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It is shown how the rotational diffusion model of polar molecules �which may be described in
microscopic fashion as the diffusion limit of a discrete time random walk on the surface of the unit
sphere� may be extended to anomalous nonlinear dielectric relaxation and the dynamic Kerr effect
by using a fractional kinetic equation. This fractional kinetic equation �obtained via a generalization
of the noninertial kinetic equation of conventional rotational diffusion to fractional kinetics to
include anomalous relaxation� is solved using matrix continued fractions yielding the complex
nonlinear dielectric susceptibility and the Kerr function of an assembly of rigid dipolar particles
acted on by external superimposed dc E0 and ac E1�t�=E1 cos �t electric fields of arbitrary
strengths. In the weak field limit, analytic equations for nonlinear response functions are also
derived. © 2007 American Institute of Physics. �DOI: 10.1063/1.2463694�

I. INTRODUCTION

One of the most striking features of the dielectric relax-
ation of disordered materials such as complex liquids and
amorphous polymers is the failure of the Debye1 theory of
dielectric relaxation to adequately describe the low-
frequency spectrum, where the relaxation behavior may de-
viate considerably from the exponential �Debye� pattern and
exhibits a broad distribution of relaxation times. The relax-
ation process in such disordered systems is characterized by
the temporally nonlocal behavior arising from the energetic
disorder which produces obstacles or traps simultaneously
delaying the motion of the particle and producing memory
effects. It appears that a significant amount of experimental
data on anomalous relaxation of disordered systems and
complex liquids supports the following empirical expres-
sions for the dielectric susceptibility spectra, namely, the
Cole-Cole equation,2

�CC��� =
�0

1 + �i���� , �1�

the Cole-Davidson equation,3

�CD��� =
�0

�1 + i���� , �2�

and the Havriliak-Negami equation,4

�HN��� =
�0

�1 + �i������ , �3�

which is a combination of the Cole-Cole and Cole-Davidson
equations. Here � is a characteristic relaxation time known as
the Debye relaxation time, �0 is the static susceptibility, and
��0���1� and ��0���1� are parameters with values
usually obtained by fitting experimental data. In the context
of the linear susceptibility, Eqs. �1�–�3�, the Cole-Cole pa-
rameter � is a broadening parameter because the curve of
����� versus � broadens as � is reduced while the Cole-
Davidson parameter � in Eqs. �2� and �3� is a skewing pa-
rameter. This is so because the circular arc characteristic of
the Debye equation ����� versus � is shifted toward the
low-frequency end of the spectrum in the Cole-Cole plot of
����� versus �����.

The above results have been formulated using linear re-
sponse theory. Nonlinear dielectric relaxation and the dy-
namic Kerr effect of permanent dipoles are naturally occur-
ring examples of nonlinear ac responses and will be treated
here. Unlike its linear counterpart, nonlinear response theory
is much less developed because of its inherent mathematical
and physical complexity. The calculation of the nonlinear
stationary �ac� response even for systems of noninteracting
particles described by a single coordinate is a difficult task
because no connection between the transient and the ac re-
sponses exists, i.e., a unique response function valid for all
stimuli unlike linear response does not exist. In this context
we remark that the orientational electric polarization of non-
interacting permanent dipoles in ac fields E�t� treated by
Debye1 depends in the linear approximation in E�t� on thea�Electronic mail: kalmykov@univ-perp.fr
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average over orientations of the first Legendre polynomial
�P1�cos ����t�, � being the polar angle of the electric dipole
moment vector 	. Subsequently Debye’s calculation was
generalized5–11 to nonlinear responses described by the aver-
ages of higher order Legendre polynomials �Pn��t�. We men-
tion �P2��t� governing the Kerr effect.9,11 The Kerr effect in
complex systems may deviate considerably from the normal
relaxation behavior and may also exhibit a broad distribution
of relaxation times. Such anomalous relaxation behavior has
been observed, e.g., for amorphous polymers, polymer, and
supercooled liquid solutions.12–14

For the Debye model, theoretical treatments of various
nonlinear response problems have been given recently via
matrix continued fractions without using perturbation
theory.9,11 Here the calculation of the nonlinear response
functions can be reduced to solving an infinite hierarchy of
differential-recurrence equations for the statistical averages
�Pn��t�. In the present paper, we extend this approach to the
anomalous nonlinear relaxation behavior via a fractional
generalization of the Debye kinetic equation for normal re-
laxation. Our analysis will essentially concern nonlinear di-
electric and Kerr effect relaxation in superimposed ac and dc
external electric fields.

