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Event-related fMRI is a powerful tool for localising psychological

functions to specific brain areas. However, the number of events

required to produce stable activation maps is a poorly investigated and

understood problem. Huettel and McCarthy [Huettel, S.A., McCarthy,

G., 2001. The effects of single-trial averaging upon the spatial extent of

fMRI activation. NeuroReport 12, 2411–2416] have shown that the

spatial extent of activation increases monotonically with the number of

events in an analysis. In the present paper, this result is replicated and

shown to be a consequence of the cross-correlation technique used to

determine active voxels and does not hold, for example, for a GLM

analysis. Another analysis technique, that does not depend on good-

ness-of-fit to the data, is also proposed. This technique calculates an

impulse response function (IRF) for each voxel, finds the best fitting

haemodynamic shape to the IRF and returns an area-under-the-curve

(%AUC) activation measure. Using spatial extent as a measure,

asymptotic behaviour is evident after as few as 25 events for the

%AUC analysis technique in a finger-tapping task with non-over-

lapping haemodynamic responses and for both the GLM and %AUC

techniques in a similar task that allows responses to overlap. The

experimental validity of the %AUC technique to identify active brain

regions while minimising false positive levels is demonstrated in a

group study with 25 participants.

D 2005 Elsevier Inc. All rights reserved.
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Introduction

Functional magnetic resonance imaging (fMRI) has become a

widely employed and useful technique in the field of brain

imaging. Its superior spatial resolution allows a researcher to

localise functions to specific areas of the brain. Event-related

experimental designs, first proposed by Blamire and colleagues
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(Blamire et al., 1992), are fast becoming the norm in fMRI. The

advantages of event-related over block designs include the ability

to randomise behavioural trials thus leading to more complex

cognitive tasks (e.g., GO/NOGO, oddball or priming tasks), the

ability to remove the influence of incorrect trials from the signal

(which has been shown to have detrimental effects on the resulting

activation maps; Murphy and Garavan, 2004a) and the ability to

examine the temporal dynamics of a response.

Most techniques used to analyse event-related fMRI data

assume that the haemodynamic shape of the BOLD signal is

linearly additive. However, it has been shown that the haemody-

namic shape shows a 17–25% reduction in amplitude when trial

onsets are spaced (on average) 5 s apart compared to those spaced

20 s apart (Miezin et al., 2000). Therefore, it is very important to

determine the optimal interstimulus interval (ISI). Dale demon-

strated that if the ISI is jittered, the statistical efficiency improves

monotonically with decreasing mean ISI and that the efficiency can

be up to 10 times greater than that of a fixed ISI design (Dale,

1999). However, there are two fundamentally different goals when

analysing event-related fMRI tasks: estimation of the impulse

response function (IRF) and detection of signal change. Birn and

colleagues showed that the estimation of the IRF is optimised when

stimuli are frequently alternated between task and control states,

whereas detection of activated areas is optimised by block designs

(Birn et al., 2002). Consequently, an important consideration in

designing and analysing event-related studies is that the analysis

technique be able to accommodate overlapping haemodynamic

responses.

As fMRI is an expensive method, efforts must be made to

optimise the design of studies to reduce costs without compromis-

ing results. Given these considerations, how many events to

include in an event-related experimental design is a pertinent issue

but one that has been poorly addressed in the literature. One

possible reason for this could be that there is no standard metric by

which to measure the required number of events. If one examined

how spatial extent of activation varies as the number of events

increases, one would expect that as the optimal number of events is

reached, the spatial extent would cease to grow. However, it has

been shown, in a block design experiment, that when progressively

http://www.sciencedirect.com
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averaging over scans (one scan = 200 s: 20 s ON, 20 s OFF,. . .) the
spatial extent of activation increased monotonically and failed to

asymptote even after 22 scans (Saad et al., 2003). Huettel and

McCarthy have reported a similar result in an event-related task

(Huettel and McCarthy, 2001). It was found that at a number of

events typical of fMRI experiments (i.e., 50 trials), only 50% of the

eventually active voxels were found to show a significant effect.

