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Calculation of the rise transient and relaxation time of the induced dipole Kerr effect
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The exact calculation of the rise transient of the birefringence and the corresponding relaxation times by
different theoretical methods is described, in particular the Kerr-effect response of an assembly of nonpolar but
anisotropically polarizable molecules following the imposition of a constant electric field is studied by solving
the Smoluchowski equation. This equation is transformed into a set of differential recurrence relations con-
taining Legendre polynomials of even order only. By taking the Laplace transform of the birefringence func-
tion, it is shown that the singularity a0 (zero-frequency limjtmay be removed so that the relaxation time
for the rise process may be exactly expressed as a sum of products of Kummer functions and its first deriva-
tives. The second approach is based on a matrix method where the spectrum of eigexyahres their
associated amplitudes,; (extracted from the first components of eigenvegtare calculated allowing one to
express the relaxation time as\,;(A gjl). Numerical values of this time are tabulated for a large rangg of
values(0<g<40), g being the parameter measuring the ratio of the orientational energy arising from the
electrical polarizabilities to the thermal energy. It is thus demonstrated that the lowest eigdingaldemi-
nates almost completely the rise process. The effective relaxation time is also calculated exactly and expressed
very simply as the ratio of two Kummer functions. Its evolution as a functiog lefxds to behavior similar to
that of the relaxation time obtained either from the Kummer functions or from the eigenvalue method. It is
characterized by a maximum situated arogpel2, which is interesting in view of experimental applications.
[S1063-651%96)01307-4

PACS numbegps): 42.70.Df, 05.40+j, 78.20.Fm, 78.20.Jq

I. INTRODUCTION electro-optics, i.e., the exact calculation of the transient bire-
fringence due to the induced dipole Kerr effect. Thus we
The exact solution for the dielectric after-effect responseshall consider an assembly of nonelectrically interacting non-
following the sudden removal of a dc field for a system ofpolar molecules and we shall suppose that a strong step elec-
noninteracting polar molecules with uniaxial anisotropytric field is applied at the instarie=0, and subsequently the
(nematic liquid crystalshas been given by Coffest al.[1]. molecules only interact through the induced dipole moment.
This has been accomplished by adapting methods used fove shall demonstrate how the rise transient of the birefrin-
the solution of the analogous problem of superparamagnetigence may be calculated exactly by expressing the Laplace
relaxation[2]. The calculation proceeds by expanding thetransform of the birefringence, i.e., the rise transient in terms
solution of the Fokker-Planck equation as a series of Legef continued fractions and we shall demonstrate how the re-
endre polynomials which in turn leads to differential recur-laxation time defined as the area under the curve of the rise
rence relations which govern the decay of the electric polartransient may again be exactly expressed in terms of Kum-
ization or magnetization. This set of differential recurrencemer functions. We remark that this problem, unlike the one
relations may be solved exactly in terms of a continued fraceonsidered in Refd.1, 2], is truly nonlinear and so the con-
tion whence the frequency dependence of the susceptibilitgept of relaxation time should be used rather than the corre-
may be calculated by means of linear response theory. Thation time. Furthermore, there is no longer any connection
area under the curve of the decay of the polarization is, sincbetween the transient response and the ac response. We also
the response is linear, the correlation timef the first Leg- remark due to the symmetry of the potential arising from the
endre polynomial. This tim@& provides a global measure of induced moments that the differential recurrence relations
the relaxation behavior of the systeli8]. It has also been decouple into two sets, one for the even Legendre polynomi-
demonstrated thal may be expressed in closed form as aals and the other for the odd Legendre polynomials. The
sum of products of confluent hypergeometric functionsanalysis described in Reffl, 2] is for the odd set as the
(Kummer functiong In turn T may be expressed exactly in even one is in thermodynamic equilibrium. The opposite
integral form since the product of two Kummer functions situation obtains here where the time behavior of the even set
may be expressed as an intedi2]. is the quantity of interest. The present problem has also been
The analysis that we have just given pertains to lineaconsidered by Watanabe and Morj. However, they did
response only since it is confined to the behavior of the firshot give exact expressions for the relaxation time, merely
Legendre polynomial in the absence of an applied field. It icalculating that quantity under certain limiting approxima-
the purpose of this paper to show how the method we havéons; neither did they solve the three-term recurrence rela-
developed may also be applied to a nonlinear problem ofions for the rise transient in continued fraction form.
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Since the calculation of the relaxation time is not as *
straightforward as in the dielectric response, we shall first W({},t)zz a,(t)P;(cosd).
illustrate our method by considering the simple problem of 1=0