II. FRACTIONAL KINETIC EQUATIONS

The normal Debye relaxation process is characterized by
the single exponential after effect relaxation function fD�t�
following the removal of a small constant electric field,15

fD�t� = e−t/�. �4�

In the frequency domain, the corresponding quantity is the
dynamic susceptibility �D��� which is according to linear
response theory15

�D��� = − �0�
0




e−i�t d

dt
fD�t�dt =

�0

1 + i��
. �5�

Equations �4� and �5� may be derived using a variety of
microscopic models of the relaxation process.15 For example,
Debye1 extended Einstein’s treatment16 of the translational
Brownian motion to the rotational Brownian motion of non-
interacting permanent dipoles subjected to an external time-
varying field. It might also happen that the motion which
prevails is different for different kinds of dipoles. Moreover,
both large and small jump transitions may exist simulta-
neously. The above observations lead us to the second mi-
croscopic �relaxator� model considered by Debye1 �and much
extended by Fröhlich15�, which is a Poisson-type process,
where relaxation occurs due to the crossing by large jumps of
rare members of an assembly of dipoles over a potential
barrier due to the shuttling action of thermal agitation. This
model also produces a relaxation spectrum of the form of Eq.
�4�; however, the overbarrier relaxation time has an
Arrhenius-type behavior as it depends exponentially on the
height of the potential barrier. The advantage of a formula-
tion in terms of the microscopic mechanisms is that the nor-
mal �Debye� relaxation behavior may be clearly understood
as the diffusion limit of a discrete time random walk on the
surface of the unit sphere. Here the random walker executes

a jump of a fixed mean square length in a fixed time, so that
the only random variable is the direction of the walker. As
far as the physical mechanism underlying the Cole-Cole
equation �1� is concerned, we first remark that Eq. �1�
arises11 from the diffusion limit of a continuous time random
walk �CTRW�. The CTRW was introduced by Montroll and
Weiss17 to render time continuous in a random walk without
necessarily appealing to the diffusion limit. In the most gen-
eral CTRW, the random walker may jump an arbitrary
length in an arbitrary time. A simple case of the CTRW
arises by assuming that the jump length and jump time ran-
dom variables are decoupled and that the jump length vari-
ances are always finite �so that the central limit theorem ap-
plies in the limit of a large sequence of jump lengths11�;
however, the jump times may be arbitrarily long so that they
obey a Lévy distribution with its characteristic long tail.17–19

Such walks possessing a discrete hierarchy of time scales20

are known as fractal time random walks.21 In the limit of a
large sequence of jump times, they yield a fractional Fokker-
Planck equation in configuration space.18,19 If this equation is
now adapted to the fractional rotational diffusion, then Eqs.
�1�–�3� can be readily obtained.22,23 Furthermore, the after-
effect function corresponding to the Havriliak-Negami equa-
tion �Eq. �3�� may be written24 as a Fox H function25 ex-
trapolating between the stretched exponential �Kohlrausch-
Williams-Watts� law at short times and an inverse long time
tail power law at long times. The Debye relaxation time �
now plays the role of a time scale demarcating the transition
from a stretched exponential law to a power law.18

The fractional kinetic equations incorporating the Cole-
Cole, Cole-Davidson, and Havriliak-Negami relaxation pro-
cesses can be written22,23 by extending a hypothesis of Nig-
matullin and Ryabov.26 They noted that the conventional
kinetic equation describing the ac stationary response of a
system characterized by the single exponential relaxation
function to a forcing function F�t�=Fei�t, namely,

��
d

dt
+ 1	 f�t� = F�t� �6�

may be generalized to a fractional kinetic equation of frac-
tional order � so describing a system with Cole-Davidson
anomalous relaxation behavior as