Indeed, the spatial extent of activation failed to asymptote even

after 150 events. This would suggest that the number of events

required in an event-related study far exceeds practical capabilities

and existing conventions.

In this paper, it is proposed that the Huettel and McCarthy result

is a consequence of the correlation method used. It is demonstrated

that utilising a different technique, first employed by Garavan and

colleagues (Garavan et al., 1999), asymptotic values are reached in

the range typical of fMRI experiments. Furthermore, in keeping

with the advantages of jittering events such that their haemody-

namic responses overlap, we demonstrate an early asymptote with

both overlapping and non-overlapping haemodynamics.
Materials and methods

Participant and task design

One female right-handed participant (age: 38) completed two

event-related finger-tapping tasks. Each task consisted of a black

and white flashing checkerboard (4 Hz frequency) lasting 1 s. In

the first experiment, this was presented 30 times over a 10-min

period with an interval of 20 s between each trial, thus avoiding

overlapping haemodynamics (Non-Overlap task). In the second

experiment, this was presented 30 times over 6 min at intervals of

between 8 and 16 s (Overlap task). A countdown clock was

presented prior to each checkerboard presentation to prepare the

participant. While the checkerboard appeared on screen, the

participant was required to finger-tap bilaterally. Five successive

blocks of the first experiment were run, giving 150 finger-tapping

events. On a separate day, five blocks of the second experiment

were run, also yielding 150 events.

To verify the sensitivity of the different analyses methods used,

25 participants (14 female, mean age: 25, range: 19–36) completed

one 6-min block of the Overlap task.

Scanning parameters

Scanning was conducted using contiguous 7-mm sagittal slices

covering the entire brain from a 1.5-T GE Signa scanner using a

blipped gradient-echo, echo-planar pulse sequence (TE = 40 ms;

TR = 2000 ms; FOV = 24 cm; 64 � 64 matrix; 3.75 mm � 3.75

mm in-plane resolution). High-resolution spoiled GRASS ana-

tomic images (TR = 24 ms, TE = 5 ms, flip angle = 45-, FOV = 24

cm, thickness = 1.0 mm with no gap, matrix size = 256 � 256 �
124) were acquired prior to functional imaging.

Image processing

All data processing was conducted using the AFNI software

package (Cox, 1996) (http://afni.nimh.nih.gov/afni). Initially, each

voxel’s time series was shifted so that the separate slices acquired

at varying times were aligned to the same temporal origin. For each

task, the five experimental blocks were concatenated into one data
set by removing the mean and linear trend of each block separately,

joining the five time series together and reintroducing the overall

mean across the five blocks. Each 3D image corresponding to a

particular time point was then volume registered to a ‘‘base’’ image

using a Fourier interpolation algorithm to align the voxels. Voxels

lying outside the brain were removed.

Analysis techniques

Three types of analyses were performed on the Non-Overlap data

(see Fig. 1). First, following Huettel and McCarthy’s technique, a

correlation analysis was performed in which the ten time points

(corresponding to 20 s) after each event were averaged across all

events for each voxel in the brain. This 20-s long time series was then

correlated with a standard haemodynamic shape taken from the

Statistical Parametric Mapping package (SPM; http://www.fil.ion.

ucl.ac.uk/spm/spm2.html). The correlation coefficient, a goodness-

of-fit measure, was used as the activation measure. Second, a GLM

analysis was performed in which a regressor was obtained by

convolving the event stimulus train with the standard SPM

haemodynamic response. A scaling factor for this regressor was

found in each voxel using a multiple regression procedure (which

also included regressors to remove nuisance terms). This procedure

calculates howmuch it has to ‘‘scale’’ the regressor so that the best fit

to the data is found. These scaling factors were then converted into a

Z-score map. Third, a method that can accommodate differences in

haemodynamic shape, both within- and between-subject was used.