the calculation of the relaxation time of a series inductancel_h, lation d les i dd and
(L)—resistanceR) circuit when a step field is suddenly ap- | NS recurrence relation decouples into odd and even sets,

plied. Then, we shall transpose this definition to our problemand the even set appropriate to Kerr-effect relaxation is

of Kerr-effect relaxation and we shall show how the transient 5
response may be obtained by two methods, one by express- "0 f o+ 1 L(t) for
ing the Laplace transform of the rise transient as a sum dk(2k+1) ' (4k—1)(4k+3)|"?
products of continued fractions and calculating the relaxation

time in terms of the zero-frequency limit of this quantity, and ~ 29(2k—1)U(t) 2g(2k+2)U(t)
the other by expressing the set of differential recurrence re- = (4k—1)(4k+1) 272 (4k+1)(4k+3) 22"
lations in the form of a seX(t) =AX(t), and calculating the (6)

eigenvalues and corresponding eigenvectors of this set as
detailed in Refs[1, 2]. This will verify the exact solutions The Laplace transform of the homogeneous solution of this

which we have obtained. is
Il. GENERAL EXPRESSIONS FOR THE RISE TIME Sx(s)
The Fokker-Planckor Smoluchowski equation for an 2g(2k—1)
assembly of noninteracting and anisotropically polarizable ——
. ; - o 16k —1
molecules at timé after the imposition of a step electric field = ’
E(t)=EoU(t) (t>0) is So L, 29 1 2k+2 Sa(S)
k(2k+1) 4k+3 \4k—1 4k+1 T%*2
2 oW 1 4 _ﬂ(?W+1(?VW 1 (7)
™ 5t = sing a9 | O™\ o TkTae V)| @
where
where the orientational potential energyd) is
Fak(s)
V(9)=—kTgU(t)cos¥, 2 Su(s)= Fos(9) (8)

7o IS the Debye dielectric relaxation timél(t) is the unit
step (Heaviside function, and the nondimensional factgr
comparing the potential energy to the thermal energy is de- w

fined as Fo(s)= fo fo(t)e stdt. 9

q—a; _, Aa _,
9= ST BT okT Eo, 3 The inhomogeneous solution is determined by noting that all
initial conditions vanish sav&=0 when fy(t)=f,(0)=1,
a, and «, representing the principal electric polarizabilities Whence we easily find that the Laplace transform of the in-
parallel and perpendicular to the symmetry axis of the molhomogeneous solution appropriate for Kerr-effect relaxation

andF,(s) is the Laplace transform df,(t) such that

ecule, respectively. (k=1)is
The distribution functionV(9,t) of orientations is axially
symmetric and may therefore be expanded as a series of 2_9
Legendre polynomials to give just as in Rdfs, 2] the dif- 1 15
ferential recurrence relation Fas)= 5 57 5q 8 (10
D g g
29ULt) 3 +1 21 + 35 S4(s)

™D .
— |1 |
I(1+1) (21=1)(21+3) This is the Laplace transform of the growth of the birefrin-
ence. We also note by the final value theorem of Laplace
_ 2g(I-DU®) 29(1+2)U(1) (4) '?ransformation that g P

T(21-1)(21+1) 7% (21+1)(21+3) '+

29
e limsFy(s) E lim f5(t) = (o)
Ims S)= =1lim = ).
f0)= 2O b cos (5) o 1—2—g+8—95(0) - 2
|( )_2|+1 aO _< |(CO )>! 21 35 4

(11)
the angular brackets denoting the expectation valué of
with respect to the distributioW, and thea,’s are the It now remains to extract a formula for the relaxation time
Fourier-Laplace coefficients arising from the expansion infrom this solution. First, we remark that the Laplace trans-
zonal harmonics form (denoted bycL) of the rise transient is
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fa()