��−
Dt
1 + 1��f�t� = F�t� . �7�

From now on operator equations of the type ��−
Dt
1+1�� are

to be understood as series of fractional operators via the bi-
nomial expansion

�a + b�� = 

n=0



�− 1�n�− ��n

n!
a�−nbn, �8�

where �a�n=��n+a� /��a� is a Pochhammer symbol,27 the
fractional derivative −
Dt

� is given by the Riemann-Liouville
definition,18,19

−
Dt
��f�t�� =

1

��1 − ��
d

dt
�

−


t f�t��dt�

�t − t��� , �9�

and ��z� is the gamma function.27 Assuming adiabatic
switching on of the ac field F�t�=Fei�t, the solution of Eq.
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�7� yields the Cole-Davidson Eq. �2�.26 According to Nigmat-
ullin and Ryabov,26 the fractional exponent � reflects the dis-
continuous character of the anomalous relaxation process
and represents the fractal dimension of the set over which the
relaxation times are statistically distributed.26 The Fröhlich
relaxator model15 modified to the fractional diffusion by Nig-
matullin and Ryabov26 may serve as an example of such a
process. For the Cole-Cole relaxation, the underlying kinetic
equation is given by20

��−

� Dt

� + 1�f�t� = F�t� . �10�

The physical meaning of the parameter � is the order of the
fractional derivative in the fractional differential equation de-
scribing the continuum limit of a random walk with a chaotic
set of waiting times.23 However, a more physically useful
definition of � is as the fractal dimension of the set of wait-
ing times which is the scaling of the waiting time segments
in the random walk with magnification. The fractional expo-
nent � measures the statistical self-similarity �or how the
whole looks similar to its parts� of the waiting time
segments.20

In like manner, combining the fractional diffusion equa-
tion �Eq. �10�� describing Cole-Cole relaxation and Eq. �7�
describing Cole-Davidson relaxation, one may also introduce
the fractional kinetic equation14

���
−
Dt

� + 1��f�t� = F�t� . �11�

Equation �11� represents a fractional generalization of the
normal kinetic Eq. �6� to incorporate the Havriliak-Negami
relaxation. For the two particular cases �=1 and 0���1
and �=1 and 0���1, Eq. �11� reduces to Eqs. �10� and �7�,
respectively. The fractional derivatives in Eqs. �7�, �10�, and
�11� are memory functions with a slowly decaying power law
kernel in time. Such behavior arises from random torques
with an anomalous waiting time distribution, that is, from a
fractal time random walk with � as the intertrapping time.

III. FRACTIONAL KINETIC EQUATION FOR
NONLINEAR RESPONSE FUNCTIONS

Here we shall generalize the Debye noninertial rotational
diffusion model1 to the anomalous nonlinear dielectric relax-
ation and dynamic Kerr effect responses of an assembly of
rigid dipolar particles acted on by external superimposed dc
E0 and ac E1�t�=E1 cos �t electric fields of arbitrary
strengths. Each particle contains a rigid electric dipole 	. We
also suppose for simplicity that both E0 and E1 are directed
along the Z axis of the laboratory coordinate system and that
effects due to the anisotropy of the polarizability of the par-
ticles can be neglected. Thus the orientational potential en-
ergy of the particle is

V��,t� = − 	�E0 + E1�t��cos � . �12�

The problem we wish to solve is intrinsically nonlinear be-
cause we assume that the magnitudes of both ac and dc fields
are so large that the energy of a particle in these fields may
be comparable to or larger than kT �k is the Boltzmann con-
stant and T is the temperature�. The physical quantities
which are interesting from an experimental point of view are

the electric polarization P�t� and the electric birefringence
function K�t� defined by7,9

P�t� = B1�P1�cos ����t� , �13�

K�t� = B2�P2�cos ����t� . �14�

The coefficients B1 and B2 depend on the number of particles
per unit volume, the dipole moment, particle depolarization
factors, etc. Here we shall assume that these coefficients are
independent of the frequency of the electric field �in dielec-
tric relaxation� and of the light frequency �in Kerr effect
relaxation�. Thus the effects of long-range torques due to the
interaction between the average moments and the Maxwell
fields are ignored. These effects are largely irrelevant for
dilute systems in first approximation. Hence, the theory de-
veloped here pertains to situations where dipole-dipole inter-
actions have been eliminated via suitable extrapolation of
data to infinite dilution.