This involved an estimation of the impulse response function (IRF)

for each voxel using a deconvolution technique. Using multiple

regression techniques (with nuisance regressors included), this

procedure calculates the IRF (i.e., the average best-fitting ‘‘shape’’)

that follows each event. To achieve this, a regressor that specifies

where each event occurs was first defined. This regressor was then

time-shifted by 1 TR to create a new regressor that specified events 1

TR later. This was repeated up to 8 TRs (i.e., 16 s). The

deconvolution procedure then calculated a scaling value for each

regressor using a least-squares multiple regression algorithm and

these scalar values defined the IRF for each voxel. The deconvo-

lution procedure also calculates intercept and slope parameters,

which can be used to calculate a baseline (i.e., the ongoing mean

activity level after excluding the variance due to the events) for the

IRF. The best fitting haemodynamic shape (a gamma-variate

function, y = ktre�t/b) was determined for each voxel’s IRF using

a non-linear regression algorithm (Ward et al., 1998). The estimated

haemodynamic shape for each voxel was converted into a

percentage area-under-the-curve score (%AUC) by expressing the

area under the haemodynamic curve as a percentage of the area

under the baseline. The gamma variate function has been shown to

effectively model the haemodynamic response (Cohen, 1997);

however, the technique is flexible and another model could be used

to find the best-fitting shape, from which a %AUCmeasure could be

calculated. This method was termed the %AUC analysis.

To create regions-of-interest (ROIs), the final activation maps

from the three analysis types were combined by finding the top

10% of activation scores in each map and ANDing them together

(i.e., a voxel was considered to be in the ROI if it was in the top

10% of all three activation maps). This resulted in a ROI map that

had 115 voxels in the primary motor and visual areas. This liberal

method for calculating the ROI was chosen so that further

calculations were not biased towards any particular analysis

technique.

http://www.afni.nimh.nih.gov
http://www.fil.ion.ucl.ac.uk
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Fig. 1. The three different analysis techniques are depicted: the correlation analysis (top right), the GLM analysis (bottom left) and the %AUC analysis (bottom

right).
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Permutation analyses

Further analyses were carried out to determine the behaviour of

activation maps as a function of the number of events. For the Non-

Overlap data, twenty random samplings (with replacement) of 5,

10,. . ., 150 events were chosen. The correlation analysis was

repeated by averaging over just those events chosen for each

sample size. Similarly, the GLM analysis was repeated with a

regressor created by convolving the standard haemodynamic shape

with the stimulus train consisting only of the events in the sample.

All other events were excluded from the analysis by including

another regressor in the multiple regression procedure consisting of

the convolution of the standard haemodynamic shape with the

stimulus train of those events not in the sample. The %AUC

analysis used a regressor containing only the events in the sample.

Again all other events were excluded from the analysis with a

second regressor. This procedure produced 600 activation maps for

each analysis type (i.e., 20 maps for each number of events 5,

10,. . ., 150). These activation maps were then thresholded and the

number of active voxels in the ROIs derived above was counted.

The correlation analysis maps were thresholded at P < 0.001 (t >

3.88341) as in Huettel and McCarthy (2001). The GLM analysis

activation maps were also thresholded at P < 0.001 (z = 3.1). The

%AUC activation maps were converted into Z scores by

calculating the mean and standard deviation of %AUC across all

voxels in the brain, then using the formula (%AUC � mean)/

(standard deviation) to change each voxel’s %AUC into a Z score.

These maps were then thresholded with the same Z value as used

for the GLM analysis.
Two types of analyses were performed on the Overlap data, the

GLM and the %AUC analyses (the correlation analysis was not

carried out, as it was impossible to average haemodynamic shapes

due to their overlapping characteristics). Activation maps were

found that included all 150 events and ROIs (124 voxels) were

calculated using the same procedure as above (i.e., voxels in the ROI

must be present in the top 10% of both analysis types). Twenty

random samples were chosen of 5, 10,. . ., 150 events. Due to the

overlapping nature of the haemodynamics, two regressors were

made for each analysis type. First, a regressor including all the

events in the sample and second, a regressor including all other

events so that the contribution of these events to the time series

would be removed. The same procedure was followed to determine

the behaviour of the activation maps as a function of number of

events.