LI fa()—f5()]= 2(9). 12

The area under this curve is

[ ttar=tav1dt=im [ (1) - (016wt
0 s—0J0
=Iim[f2(sw)—|:2($) . (13
s—0
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We may use an analogous result for the definition of the
relaxation time in our Kerr-effect relaxation problem. We
have

f[f (o) —f,(t)]e S'dt

On inspection, this equation would appear to have a singuNow,

larity ats=0. This is not so, however, as we illustrate first of
all by considering a series @&, L circuits with an emfe(t)
=EU(t) suddenly applied &t=0. The instantaneous current
i(t) flowing through these passive elements is

i(t)=— ) (1—e U, (14)

whence

® TE
f [i(e)—i(D]dt=—=7i(), (15
0

and so the time constantcharacterizing this electrical cir-
cuit is

1
— |im

()
i) SHO[T"(S)

1 ®
:i(T) fo [I oo)—I(t)]dt—

=5 2(°°) lmz)
1 2(®) ok l_ Fa(s)
T )l'”l)[ Fal9) | =M S f )
(19
291 Zg
Fa(s) 15s 21 35 34(0)
fa(2) 7 29 8g 29
3T S 15
(20)

Equation(19), which yieldsT, is not defined fors=0. In
order to overcome this difficulty, we remark th&f(s) is a
continued fraction of the form

A
Bs+C+DSq(s)’
whereA, B, C, andD are constants independent ©f The
function Sg(s) is again a continued fraction which depends

on Sg(s) and so on, so that after reduction to the same de-
nominator, the numerator &fF,(s) will always be one de-

(16)  gree less than that of the denominator because of the pres-
) ] ence of the first degree terrBs. This can therefore be
wherel(s) is the Laplace transform oft). written in the polynomial form as
Now,
fa(e) 1 2g/15 _1hbg
(s)m ot 17 s s1-2g/21+(8g/355,(0) S G’
L s(s+1/7)’ (21
iy : : : . 1 29/15
Egvtehat on decomposition df(s) into partial fractions we 2(8)= s Stol3+ 1= 2g/21+ (89/35)5,(3)
1 bgt+byst---+b,s"
! I () e - 18 “sc +0c s-lk +c ns”“’
= () 2= =_ -
T |(oo) S[r:) s I( ) s S+1/7’ R’ ( ) 0 1 n+1
where theb,’'s and thec, . ,'s are the polynomial coefficients
as is well known. of the numerator and the denominator, respectively, so that
|
Co . |1 (bg bo+bis+:--+b,s"
T=—Ilim|=|—— AT
bo¢ oS \Co CotCiSt+---+CpysS
Co . [(boCi—b1Co)+5(boCo—byCo)+ -+ +8" 1 (bgCh—bnCo) +0gCn+1S"|  boci— blcO
=—li —T = (22
bo s—0 Co(Co+ Cls+ ot Cn+ 15 ) bOCO

This demonstrates how the apparent singularitg=a® disappears, in such a manner tfiainay be rendered by the formula

1
lim

T=
fZ(OC) s—0

fo(o0

)

—Fa(9)]. (23

Equation(22) is very simple and gives the exact relaxation time for the birefringence rise transient. In order to express
explicitly the coefficientdg, by, cq, c1, we can expan®,(s) as a Laurent series about the pastO, namely,
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n

S(9=S(0+3 o S0), 24

where

”54( s)

S (0)= s=0-

With the aid of Eqs(10), (11), and(24) and after some calculation, we obtain

fo(c0) 291 1 1
T 1—29/21+(89/35)S,(0) s7p/3+1—2g/21+(8g/35)S,(s)
ST 2g 8g - 9 4 Zg 89
291 [?H 51t 3 34(0)+j2l j—!s4 (0) 57+ 3¢ S4(0)

S7p 2g 8g o 9
[T+l—ﬁ+£[s4(0)+;l j—!sgl (O)H

s

7o, °9 8 < 9
2g 1 3t 35580 3z 2 580
=_=2Z ' 5
ﬁ+£ 4(0) ﬁ+35 4(0) + (0)
|
which on taking the zero-frequency limis—0) yields the  where
exact formula
A=2 n—1 B.— ZTD
™, 80 =20 g1 B Thne Dy
= T3z $4(0)
3 35 31)
T= : (26) 29 n+2
2g 8g C=l-—F7——, D=2 —75—57,
1- $4(0) (2n—1)(2n+3) (2n+1)(2n+3)

