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Thermally activated escape rates of uniaxial spin systems with transverse field:
Uniaxial crossovers
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Classical escape rates of uniaxial spin systems are characterized by a prefactor differing from and much
smaller than that of the particle problem, since the maximum of the spin energy is attained everywhere on the
line of constant latituded=const, O<p=<2. If a transverse field is applied, a saddle point of the energy is
formed, and high, moderate, and low damping regisésilar to those for particlesappear. Here we present
the first analytical and numerical study of crossovers between the uniaxial and other regimes for spin systems.
It is shown that there is one HD-Uniaxial crossover, whereas at low damping the uniaxial and LD regimes are
separated bywo crossovers|S1063-651X%99)10512-9

PACS numbd(s): 05.40—a, 75.50.Tt

The study of thermal activation escape rates of fine magPlanck equation for the distribution function of the spins
netic particles, which are usually modelled as classical spin§(#6,¢,t), which follows from the stochastic LL equation,
with predominantly uniaxial anisotropy, may be traced fromreads
the early predictions of N [1] through the first theoretical

treatments of Brown[2,3] to the recent experiments of af iy dj,
Wernsdorferet al. [4] on individual magnetic particles of ot ax %ZO' @
controlled form. These experiments allow one to check the
Stoner-Wobhlfarth angular dependence of the switching fieldyherex=cosé,
[5] and to make a comparisdi®,7] with existing theories
where the energy barrier is reduced by applying a magnetic oy oH , [ H J
field. The theories checked are those for the intermediate-to- Jx:lu—{ - %f—a(l—x ) W+T&>f ,
high damping(IHD) case[3,8,9], as well as for the low- 0
damping(LD) case[10].
The IHD and LD limits for spins are similar to those for j _7 ﬁ __ a ﬂ+-|-i)f @)
the particle problem, which were established by Kramers ® ol IX 1—x2\ de de
[11]. The most significant difference is that for spins in the
HD limit the prefactorl'y in the escape ratd =I"gexp To solve the FPE at low temperaturdsgAU, we rep-

(—AU/T) behaves aFa, whereais the damping constant resentf as f(N,t)=f.{(N)g(N,t), wherefeq(N)=Z‘1exp

[if the Landau-Lifshitz(LL) equation is useld whereas for [—7(N)/T] is the equilibrium distribution function. Ne-

particlesT'g>1/a. A question which has not yet been ad- giecting the exponentially smajj one obtains

dressed, both theoretically and experimentally, and which is

the subject of this paper, is how these three damping,, a9 oH ag

governed regimes merge into the single uniaxial redidjef @ — —— — —+

the field is removed? de 9X X o
Let us consider the Hamiltonian

aH+Ta L ,.09
Al = ox T Tax /A x05¢

1 ( IH a)ag
+ —|[=0. (4

- -—+T—
H=—KnZ—puon-H, |n|=1, (1) 1-x2\  de  dp) de

whereuo=M,V is the magnetic moment ari=KV is the  The functiong assumes the values andg, in the wells and
uniaxial anisotropy energy of the particle. The Fokker-changes in a narrow region about the top of the barrier, so

that
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satisfyN; +Ny;=1 andN;=g;N; ¢q, WhereN; .= Z;/ Z are
the equilibrium values an&, and Z, are partition functions
for each of the wells.

The change in the particle number in the first well is
due to the flow of particles from the first to the second well
through the linex=const (say, the equatox=0): N;
= —[§7dejy. UsingfegH/d@o=—Tafey/d, one can inte-
grate the first term of, by parts. Finally, using Eq5), one
has the kinetic equations

Ny=—N;=T(NNy e~ NiNpeg), ©
the escape rate being
11 7Tf2ﬂ %, %
P=| ot o || dee T a(1-x2) o + oo |, (7
2 Zomelo ¥ ( Vix e K

where ¢ satisfies Eq(4) with g=¢ and with the boundary
conditions stated in after E¢5). Also, one can calculate a
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FIG. 1. Trajectories of a magnetic particle with uniaxial anisot-
ropy and transverse field. Regions 1 and 2 are the potential vells,
is the saddle point, and 3 is the maximum of the potential.

current through a line of constant energy surrounding one opropriately chosemw [3,11]. This form ofZ(x, ¢) implies that

the wells, which is appropriate in the LD case.
For the transverse-fieltlinbiased model

H(X,¢)/ T=e=—a(x?+ 2h\1—x2cose), (8)
where
K K H HM
o=m=—, h=El s )
T T 2K 2K
Another useful dimensionless variable i£=2ch
=HMV/T. The function{ satisfies
al Il al  d¢
(1—hcosp)x a&Jr% +h3|n<p(5—a£
a|d*t ¢
2—(— Pl 1o

where 1-x?—1 in the regiorx<1, which is relevant in the
uniaxial and IHD cases. The result fbrcan be written

| =

where AU =Hgoq— Hmin, AU/T=0(1—h)?, and w, is the
ferromagnetic resonance frequency near the bottom of th
well (the attempt frequengythe factorA describes devia-
tions from the transition-state theo(yST), and the lack of