Group analysis

To determine if the %AUC analysis yields similar results to

the GLM analysis, the data from the 25 participants were

analysed using both approaches. Each data set was then

resampled to a higher 1-Al resolution (thus 1 voxel = 1 Al)
and converted to the standard stereotaxic coordinate system of

Talairach and Tournoux (Talairach and Tournoux, 1988). The

images were then spatially smoothed using a Gaussian kernel

with 3-mm r.m.s. isotropic deviation. A voxelwise t test was

performed on the 25 maps for each analysis type and a

threshold of P < 0.00005 with a 100-Al cluster criterion was

imposed.
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Fig. 2. The number of significantly active voxels as a function of the

number of events is plotted for (A): the cross-correlation analysis, (B): the

GLM analysis and (C): the %AUC analysis on the Non-Overlap data. The

solid line displays the mean number of voxels over the 20 samples at each

event size. The dotted line in panel A shows the equation derived by

Huettel and McCarthy (2001): V = Vmax(1 � e(�0.016 � N)), where Vmax =

number of voxels at 150 events, and N = number of events.
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Results and discussion

Non-overlap analysis

The ROIs derived from the three analysis types of the Non-

Overlap data comprised an activation map with 115 voxels, mainly

situated in left and right primary motor cortex and in the visual

cortex. It is important to note that when the activation maps were

thresholded at P < 0.001, none of the analyses found all 115 voxels

to be statistically significant. This is due to the method used to

select the voxels for the ROI (i.e., each included voxel was

required only to be in the top 10% of each activation map), which

did not depend on significance levels. This procedure resulted in a

liberal selection of voxels and guaranteed that all those voxels

passing the threshold criterion would be contained within the

ROIs.

Fig. 2A shows the number of voxels that are found to be

significantly active in the ROIs as a function of the number of

events using the cross-correlation analysis. The mean of the 20

samples is a monotonically increasing line that appears to be

slightly concave. This graph corresponds closely to that found by

Huettel and McCarthy, with their derived equation, V = Vmax(1 �
e(�0.016 � N)), fitting well over the mean data points, thus

replicating their result.

Fig. 2B shows the same graph for the GLM analysis. This graph

monotonically increases as a function of the number of events.

However, after 40 events, the slope of the mean line decreases

(slope of line before 40 events = 1.0526, slope of line after 40

events = 0.1777). Thus, between 40 and 150 events, the number of

significant voxels increased by only 19 (a 27% increase over the 68

voxels that were significant at 40 events).

The graph for the %AUC analysis is quite different (see Fig.

2C). The starting point is greater and the mean number of voxels

does not increase quite as quickly as it does for the previous two

analyses. Again, there is a dramatic change in slope from 0.5087

before 40 events to almost a flat line slope of 0.0393 thereafter.

This demonstrates that, after 40 events, the number of significant

voxels increases very little as a function of the number of events

using the %AUC method. Indeed, after 40 events, only five fewer

voxels are deemed to be significantly active than after 150 events.

The mean number of significant voxels after only 5 events is 48

compared with 71 at 150 events.

Fig. 3A replots the means of the three analyses together to show

how many of the 124 ROI voxels are deemed to be significantly

active by each. The %AUC measure performs the best up to 40

events while the GLM analysis performs better thereafter.

However, the %AUC analysis has a lower variance across the 20

samples, especially at lower numbers of events (see Fig. 3B).

The reason the %AUC technique, compared to the cross-

correlation technique and, to a lesser extent, the GLM analysis, is

more powerful at low numbers of events is that it is almost ‘‘blind’’

to noise in the data since it does not depend on a goodness-of-fit

measure. To demonstrate the rationale behind this, take one

haemodynamic response that is exactly the same as the SPM

HRF, but with random Gaussian noise added at each time-point.