21 35

so that the derivative o%,(s) with respect tos can be ex-
where S&(O) is the limit ass—0 of the first derivative of pressed in the form of a recurrence relation, namely,
S4(s) with respect ts. Equation(26) may also be expressed ,
in closed form[see Eq(C3) of Ref.[2] ], namely, S/(0)=—A Bn+DnS;42(0)
" [Cn+DnShi2(0)]°

M((n—1)/2,n+3,9)

0)=1- , 2
() M((n-1)/2,n-3,9) 0 =——[Sn(0)]2[|3 +DsSh12(0)], (32

where the KummeKor confluent hypergeometjidunction

M (a.b.2) is given by which for n=4 becomes equal tsee Appendix A

M(ab. 142 a a(a+ 1) 22 L a(a+1)(a+2) 28 12y
(@b2)= Tbo+D 2! bbr1)(br2) 3! .
+oen (28 % 08
whence :;“
. Zoal
M(3.2.9) .
Sy(0)=1— —— (29) 02
M(2,2.9) .
. i i i . 0 5 10 15 20 25 30 35 40
In order to obtain an expression which is convenient for the £
numerical calculation of, we can write FIG. 1. Comparison of the evolution of the different reduced

relaxation timesT’ (curvea) and T (curveb) as a function of the
S,(s)= n (30) electrical anisotropy parameteg. Curve a: from Eq. (35),
sB,+Cph+ DS, 42(9)° Omax=1.69; curveb: from Eq. (49), gmax=2.18.
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S (0)=— 25072 27 Z 1)k 1(4k+9 l_k[ 0)]
a( )——5[4( )1? 2—0——k:( ) )( Y S2j+4(0)

2

7Jm 1 T(N+3)

N
D T AN T e ) 11 18214200 Sh..400), (33

where we have used the gamma functlodefined by
I'(z+1)=zI'(2).

The remainder of Eq33) may be set equal to zero for the order N, so that from a numerical point of view it is sufficient
to calculate the alternating series, that is,

k

F( % [[ [S2j+a(0) 1% (34

21 7
SA(O)=——[S4(0)] [——— gl (- 1)k+1(4k+9)

We have verified that this equation is rapidly convergent and that a very good precision is obtaiNecbfdBubstituting Eq.
(34) into Eq. (26) we can write down the final expression for the reduced relaxation Tilm@ormalized to unity,

6 N I(k+2)
| 1-3[S4(0))"| 35~ 5 2 E (—1)¥"*(4k+9) r(l(+%)1,f:[1 [S2j+4(0)1?
T B 29 _ 89 ' (35)
1721735540

which if so desired may be expressed in terms of Kummer functions as the deri@ativg(0) is no longer involved. The
calculation ofT (or T') is thus much more involved than in the dielectric case. The reverse is true of the Laplace transform of
the Kerr functionF,(s). The evolution ofT’ is presented in Fig. 1 for differemf values varying in the range 0—40.

Ill. CALCULATION OF THE RISE TIME AND RISE TRANSIENT USING MATRIX METHODS

Having illustrated how one may evaluate the rise transient and the relaxation time by continued fraction methods, we
consider how these quantities may be calculated by matrix methods. In order to accomplish this, we arrange our set of
recurrence relations in the form

. 1
fZKZ_E Mf2k+ BU(t), k:1|21 (36)

wheref,, f,, andB are column matrices such as

fa(t) fa(t) %g

_ fa(t) fa(t) 1| o

fal)=| ¢ o fat)= ‘ » B=5—| o | (373
far(t) Fax(t) o

andM is annXn matrix characteristic of the rise transient birefringence,
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29 489
6( 1- ﬁ) 35 0 0 0
409 29 809
- — — = — 0 0
21 20( 1 77) 33
= 42 2 22
M 0 _ 420 a1 28 49 o ... | (37b
143 165 65
336y 29
0 0 - -—| O
85 72( 1 285)
|
The general solution of this matrix equation is T -
Ti=—=62 Ajhyt. (40b)

B j

t
for(t)=expM't)f O+J exdM’'(t—t")BU(t")]dt’,
2 4 f2(0) 0 AM JBU)] We also remark that the amplitudes of rgnk2l (1=1,2,..)