For the normal rotational diffusion model, the recurrence
equation for the response functions fn�t�= �Pn�cos ����t� �ex-
pectation values of the Legendre polynomial of order n� is
�see, e.g., Refs. 7, 9, and 11�

��n
d

dt
+ 1	 fn�t� =


0 + 
 cos �t

2n + 1
�fn−1�t� − fn+1�t�� , �15�

where �n=2� /n�n+1� is a characteristic relaxation time of
fn�t� and 
0=	E0 / �kT� and 
=	E1 / �kT� are the dimension-
less field parameters. In strong fields, all the fn�t� contribute
to the dielectric relaxation and dynamic Kerr effect response
functions f1�t� and f2�t�. Noting Eq. �11�, the fractional ana-
logue of Eq. �15� is

��n−

� Dt

� + 1��fn�t� =

0 + 
 cos �t

2n + 1
�fn−1�t� − fn+1�t�� . �16�

The Cole-Cole and Cole-Davidson relaxation processes may
be treated as particular cases of Eq. �16�. It will become
apparent that under linear response conditions, 
�1, and

0=0, Eq. �16� yields the linear susceptibility from Eq. �3�;
moreover, that equation also allows one to evaluate the non-
linear ac stationary responses.

Equation �16� is similar but not identical to the frac-
tional kinetic equation proposed by Déjardin and Jadzyn28

�in Ref. 28 the authors calculated the nonlinear dielectric
response for the Cole-Davidson relaxation �=1,0���1�.
Their equation reads in our notation

��n−

� Dt

� + 1��fn�t� = �n�n + 1�/2�1−��

�

0 + 
 cos �t

�2n + 1�
�fn−1�t� − fn+1�t�� .

�17�

Equation �17� differs from Eq. �16� by the factor �n�n
+1� /2�1−��. However, this difference is of paramount impor-
tance, because response functions fn�t� calculated from these
two equations will differ by this factor �which may be sub-
stantial�. Furthermore, in the absence of the ac field, Eq. �17�
reduces to the following recurrence equation for the equilib-
rium averages �Pn�0:
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�Pn�0 = �n�n + 1�/2�1−�� 
0

�2n + 1�
��Pn−1�0 − �Pn+1�0� . �18�

However, the values of �Pn�0 predicted by Eq. �18� are not
equal to the correct equilibrium values �Pn�0. They can be
calculated independently as �Pn�0=�−1

1 Pn�z�e
0zdz /�−1
1 e
0zdz.

These averages satisfy the recurrence relation7,9,11

�Pn�0 =

0

2n + 1
��Pn−1�0 − �Pn+1�0� �19�

and not Eq. �18�. Consequently Eq. �17� yields unphysical
results for nonlinear response functions, in particular, for
their static values �e.g., the Kerr constant and nonlinear static
susceptibility at �=0�, which are all expressed in terms of
�Pn�0. These static values as calculated from Eq. �18� depend
on the �non equilibrium� fractional parameters � and � that
contradicts general principles of statistical mechanics. Fur-
thermore, as a result, the behavior of the spectra of nonlinear
response functions as evaluated from Eq. �17� is also incor-
rect. In contrast, the fractional kinetic equation �Eq. �16��
predicts correct values of the equilibrium averages �Pn�0 and
thus allows us to calculate correctly the nonlinear response
functions.

IV. SOLUTION OF EQ. „16…

As we are solely concerned with the ac response corre-
sponding to the stationary state, we may seek the fn�t� as a
Fourier series just as normal diffusion �Ref. 11, Chapter 8�,

fn�t� = 

k=−





Fk
neik�t. �20�

Since all the fn�t� are real, the Fourier amplitudes Fk
n must

satisfy the condition F−k
n = �Fk

n�*, where the asterisk denotes
the complex conjugate. The term F0

n in the right-hand side of
Eq. �20� is a time independent, but frequency dependent
term. In the absence of the dc bias field, i.e., for 
0=0, the
series �20� contains only the odd components of Fk

1 and the
even components of Fk

2. By substituting Eq. �20� into Eq.
�16�, we have the recurrence relations for the Fourier ampli-
tudes Fk

n:

�4n + 2��1 + 2�ki����/�n�n + 1��
�Fk
n

= 2
0�Fk
n−1 − Fk

n+1� + 
�Fk−1
n−1 + Fk+1

n−1 − Fk−1
n+1 − Fk+1

n+1� .

