Eq.~33!.

APPENDIX B: EVALUATION OF THE ASYMPTOTIC
LIMIT f 2n„`… AS A RATIO

OF TWO KUMMER FUNCTIONS

For the rise transient process, we can adopt the following
definition ~x5cosq!:

f 2n~`!5

E
21

11

P2n~x!exp~gx2!dx

E
21

11

exp~gx2!dx

5
1

2M ~ 1
2 ,

3
2 ,g!

E
21

11

P2n~x!exp~gx2!dx, ~B1!

which coincides with the initial condition of the decay pro-
cess. Then, we can use the same method as that employed by
Coffey et al. @2# for the magnetic susceptibility and adapt it
to even Legendre polynomials. We have

exp~gx2!5 (
n50

`
gn

n!
x2n, ~B2!

and

x2n5 (
k50

n

~4k11!
~2n!!

~2n12k11!!
22k

~n1k!!

~n2k!!
P2k~x!. ~B3!

By using the orthogonality property of the Legendre polyno-
mials and the definition of the Kummer function@Eq. ~28!#,
we obtain (k5n1N)

f 2n~`!5
22n

M ~ 1
2 ,

3
2 ,g!

(
k5n

`
gk

k!

~2k!! ~n1k!!

~2n12k11!! ~k2n!!

5
gn

2M ~ 1
2 ,

3
2 ,g!

(
N50

`
gN

N!

G~n1N1 1
2 !

G~2n1N1 3
2 !

5
gn

2M ~ 1
2 ,

3
2 ,g!

G~n1 1
2 !

G~2n1 3
2 !

M ~n1 1
2 ,2n1 3

2 ,g!,

~B4!

so that forn51

f 2~`!5
g

2M ~ 1
2 ,

3
2 ,g!

G~ 3
2 !

G~ 7
2 !

M ~ 3
2 ,

7
2 ,g!5

2g

15

M ~ 3
2 ,

7
2 ,g!

M ~ 1
2 ,

3
2 ,g!

,

~B5!

that is, Eq.~47!.
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