(39 are negative, which was not observed for the dielectric re-
sponse. Satisfactory convergence was obtained using a

where 30x30 matrix in all cases. It is apparent from Table | that the
1 lowest eigenvalue., provides an accurate enough represen-
M =——"— M. tation of the relaxation time since the amplitudes of the other

27p modes(A,, Ag, andAg) become smaller and smaller in com-

] o parison with that of the first on@\,). This behavior is rather
are interested in the transient part of this solution which i$\5! etc. where the mode characterized )deominates the
given by the integral in Eq(38). For k=1, the matrix ele- response.
ments may be expressed in the form

IV. COMPARISON OF MATRIX SOLUTIONS

. WITH THE CONTINUED FRACTION SOLUTIONS
2, Azjexq_)\zjt), j:1,2,3... .
J

The solution for the relaxation time rendered by a matrix
gjethod which may be implemented with a minimum of
analysis agrees exactlgwithin rounding errors with the
continued fraction solution rendered by H@6) for all g

values(see the last column of Table | and the second and
f2(t)=f2(oo){1—2 Azjexp(—)\zjt)}, (39  fourth columns of Table )| The most interesting result of
I our theoretical approach is that the solution is again domi-

. . nated by the first modé\,). The Kerr-effect relaxation time,
where theA,; denote the amplitudes of the first components ke the dielectric one, passes through a maximum at a

of the successive eigenvectors associated to the eigenvalugsyain value ofy (which may be a useful factor in experi-
Apj. The longitudinal relaxation time is then the area undefmenty before decreasing monotonically to zero for increas-

Since we are concerned here with the rise transient, the r
laxation modes of the Kerr function may be written as

this curve, viz., ing g values. This behavior has also been observed by Morita
and Watanabé¢see their Fig. 4 in Ref4]).

T.= lim }_ Fa(s) _ E_ 1_ Agj We also compare our solution for the rise transient for the

I s fa()] ¢ o/S \S K Sty relaxation time with that rendered by the effective eigen-

value. This method may be used here since the rise transient
1 of the electric birefringence for the pure induced dipole
:2 Agjhy (403 mechanism may be approximated by a single exponential
! term[4] characterized by an effective relaxation tiffig;. It
In Table I, we present the amplitudes and the eigenvalues ¢ Well known, indeed, that when the orientation of the mol-

the first four modes for different values of the parametep ~ €cules is only due to the anisotropy of the electrical polariz-
to g=40. The eigenvalues arise from the solution of theabilities, the Kerr-effect response may be considered as

secular equation Iingar—at least for W(_aak fields—according to Kerr’s_ law
which relates the birefringenden to the square electric field
defsl—M'}=0, E2. On the contrary, this is not true for the process arising
from pure permanentfield-offf moments which is, in es-
wherel represents the usual identity matrix. sence, a nonlinear response and needs two effective relax-
Since the eigenvalues are presented in the fagn6rg ation times.
(7g is the birefringence relaxation time equal 1g/3), the Thus the time behavior of the orientational factor may be

reduced relaxation tim& is given by written as
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TABLE |. Eigenvalues\,; in the form\;/67g of the first four modes of the rise of the birefringence as a value of the paraghatet
corresponding amplitudes,;, j=1,2,3...[T, is the reduced relaxation time given by E4Ob)]. E denotes values of 10.