�21�

Here we have used Eq. �8� and the known relation from
fractional calculus −
Dt

��eizt�= �iz��eizt.26

Equation �21� can be solved using matrix continued frac-
tions as described in the Appendix. This matrix continued
fraction solution is valid for arbitrary values of 
 and 
0. For
small fields �
 ,
0�0.1�, the solution can be obtained via
perturbation theory.9,11 Moreover, one may readily carry out
such calculations using the MATHEMATICA program which
allows one to extract the analytical perturbation solutions
from the matrix Eqs. �A2� and �A3�. For example, the Fou-
rier amplitudes F1

1, F3
1, F0

2, and F2
2 �these quantities are usu-

ally observed experimentally� are given by

F1
1 =




6
� 1

�1 + �i������ −

0

2

15�1 + �i������

��1 +
1

�1 + �i����/3���1 +
1

�1 + �i������	��
−


3

360�1 + �i�����2��1 +
�1 + �i������

�1 + �− i������

+
1

�1 + �2i����/3��� + o�
3,

0
2� , �22�

F3
1 = −


3

360�1 + �3i�������1 + �2i����/3���1 + �i������

+ o�
3� , �23�

F0
2 =


0
2

15
+


2

30
Re� 1

�1 + �i������� + o�
2,
0
2� , �24�

F2
2 =


2

60

1

�1 + �i�������1 + �2i����/3�� + o�
2,
0
2� . �25�

By evaluating the limit ���� /�0=lim
,
0→0 6F1
1 /
, one can

readily derive Eq. �3� for the linear susceptibility from Eq.
�22�. For normal diffusion ��=1, �=1�, Eqs. �22�–�25� are
in full agreement with the known perturbation solutions for
the ac stationary responses.9,11 For the Cole-Cole relaxation
��=1,0���1�, Eqs. �22�–�25� reduce to the solutions
given by Déjardin and Jadzyn.29 However, for the Cole-
Davidson relaxation �0���1,�=1�, our perturbation solu-
tions for F1

1 and F3
1 from Eqs.�22� and �23� differ from theirs

given in Ref. 28 for the reason described above �cf. Eqs. �16�
and �17��.

V. RESULTS AND DISCUSSION

The real parts of the normalized third harmonic compo-
nent �360F3

1 /
3� of the electric polarization and the dc
�30F0

2 /
2� and second �60F2
2 /
2� harmonic components of

the Kerr effect versus. �� are presented in Figs. 1–3 for the

FIG. 1. The normalized third harmonic components of the electric polariza-
tion 360F3

1 /
3 vs �� for the Cole-Cole �dotted line 1: �=0.5, �=1�, Cole-
Davidson �dashed line 2: �=1, �=0.5�, and Havriliak-Negami �solid line 3:
�=�=0.5� relaxations compared with normal �Debye� relaxation �dashed-
dotted line 4: �=�=1�. Results are presented for 
=
0=1 �nonlinear
regime�.
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normal �Debye�, Cole-Cole, Cole-Davidson, and Havriliak-
Negami relaxations. The normalization was chosen to satisfy
the condition

360F3
1/
3 = − 1, 30F0

2/
2 = 1, and 60F2
2/
2 = 1

at 
 → 0 and 
0 = 0.

In these figures, it is clearly seen how the nonlinear response
relaxation spectra for normal diffusion are transformed for
different anomalous relaxation models. As 
 increases the
dispersion curves are shifted to higher frequencies and the
amplitude decreases due to saturation. In anomalous relax-
ation, broader spectra in comparison to that of normal relax-
ation are predicted. The shape of the spectra calculated for
various anomalous relaxation processes differs considerably
so that the Cole-Cole, Cole-Davidson, and Havriliak-Negami
relaxations can be distinguished from each other by a com-
parison with experimental data.

