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Thermally activated escape rates of uniaxial spin systems with transverse field:
Uniaxial crossovers
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Classical escape rates of uniaxial spin systems are characterized by a prefactor differing from and much
smaller than that of the particle problem, since the maximum of the spin energy is attained everywhere on the
line of constant latitude:u5const, 0<w<2p. If a transverse field is applied, a saddle point of the energy is
formed, and high, moderate, and low damping regimes~similar to those for particles! appear. Here we present
the first analytical and numerical study of crossovers between the uniaxial and other regimes for spin systems.
It is shown that there is one HD-Uniaxial crossover, whereas at low damping the uniaxial and LD regimes are
separated bytwo crossovers.@S1063-651X~99!10512-9#

PACS number~s!: 05.40.2a, 75.50.Tt
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The study of thermal activation escape rates of fine m
netic particles, which are usually modelled as classical sp
with predominantly uniaxial anisotropy, may be traced fro
the early predictions of Ne´el @1# through the first theoretica
treatments of Brown@2,3# to the recent experiments o
Wernsdorferet al. @4# on individual magnetic particles o
controlled form. These experiments allow one to check
Stoner-Wohlfarth angular dependence of the switching fi
@5# and to make a comparison@6,7# with existing theories
where the energy barrier is reduced by applying a magn
field. The theories checked are those for the intermediate
high damping~IHD! case@3,8,9#, as well as for the low-
damping~LD! case@10#.

The IHD and LD limits for spins are similar to those fo
the particle problem, which were established by Kram
@11#. The most significant difference is that for spins in t
HD limit the prefactor G0 in the escape rateG5G0exp
(2DU/T) behaves asG0}a, wherea is the damping constan
@if the Landau-Lifshitz~LL ! equation is used#, whereas for
particlesG0}1/a. A question which has not yet been a
dressed, both theoretically and experimentally, and whic
the subject of this paper, is how these three dampi
governed regimes merge into the single uniaxial regime@2# if
the field is removed?

Let us consider the Hamiltonian

H52K̃nz
22m0n–H, unu51, ~1!

wherem05MsV is the magnetic moment andK̃5KV is the
uniaxial anisotropy energy of the particle. The Fokke
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Planck equation for the distribution function of the spi
f (u,w,t), which follows from the stochastic LL equation
reads

] f

]t
1

] j x

]x
1

] j w

]w
50, ~2!

wherex[cosu,

j x5
g

m0
F2

]H
]w

f 2a~12x2!S ]H
]x

1T
]

]xD f G ,
j w5

g

m0
F ]H

]x
f 2

a

12x2 S ]H
]w

1T
]

]w D f G . ~3!

To solve the FPE at low temperatures,T!DU, we rep-
resentf as f (N,t)5 f eq(N)g(N,t), where f eq(N)5Z 21exp
@2H(N)/T# is the equilibrium distribution function. Ne
glecting the exponentially smallġ one obtains

]H
]w

]g

]x
2

]H
]x

]g

]w
1aF S 2

]H
]x

1T
]

]xD ~12x2!
]g

]x

1
1

12x2 S 2
]H
]w

1T
]

]w D ]g

]wG50. ~4!

The functiong assumes the valuesg1 andg2 in the wells and
changes in a narrow region about the top of the barrier,
that

g~x,w!5g11~g22g1!z~x,w!, ~5!

wherez assumes the values 0 and 1 in the first and sec
wells, respectively. The numbers of particles in the we
6499 © 1999 The American Physical Society
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satisfyN11N251 andNi5giNi ,eq, whereNi ,eq5Zi /Z are
the equilibrium values andZ1 andZ2 are partition functions
for each of the wells.

The change in the particle number in the first wellN1 is
due to the flow of particles from the first to the second w
through the linex5const ~say, the equatorx50): Ṅ1

52*0
2pdw j x . Using f eq]H/]w52T] f eq/]w, one can inte-

grate the first term ofj x by parts. Finally, using Eq.~5!, one
has the kinetic equations

Ṅ152Ṅ25G~N2N1,eq2N1N2,eq!, ~6!

the escape rate being

G5F 1

Z1
1

1

Z2
GgT

m0
E

0

2p

dwe2H/TFa~12x2!
]z

]x
1

]z

]wG , ~7!

wherez satisfies Eq.~4! with g⇒z and with the boundary
conditions stated in after Eq.~5!. Also, one can calculate
current through a line of constant energy surrounding one
the wells, which is appropriate in the LD case.

For the transverse-field~unbiased! model

H~x,w!/T[«52s~x212hA12x2cosw!, ~8!

where

s[
K̃

T
5

KV

T
, h[

m0H

2K̃
5

HMs

2K
. ~9!