g A g A Ng A, A, Ag Ag T
1 56143 19.6181 41.6215 71.6229 1.00377783.7818E-03 3.9611E06 —1.8553E-09 1.0715775
2 55955 195135 41.5049  71.5026 1.014 927 21.4989E-02 6.2075E-05 —1.157 7E-07 1.0837014
3 59333 19.6898 41.6521  71.6400 1.03466033.498 1Ee-02 3.2255E-04 —1.3469E-06 1.0356783
4 66126 201517 42.0657 72.0368 1.06576056.6839E-02 1.0866E-03 —8.0264E-06 0.947 2779
5 7.6121 209061 42.7493  72.6952 1.11174990.1146148 2.8980E03 —3.3285E-05 0.8438085
6 89031 21.9636 43.7075  73.6180 1.17582210.1823589 6.645 1E03 —1.094 3E-04 0.743499 3
7 104483 233388 449461  74.8085 1.259597 60.272 9550 0.0136593 —0.0003051  0.654 9570
8 12.2020 250504 46.4721  76.2709 1.36173380.386 7915 0.0257966 —0.0007510  0.5802222
9 141122 27.1189  48.2945  78.0098 1.476 850 $0.520 698 2 0.0454896 —0.0016759  0.5182252
10 16.1255 29.5606  50.4239  80.0308 1.595 816 90.668 1915 0.0757413 —0.0034537  0.466 908 4
11 18.1945 32.3799  52.8738  82.3401 1.70824910.8217917 0.1200035 —0.0066632  0.4241935
12 20.2839 355630 55.6606  84.9450 1.806 147 60.976 288 2 0.1818617 —0.0121589  0.3883119
13 223724 39.0748 58.8040 87.8538 1.886 130%1.1302985 0.2644251 —0.0211482  0.3578571
14 244500 42.8623  62.3267 91.0759 1.948 976 31.284 8290 0.3694000 —0.0352696  0.3317403
15 26.5144  46.8604  66.2515  94.6225 1.997 658 61.440 246 3 0.496 0639 —0.0566545  0.3091245
16 285666 51.0004  70.5967  98.5066 2.035 568 1.594 023 4 0.6407689 —0.0879456  0.289 365 1
17 30.6088 552187  75.3691 102.7434 2.065 603 01.740 738 2 0.7977409 —0.1322293  0.2719609
18 32.6432 59.4649  80.5565 107.3511 2.08993521.874 2132 0.9611777 —0.1928122  0.2565194
19 346717 63.7051  86.1241 112.3509 2.11009561.990 150 2 11272926 -0.2727670  0.2427288
20 36.6956 67.9216  92.0156 117.7664 2.127 13602.087 4125 1.2946531 -0.3742051  0.2303396
21 387161 721086  98.1590 123.6214 2.14178532.167 5238 14626139 —0.4973936  0.2191496
22 40.7338  76.2668 104.4757 129.9351 2.154 55322.233 336 8 1.6292428 -0.6401156  0.208 9935
23 427493  80.4001 110.8907 136.7161 2.165807-02.287 8857 1.7903944 —0.7978828  0.199 7347
24 447630 84.5130 117.3409 143.9543 2.17581802.3337847 1.9406222 -0.9652822  0.1912598
25 46.7752  88.6095 123.7815 151.6162 2.184 792:32.373 062 3 2.0752071 -1.1377944  0.1834734
26 487862  92.6929 130.1864 159.6444 2.19289022.407 213 4 21917859 -1.3127503  0.176 2952
27 50.7961  96.7659 136.5449 167.9631 2.200 23862.437 3190 2.2906204 —1.4886926  0.169 656 7
28 52.8052 100.8305 142.8565 176.4865 2.206 94022.464 162 5 2.3737646 —1.6637680  0.163499 4
29 548134 104.8881 149.1256 185.1296 2.21307892.4883201 24439729 -1.8345247  0.1577728
30 56.8210 108.9398 155.3586 193.8182 2.21872442.5102254 25039219 —1.9961035  0.1524333
31 58.8279 112.9867 161.5618 202.4964 2.22393492.5302124 25558515 —2.1436996  0.147 4431
32 60.8343 117.0294 167.7405 211.1292 2.228 75962.548 544 8 2.6014952 —2.2741947  0.1427689
33 62.8403 121.0685 173.8992 219.6999 2.233 24052.565 434 7 2.6421443 -2.3868793  0.1383817
34 64.8458 1251044 180.0413 228.2050 2.237 41362.581 056 4 2.6787484 24830607  0.1342559
35 66.8510 129.1376 186.1696 236.6489 2.241309-92.595 554 9 27120094 -2.5651318  0.1303689
36 68.8558 133.1683 192.2862 245.0391 2.244 956-32.609 052 6 27424546 —2.6357225  0.126 700 4
37 70.8603 137.1968 198.3927 253.3839 2.248 37652.621 653 5 27704885 —2.6971996  0.1232326
38 72.8646 1412234 204.4907 261.6906 2.251 590-92.633 447 2 27964291 -2.7514793  0.1199495
39 74.8686 1452483 210.5811 269.9658 2.254 617-42.644 5107 2.8205305 -2.8000363  0.116 8366
40 76.8723 149.2716 216.6648 278.2145 2.257 473-32.654 9129 2.8430046 —2.8439603  0.1138812

fo(t)=(Pa(cosd))(t)=Tfy(=) 1_; AZjEXF(_)\th)}

and the reduced effective relaxation time is

T -1
(42) éff:T_Eff:6< > Azﬂ‘z]) - (43b)
B i

which in terms of the effective eigenvalug; becomes
fa(t)=fa(0)[1—exp(—Net) ],

so that the effective relaxation time is then

Teff_

—\ —1_

(P(cos9))(0)  ,(0)

of T (Py(cosd)) ()~ fa(ee)