The theory we have developed may be used to interpret
experimental data on nonlinear ac stationary responses in
dielectric and Kerr effect relaxation. Although in actual ex-
periments the applied electric fields are high enough
��106 V/m� to observe nonlinear effects, for particles �mol-
ecules� with dipole moment �1–5 D, the energy rendered
by Eq. �12� is still sufficiently small compared to the thermal
energy, to allow one to use the nonlinear response equations

obtained via perturbation theory �see, e.g., Ref. 30�. Thus
Eqs. �22�–�25� may be very useful for practical comparison
with experimental data. However, as the theory developed is
applicable to ac fields of arbitrary strength, it also provides a
rigorous method of comparison with experiments on nonlin-
ear response in high ac fields, where perturbation solutions
are no longer applicable. Furthermore, it will be possible to
carry out a quantitative comparison of the theory with avail-
able molecular dynamics simulation data for relaxation pro-
cesses in strong ac fields. Such data is preferable for testing
the theory, as in computer simulations it is much easier �than
in real experiments� to achieve values of the nonlinear pa-
rameters 
 and 
0 in excess of unity. We remark that experi-
ments on the polarization induced by a weak ac field super-
imposed on a strong dc field may be realized in practice in a
ferrofluid as large values of 
 and 
0 can be achieved with
moderate constant magnetic fields due to the large value of
the magnetic dipole moment m �104–105 bohr magnetons� of
single domain ferromagnetic particles.11

Thus we have demonstrated how the anomalous nonlin-
ear dielectric relaxation and dynamic Kerr effect can be
treated by using fractional kinetic equations. The results ob-
tained can explain the anomalous nonlinear relaxation of
complex dipolar systems, where the anomalous exponents �

and � differ from unity �corresponding to the classical theory
of dielectric relaxation and the dynamic Kerr effect�, i.e., the
relaxation process is characterized by a broad distribution of
relaxation times �see, e.g., Refs. 12–14�. The advantage of
having a kinetic equation incorporating the anomalous relax-
ation then becomes apparent as it is now possible to study
the effect of the nonlinear anomalous behavior on fundamen-
tal parameters associated with the fractional diffusion. We
finally remark that the method of the calculation of nonlinear
ac responses based on matrix continued fractions presented is
quite general. For example, the method can also be applied
to the calculation of the dynamic Kerr effect ac response of
polar and anisotropically polarizable molecules as well as to
nonlinear dielectric and Kerr effect relaxation of molecules
under the influence of a mean-field potential.31,32

APPENDIX: MATRIX CONTINUED FRACTION
SOLUTION OF EQ. „21…

Equation �21� can be solved exactly using matrix contin-
ued fractions as described in Sec. 8.6 of Ref. 11. The seven-
term recurrence Eq. �21� can be transformed into the matrix
three-term recurrence equations,

QnCn + q�Cn+1 − Cn−1� = R�n,1 �n � 1� . �A1�

Here the column vectors Cn and R are defined as

FIG. 2. The same as in Fig. 1 for the second harmonic components of the
dynamic Kerr effect 60F2

2 /
2.

FIG. 3. The same as in Fig. 1 for the dc component of the dynamic Kerr
effect 30F0

2 /
2. Here 
=1 and 
0=0.
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Cn =�
�

F−2
n

F−1
n

F0
n

F1
n

F2
n

�

� and R =�
�
0




2
0




0

�

� ,

the matrices q and Qn are tridiagonal and diagonal infinite
matrices, respectively, with elements defined as

�q�l,m = 
�m,l−1 + 2
0�m,l + 
�m,l+1,

�Qn�l,m = �4n + 2��1 + 2�li����/�n�n + 1��
��l,m,

where −
� l ,m�
 and �m,l is Kronecker’s delta. A solution
of Eq. �A1� for C1 and C2 is

C1 = SR , �A2�

C2 = q−1�I − Q1S�R , �A3�

where the infinite matrix continued fraction S is

S =
I

Q1 + q
I

Q2 + q
I

Q3 + . . .
q

q

.

Here I is the unit matrix and the fraction lines mean matrix
inversion.

Having determined the column vectors C1 and C2 from
Eqs. �A2� and �A3�, which contain all the Fourier amplitudes
of f1�t� and f2�t�, one can calculate the stationary ac dielec-
tric and Kerr effect responses from Eqs. �13� and �14�. The
exact matrix continued fraction solution �Eqs. �A2� and
�A3�� is easy to compute. We approximate the infinite matrix
continued fraction S by some matrix continued fraction of
finite order �by putting Qn=0 at some n=N�. Simultaneously,
we confine the dimensions of the matrices Qn and q to some
finite number M. The values of N and M must be chosen
taking account of the desired degree of accuracy of the cal-
culation.
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