Another useful dimensionless variable isj[2sh
5HMsV/T. The functionz satisfies

~12h cosw!xS a
]z

]x
1

]z

]w D1h sinwS ]z

]x
2a

]z

]w D
1

a

2s S ]2z

]x2
1

]2z

]w2D 50, ~10!

where 12x2→1 in the regionx!1, which is relevant in the
uniaxial and IHD cases. The result forG can be written

G5
v1

p
AexpF2

DU

T G , v15
2gK

Ms
A12h2, ~11!

whereDU5Hsad2Hmin , DU/T5s(12h)2, and v1 is the
ferromagnetic resonance frequency near the bottom of
well ~the attempt frequency!, the factorA describes devia-
tions from the transition-state theory~TST!, and the lack of
the factor 2 in the denominator is due to the two symme
wells.

In the uniaxial case,h50, the functionz is independent
of w, and the solution of Eq.~10! is ]z/]x5As/pexp
(2sx2). Equation~7! then yields@2#

A52paAs/p. ~12!

Another analytically solvable case is IHD with a pr
nounced saddle:T!Hmax2Hsad, i.e., j[2sh@1 for our
model. Here the coefficients in Eq.~10! for z can be linear-
ized near the saddle pointx5w50 shown in Fig. 1. Next
one seeks a solutionz(x,w)5z(u) with u5x1nw and ap-
l

of

e

c

propriately chosenn @3,11#. This form ofz(x,w) implies that
it changes fors@1 in a narrow region across the lineAOB8
in Fig. 1. Evaluating]z(u)/]u, from Eq.~7! one obtains@9#

A5
a~122h!1Aa214h~12h!

2Ah~12h!
~13!

in Eq. ~11!, with the limiting forms

A>H 1, a2!h~12h!

A12h~11a2!/a, 12h!1,a2

a/Ah, h!1,a2.

~14!

Note that forh!1 the HD regime is attained already fora
*Ah!1, where the difference between the LL and Gilbe
equations is still irrelevant. Forh,1/2, Eq.~13! monotoni-
cally increases witha. For h.1/2, it has a minimum ata
52h21. In the limit h→0 the result forA and thus the
escape rateG diverges, because the saddle becomesinfinitely
wide. This divergence is, however, unphysical, because
~13! requiresj[2hs@1.

For small a, the IHD formula above fails, because th
tacit assumption that the magnetic moments approaching
barrier from the depth of the well are in thermal equilibriu
is violated. In the LD limit, the situation becomes complete
different: The functiong changes in a narrow region alon
the lines corresponding to the saddle-point energy«c , i.e.,
across the linesAOA8 andBOB8 in Fig. 1. Diffusion in the
energy space becomes very slow, and thusg equilibrates
along the lines«5const. That is,z of Eq. ~5! can be ap-
proximated as

z~x,w!>z~«!, «5«~x,w![H~x,w!/T. ~15!

Then the conservative part of Eq.~4! for z vanishes. The res
can be averaged over the phase variable, i.e., over
constant-energy line, and written

d2z

d«2
5F12

A~«!

B~«!Gdz

d«
, ~16!

FIG. 1. Trajectories of a magnetic particle with uniaxial anis
ropy and transverse field. Regions 1 and 2 are the potential wellO
is the saddle point, and 3 is the maximum of the potential.
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where

A~«![K ]

]x
~12x2!

]«

]x
1

1

12x2

]2«

]w2L ,

B~«![K ~12x2!S ]«

]xD 2

1
1

12x2 S ]«

]w D 2L , ~17!

with the averaging over conservative trajectories.
Usually A/B;T/Echar, with Echar a characteristic energy

can be neglected at low temperatures, and Eq.~16! is easily
integrated. Calculating the flux across the part of the sep
trix «5«c around the first well yields@10#

A5
a

2 R
«5«c

F ~12x2!
]«

]x
dw2

1

12x2

]«

]w
dxG , ~18!

i.e., A5 d̃/2, whered̃5d/T and d is the energy dissipate
over the period of the precession at the saddle-point en
in the low-damping case, coinciding with the result for pa
ticles in the LD limit @11#, the factor 1/2 arising because o
the two symmetric wells.

If the transverse field satisfiesh!1, then Eq.~18! greatly
simplifies. One can set 12x2⇒1 everywhere and retain onl
the leading term containing]«/]x>22sx, where along the
separatrix x5x(w)>2A2h(12cosw)522Ahsin(w/2).
This results in

A>asE
0

2p

x~w!dw58asAh, ~19!

vanishing in the limith→0, instead of approaching Eq.~12!,
and becoming invalid atj&1 ~see below!.

Let us now studycrossovers to the uniaxial regimefrom
the HD and LD regimes, starting from the HD one. For lar
values ofs one expects a crossover to the uniaxial case
h;1/s, which is so small that the functionz does not yet
deviate from its uniaxial form written in the line above E
~12!. Under this assumption which will be checked short
the only effect of the transverse field is that in Eq.~7! f eq
}exp(j cosw). Integration overw yields

A52paAs/pexp~2j!I 0~j!, ~20!

which interpolates between Eq.~12! and the third line of Eq.
~14!, so describing a crossover between the uniaxial and
regimes. Ifa!1, then at higher fields,h*a2, a crossover to
the ID regime withA51 occurs, which is described by Eq
~13!. Thus Eq.~20! applies if 1/s!a2, i.e., a[aAs@1.