From Table II, it is apparent thak.; given by Eq.(43b

(420 pased on the effective eigenvalue technique is a little differ-
ent from the numerical values of the relaxation times ob-
tained using continued fraction or matrix methods, and so
does not provide a rigorous representation of the rise tran-

-1 ) e . .
(2 Az-)\z-) sient birefringence phenomenon. In particular, this method
- 17 4) !
]

leads to higher values of the relaxation timegabecomes
(43a greater than 1. As already mentioned by Coffey, Kalmykov,
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TABLE Il. Table of values of the reduced relaxation times from so that fork=1, one has

the solutions given by Eq$35) and (43h).

3 7 15

9 T - g T o fz(oo)=%M(i'j'g):l—M(j’i’g). (47)

02 1018240 1018509 130 0357781 0.507 055 M(z.2.9) M(z.2.0

g'g’ 1'833 ;;i iggi 3;2 ig‘g 8'23; ggg 8'171? ;jg This equation coincides rigorously with that obtained in an-

' ' : ‘ ' ' other form by Watanabe and Morita in their study of Kerr-

0.8 1061562 1066146 16.0 0.289129 0.423142 g0t relaxation in high electric fieldgl], but the essential

1.0 1.071578 1.078845 17.0 0.271646 0.400883 |ineg of the calculation are not given. Their expression is

1.2 1.079141 1.089724 18.0 0.256111 0.380 807

1.4 1.084161 1.098675 19.0 0.242216 0.362616 M(2.2.g)

1.6 1.086591 1105625 20.0 0.229710 0.346 062 lim (P,(c0s9))(t)= = | ——"—1]|. (48)

1.8 1.086425 1.110525 21.0 0.218392 0.330936 tooe 21 M(%,2,0)

2.0 1.083701 1.113363 22.0 0.208099 0.317 064

2.2 1078499 1.114155 23.0 0.198696 0.304 297 Substituting Eqs(45) and(47) into the second expression of

24 1070933 1112948 24.0 0.190070 0.292511 Eq. (438, one finally finds that the effective relaxation time

26 1061154 1.109817 250 0.182128 0.281597 may be expressed exactly as the ratio of two Kummer func-

2.8 1.049337 1.104860 26.0 0.174790 0.271 463 tions, namely,

3.0 1035678 1.098195 27.0 0.167988 0.262029

3.2 1.020389 1089958 28.0 0.161667 0.253225 o Ten M(3,Z,9)

34 1003688 1.080292 29.0 0.55775 0.244990 Te=70/3~ w23 y (49)

3.6 0985793 1.069351 30.0 0.150271 0.237272 (2,29

3.8 0966921 1.057290 31.0 0.145117 0.230023 , . .

40 0947278 1044262 320 0140281 0.223 202 WNereTeq represents a reduced relaxation time equal to 1 as

50 oaaco oameses 320 0wssras 0zterra 90, I veelonsctie ime sossme pltea P

6.0 0743499 0.889454 340 0131452 0210701 sémbles that ofTf’ (g) ag%in possessir\ﬁy a ma>limul:’nV but

700654956 0812812 350 0.127411 0204960 slightly shifted on the r,ight. Both these plots start fra=1

8.0 0580220 0.743534 36.0 0.123592 0.199523 wheng=0, and have a maximum situated abgut2, and

90 0518219 0682521 37.0 0119978 0.194366 0, pass again through a particular valuegof3<g<5)
10.0 0466895 0.629319 380 0.116553 0.189468 \ynare T'=1. This may be explained as follows: it is well
11.0 0.424168 0582994 39.0 0.113302 0.184810 nown that the stationary state birefringence for low fields is
12.0 0.388266 0.542545 40.0 0.110213

0.180 375 simply given by 2)/15, which corresponds to Kerr's law.

and Massawgb], this is due to the loss of information on the
different time regions of relaxation that are involved. In fact
the second expression in E4.3a represents the initial slope
of the rise of the birefringence, which is always interesting
experimentally. It is also possible to find another expression

Equation(47) calculated for any value of the electrical pa-
rameterg shows that this stationary state is modulated by the
ratio of two Kummer functions, involving deviation from
'Kerr's law. In particular, this ratio is greater than 1 in the
range 6<g<5. Such information may be exploited experi-
mentally.

for Ty starting from the set of differential recurrence equa-
tions. This has the advantage just as in the transverse dielec- APPENDIX A: CALCULATION OF THE LAPLACE

tric responsd 1] of providing a simple analytic formula for
the relaxation time. Setting=1 in Eq. (6), one obtains

2 4

. 1
fz(t)=—m

which for t=0 reduces to

f5(0)=

29
57

sincef,(0)=f,(0)=0 (initial conditions.