AU

T

w1
—Aex
a

2yK
wq1= M
s

r

11

it changes folr>1 in a narrow region across the lineO B’
in Fig. 1. Evaluating?Z(u)/du, from Eq.(7) one obtaing9]

o 8(1=2h)+ @+ ah(1-h)

13
2\h(1-h) (13
in Eq. (12), with the limiting forms
1, a’<h(1-h)
A={ J1-h(1+a?/a, 1-h<1a? (14)
a/\h, h<1a2

Note that forh<1 the HD regime is attained already far
=./h<1, where the difference between the LL and Gilbert
equations is still irrelevant. Fdr<1/2, Eq.(13) monotoni-
cally increases witra. For h>1/2, it has a minimum ah
=2h—1. In the limit h—0 the result forA and thus the
escape rat&' diverges because the saddle beconrdmitely
wide This divergence is, however, unphysical, because Eq.
(13) requiresé=2ho>1.

For smalla, the IHD formula above fails, because the
tacit assumption that the magnetic moments approaching the
barrier from the depth of the well are in thermal equilibrium
is violated. In the LD limit, the situation becomes completely

ifferent: The functiong changes in a narrow region along
the lines corresponding to the saddle-point enefgy i.e.,
across the linedOA’” andBOB' in Fig. 1. Diffusion in the

the factor 2 in the denominator is due to the two symmetricN€rgy space becomes very slow, and tguequilibrates

wells.

In the uniaxial caseh=0, the function{ is independent
of ¢, and the solution of EQq(10) is d/dx= ol mexp
(—ox?). Equation(7) then yields[2]

A=27a\olm. (12
Another analytically solvable case is IHD with a pro-
nounced saddleT <H o Hsagr 1-€., é=20h>1 for our
model. Here the coefficients in E(LO) for £ can be linear-
ized near the saddle point=¢=0 shown in Fig. 1. Next
one seeks a solutiofi(x, ¢) = ¢(u) with u=x+r¢ and ap-

along the liness=const. That is¢ of Eq. (5) can be ap-
proximated as

{x,p)={(e), e=e(X,@)=H(X,@)IT. (15
Then the conservative part of E@) for { vanishes. The rest
can be averaged over the phase variable, i.e., over the
constant-energy line, and written

&

de?

A(e)
~ B(e)

d¢
@,

(16)
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where

ec de
2C expe—gy)=1, e.=—¢&. (22
J , 08 1 5% TINTE
Ale)={ - (1=x°)——+ — :
X X 1-x? 9¢? Note that foré<1 the term 1/(2) in Eq. (21) cannot be
dropped, since- &~ —¢e.=¢. This is the difference from the
9\ 2 1 [9g)\2 standard LD case above.
= —x2)| — — Thus, instead of Eq(19),
B(e) <(1 X)(ax) +1_X2((9¢) > (17) 419
with the averaging over conservative trajectories. B ] jg (de/dx)de
Usually A/B~T/E 4 With Egnar@ characteristic energy, A=aC “”j B =2mayolwf(§)Q,
can be neglected at low temperatures, and(E6). is easily emee=E (23
integrated. Calculating the flux across the part of the separa-
trix e =g, around the first well yield§10] where
a de 1 oJe 1 fzw —&—§cose
=_ —x3)—do— — =lm_——| d _— 24
A= §;= (A3 do—T—5 550%, (19 Q Rz 2 A— (24)

ie., A=3/2, whered=6/T and § is the energy dissipated

over the period of the precession at the saddle-point energy wdtet

in the low-damping case, coinciding with the result for par- f(&)= \/E< f

ticles in the LD limit[11], the factor 1/2 arising because of 0 VE+t

the two symmetric wells. 3
If the transverse field satisfiés<1, then Eq(18) greatly ~One hasQ=1 for {=0 and Q=2"/7~0.900 for {+0,

simplifies. One can set-4x?=1 everywhere and retain only Whereas the asymptotes of the functid¥) are

the leading term containinge/dx= — 20X, where along the

-1
) =(eferfcyé) "t (25

separatrix  x=Xx(¢)=—\2h(1—cose)=—2\/hsin(¢/2). f(&)= 1+2y¢lm, &<l (26)
This results in NG &1,
27 Thus for é=0 the uniaxial limit, Eq.(12), is recovered. In
AEanO x(¢)dp=8aah, (190 the regioné~1, the functionf (£) describes the crossover to

the standard LD result of Eq19). The discontinuous form
of Q above shows that our treatment was not accurate
enough to describe yet another crossovegat/a, where