Let us now consider LD forh!1 more accurately. HereA
andB of Eq. ~17! simplify to A(«)>^]2«/]x2&>22s and
B(«)>^(]«/]x)2&>24s«, so that Eq.~16! becomes

d2z

d«2
5F12

1

2«Gdz

d«
⇒ dz

d«
5

C

A2«
e«2«c, ~21!

where the constantC is determined by the condition
a-

gy
-

r

,

D

2CE
2`

«c d«

A2«
exp~«2«c!51, «c52j. ~22!

Note that forj&1 the term 1/(2«) in Eq. ~21! cannot be
dropped, since2«;2«c5j. This is the difference from the
standard LD case above.

Thus, instead of Eq.~19!,

A>aC lim
«→«c52j

R ~]«/]x!dw

A2«
52paAs/p f ~j!Q,

~23!

where

Q5 lim
«→2j

1

2pE0

2p

dwA2«2j cosw

2«
~24!

and

f ~j!5ApS E
0

` dte2t

Aj1t
D 21

5~ejerfcAj!21. ~25!

One hasQ51 for j50 and Q523/2/p'0.900 for jÞ0,
whereas the asymptotes of the functionf (j) are

f ~j!>H 112Aj/p, j!1

Apj, j@1.
~26!

Thus for j50 the uniaxial limit, Eq.~12!, is recovered. In
the regionj;1, the functionf (j) describes the crossover t
the standard LD result of Eq.~19!. The discontinuous form
of Q above shows that our treatment was not accur
enough to describe yet another crossover atj;Aa, where
a[aAs is small in the LD case~see below!.

It follows that the parameters governing the uniax
crossover are

j52hs5HMsV/T, a5aAs. ~27!

For s@1, in the relevant regionj;1 one hash!1. Thus in
Eq. ~10! the termsh cosw, a]z/]w, and ]2z/]w2 can be
neglected, the derivatives with respect tow being much
smaller than those with respect tox. In contrast, the terms
h sinw]z/]x and ]z/]w become relevant for smalla and
should be retained. The resulting equation can be cast
the scaled form

aS ]2z

] x̃2
12x̃

]z

] x̃
D 12x̃

]z

]w
1j sinw

]z

] x̃
50, ~28!

where x̃[Asx and the boundary conditions arez50 for x̃

52` andz51 for x̃5` .
The ‘‘phase diagram’’ of the regimes for the escape r

of the uniaxial model with transverse field is shown in Fig.
The ID-HD crossover is described by Eq.~13! and occurs at
a2;h, i.e., a;Aj. The ID-LD crossover occurs if in Eq
~19! A;1, which amounts toa;1/Aj. Crossover of this
type for the particle problem is described by Melnikov’s fo
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mula @12#. The HD-Uniaxial crossover, which is describe
by Eq. ~20!, occurs fora@1 at j;1. For a!1, there are
two crossovers between the LD and uniaxial regimes. On
them occurs atj;1 and is described by Eqs.~23! and~25!.
Another one occurs ata;j2.

The latter follows from the perturbative solution for th
escape rate at small transverse fields for arbitrary valuesa.
To second order inh, the result has the form

G~h!/G~0!>11~j2/4!F~a!511h2s2F~a!, ~29!

where

F~a!511
1

a2E0

1

duexpF ln~12u!1u

2a2 G
5112~2a2e!1/(2a2)g„111/~2a2!,1/~2a2!…,

~30!

andg(a,z)5*0
zdtta21e2t is an incomplete gamma function

The limiting forms of the above expression are

F>H 111/a21/~2a!21•••, a@1

Ap/a21/31Apa/61•••, a!1.
~31!

The last formula shows that fora!1 the escape rateG(h)
essentially deviates from its uniaxial value ifa;j2. This

FIG. 2. Different regimes for the escape rate of the uniaxial s
system in the transverse field (s@1, h!1).
oit
s.

on

P.
ev
ofdefines the other crossover mentioned above.
The results of the numerical calculation of the therm

activation rate as the lowest eigenvalue of the Fokker-Pla
equation@9# are shown in Fig. 3. For largea the agreement
with the HD-Uniaxial crossover formula, Eq.~20!, is rather
good. For smalla the field interval is restricted due to con
vergence problems. Nevertheless, there good accord with
LD crossover formula, Eq.~23!, in the regionj&1, where
the standard LD result of Eq.~19! is invalid.

We have shown how different damping-dependent
gimes of thermal activation for uniaxial magnetic particl
with transverse field merge into the single uniaxial regim
when the field tends to zero, and presented the comp
‘‘phase diagram’’ of the different regimes. The uniaxi
characteristics appear forj&1, i.e., forh&1/s @see Eq.~9!#.
It should be noted also that the transition from classica
quantum regimes of the escape with decreasing tempera
is strongly modified by proceeding to the uniaxial limit@13#.
The latter is, however, a more pronounced effect and it
ready occurs forh<1/4 for our model.
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n FIG. 3. Transverse-field dependence of the inverse relaxa
rate fors510 and different values of the damping constanta. Solid
lines represent Eq.~11! with A given by Eqs.~20! and ~23! with
Q523/2/p'0.900.
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