It remains to evaluate the asymptotic value attained by S,’1+2(0)=—[Sq+2(0)]2
fo(t) ast—oo, i.e., f5(0). The details of that calculation are
given in Appendix B. It is found thdi6]

for()=

2 T(2k+3)

gk T'(k+3) M(k+3,2k+3,09)

M(

3 3

faivg)

2
L2
5’7'D

TRANSFORM S;(0)
From Eq.(32) we have
> 4n’-1
g (n—1)n(n+1)

(n+2)(2n—-1)
(n—=1)(2n+3)

$(0)=~[S(0)

(44)

Sh+2(0) |- (A1)

(49 Now, the next function will be

> (2n+3)(2n+5)
g (n+1)(n+2)(n+3)

(n+4)(2n+3) _
(n+1)(2n+7) +4(0)

: (A2)

(46)
which by substitution into EqtA1) yields
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(2n—1)(2n+1)  (n+2)(2n—1)(2n+3)(2n+5)
(n—=1)n(n+1) (n—1)(n+1)(n+2)(n+3)(2n+3) [Sh+2(0)7°

(n+2)(n+4)(2n—1)(2n+3) 5 2
DM D a2t ) L OIS 201, .4(0). (A3)

S,(0)=— ED [S4(0)]2

Since we are only interested here with even values,afle can sen=2m (m=1,2,..) so that Eq(A3) may be written as

;o 7p (4m—1)(4m+1) Nt .
Som(0)= = 3 Zm=Dzm@amt 1) Lm0 P+ S0 2 (-1
(4m+4k+1)11  (4m—1)!! (2m=3)!I1  (2m+2k—2)!! ﬁ
(4m—3)!I1  (4m+4k—1)!1 (2m+2k+1)!! (2m)!! =1 [S2j+2m(0)1°
im-1 2m=3)!'  (2m+2N)!!
DN I ANTT Bmr N3 (2 H [S2;+2(0) 1S 2m( 0). (A4)
[
On noting thaf 7] and
L. (2n=1)n!
F(nt+2)=——%r— J, 2n_§n: (2n)! oy (NHK)!
(A5) X _k=0(4k+1) (ZnT 2k D)1 2 GEL Po(x). (B3)

(2m+2n)!1 =2"""(m+n)!,

and settingn=2 in Eq. (A4), we find the desired result for By using the orthogonality property of the Legendre polyno-
S,(0) given by Eq.(33). mials and the definition of the Kummer functiggq. (28)],
we obtain k=n+N)
APPENDIX B: EVALUATION OF THE ASYMPTOTIC
LIMIT f,,() AS A RATIO 22"

=g (2k)!(n+Kk)!
OF TWO KUMMER FUNCTIONS fan(e)=———— 134 Z (2n+2k+1)! (k—n)!
M(3,5,9) k=n

For the rise transient process, we can adopt the following

definition (x=cos ®): B g" ” g_N I'(n+N+3)
= 2M(3,3,9) N=0 N'T(2n+N+3)
Pon(X)exp(gx?)dx
- n I'(n+3)
2n(oo)_ +1 = gl 3 : M(n+212n+219)
J exp(gx?)dx 2M(z,3,9) I'(2n+3
-1
(B4)
! J o 2ydx, (B1)
T Pan(X)exp(gx)dx,
2M(2:2v yJo1 so that forn=1
which coincides with the initial condition of the decay pro- 2 M
cess. Then, we can use the same method as that employed ]bz)(oo) (2) 31 49)= 29 (3,2,9)
Coffey et al. [2] for the magnetic susceptibility and adapt it 2M(212: ) T(3) a2 15 M(t,2.0)
to even Legendre polynomials. We have (B5)
=2 = B2
exXpgx’) nZO n! X! B2) that is, Eq.(47).
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