Let us now studycrossovers to the uniaxial reginfeom a=ayo is small in the LD casésee below.
¥ ; 9 It follows that the parameters governing the uniaxial
the HD and LD regimes, starting from the HD one. For Iargecrossover are

values ofo one expects a crossover to the uniaxial case for
h~1/o, which is so small that the functiofi does not yet —2ho=HM.N\/T —a 2

deviate from its uniaxial form written in the line above Eq. ¢ o MIT, a=ao. @7
the only effect of the transverse field is that in B@d) foq  Eq. (10) the termsh cose, adl/de, and 32¢/d¢? can be

vanishing in the limith— 0, instead of approaching E(.2),
and becoming invalid af<1 (see below.

xexpcosy). Integration overp yields neglected, the derivatives with respect ¢o being much
smaller than those with respect o In contrast, the terms
A=2maalmexp(—§)lo(§), (200  hsingdtlox and 9{/d¢ become relevant for smat and

should be retained. The resulting equation can be cast into

which interpolates between E@.2) and the third line of Eq. the scaled form
(14), so describing a crossover between the uniaxial and HD
regimes. Ifa<1, then at higher field$)=a?, a crossover to 9L L
the ID regime withA=1 occurs, which is described by Eq. @ EJ“ZX(?_;(
(13). Thus Eq.(20) applies if 15<a?, i.e., a=a\Jo>1.

Let us now consider LD fon<1 more accurately. Her&
andB of Eq. (17) simplify to A(e)=(d%s/dx?)=—20 and

B(e)=((de/dx)?)=—4ce, so that Eq(16) becomes =—o and{=1 forx=o .
(2)=((76/9X)%) e a(16 The “phase diagram” of the regimes for the escape rate

of the uniaxial model with transverse field is shown in Fig. 2.
% - %: c e e, (21) The ID-HD crossover is described by E43) and occurs at
de de  [—¢ a’~h, i.e., a~ & The ID-LD crossover occurs if in Eq.
(190 A~1, which amounts tax~1/\£&. Crossover of this
where the constar® is determined by the condition type for the particle problem is described by Melnikov’s for-

~d{ . dL
+2Xx—+ €ésing—==0, (28
Je X

wherex=/ox and the boundary conditions ate=0 for X
d?¢

1
2¢

de?
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FIG. 2. Different regimes for the escape rate of the uniaxial spin FIG. 3. Transverse-field dependence of the inverse relaxation
system in the transverse field% 1, h<1). rate foro=10 and different values of the damping constarolid

lines represent Eq11) with A given by Egs.(20) and (23) with

mula[12]. The HD-Uniaxial crossover, which is described Q=2%%7~0.900.
by Eg. (20), occurs fora>1 até~1. For a<1, there are
two crossovers between the LD and uniaxial regimes. One of; . -
them occurs ag~1 and is described by Eq&23) and (25). (.fieflnes the other crossover mentioned above.
Another one occurs at~ £2.

The latter follows from the perturbative solution for the
escape rate at small transverse fields for arbitrary valuas of
To second order i, the result has the form

The results of the numerical calculation of the thermal
activation rate as the lowest eigenvalue of the Fokker-Planck
equation[9] are shown in Fig. 3. For larga the agreement
with the HD-Uniaxial crossover formula, E¢RO), is rather
good. For smalh the field interval is restricted due to con-

L' (h)/T(0)=1+(£44)F(a)=1+h%c%F(a), (290 vergence problems. Nevertheless, there good accord with the
LD crossover formula, Eq(23), in the regioné<1, where

where the standard LD result of Eq19) is invalid.
1 1 In(1—u)+u We have shown how different damping-dependent re-
Fla)=1+ _f duex;{— gimes of thermal activation for uniaxial magnetic particles
a?Jo 2a? with transverse field merge into the single uniaxial regime

B 21207 5 ) when the field tends to zero, and presented the complete
=1+2(2a%) y(1+1/(2a%),10(2a%)), “phase diagram” of the different regimes. The uniaxial
(30)  characteristics appear fg<1, i.e., forh=1/o [see Eq(9)].

It should be noted also that the transition from classical to
andy(a,z) = [§dtt*"'e”"is an incomplete gamma function. quantum regimes of the escape with decreasing temperature
The limiting forms of the above expression are is strongly modified by proceeding to the uniaxial lifit3].

[1+1/a_1/(2a)2+ L a1 The latter is, however, a more pronounced effect and it al-
F=

ready occurs foh<1/4 for our model.
Jala—13+ Jral6+ -, a<l. (32)
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