The cross-correlation technique compares this event with the SPM

HRF and will find a poor correlation value because of the included

noise. As more and more of these events are averaged together, the

random noise will start to cancel out and the average will begin to

look like the standard HRF. Thus, the correlation value will

increase and the voxel will pass a statistical threshold and be
deemed active. The GLM analysis performs better because it fits its

regressor to the time series but then derives an activation measure

from the scaling factor that does not depend on the goodness-of-fit.
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Fig. 4. The number of significantly active voxels as a function of the

number of events is plotted for (A): the GLM analysis and (B): the %AUC

analysis on the Overlap data. The solid line displays the mean number of

voxels over the 20 samples at each event size.

Fig. 3. The mean number of significantly active voxels as a function of the

number of events is replotted in panel A for all three analyses on the Non-

Overlap data. The variance across the 20 samples for each of the analysis

types is plotted in panel B.
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However, if the voxel’s IRF is quite different from the standard

HRF or if the noise results in a mismatch between the regressor and

the signal embedded in the data, then the GLM analysis will have

difficulty fitting the regressor to the data, thus compromising the

scaling factor. Of course, it should be acknowledged that this

situation could be improved by such techniques as adding the first

derivative of the regressor in order to accommodate phase-shifting

(Calhoun et al., 2004). The %AUC analysis, on the other hand, does

not assume a shape for the haemodynamic response. Rather, it fits a

gamma variate shape to the central tendency of the data. In a

situation in which the central tendency remains unchanged but the

amount of noise surrounding it varies, the %AUC measure will be

unchanged. As this procedure does not depend on a goodness-of-fit

measure of the fitted curve to the data, it should produce relatively

stable activation measures with not very many events (assuming

that the number of events provide an adequate estimate of the

central tendency). This is borne out by the variability in the number

of voxels deemed to be significant across the 20 samples. The

variation in the cross-correlation data (see Fig. 3B) actually

increases as the number of events increases to roughly 75 and then

starts to decrease. The spread across the 20 samples is a lot less for

the GLM analysis and decreases even further with the %AUC
analysis. Thus, the %AUC technique is more robust and replicable

at smaller numbers of events than the other two analysis methods.

This explanation might also have implications for the results

found by Saad et al. (2003) mentioned earlier. It was found that the

spatial extent of activation in a block design increased monotoni-

cally as the number of scans included increased. The activation

measure in this study was based on the correlation of the time

series with a reference block function. If a measure that did not

depend on the goodness-of-fit was used instead (e.g., ON–OFF

percentage activation change), the spatial extent might asymptote

more quickly, thus requiring fewer scans.

Overlap analysis

It can be seen from Fig. 4A that the GLM analysis performs

better on the Overlap data than on the Non-Overlap data (compare

with Fig. 2B). There is a sharper rise in the mean number of voxels

deemed significantly active at smaller numbers of events after

which a shallower asymptote is reached. With 25 events in the

analysis, only 13 fewer voxels are deemed active than at 150

events. The overlapping haemodynamic shapes seem to be helping

the multiple-regression procedure when it is trying to fit the
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convolved regressor to the data. The %AUC analysis also displays

an improved performance (see Fig. 4C), possibly because of the

greater efficiency afforded by the overlapping design. The

asymptote occurs around 25 events where there are 9 fewer voxels

deemed active than at 150 events. The mean number of voxels is

almost identical between the two analyses methods (see Fig. 5A).

However, the variability across the 20 samples using the %AUC

method is less than in the GLM analysis (see Fig. 5B). This

demonstrates the robustness of the %AUC technique when

employed on data with overlapping haemodynamic shapes and

suggests that as few as 25 events are sufficient to provide stable

activation maps.

The generalisability of the results might be queried since fMRI

experiments routinely use more rapid event presentation rates of,

say, 2 to 3 s. The %AUC technique depends on an accurate

estimation of the impulse response function and it has been shown

that estimation accuracy of the haemodynamic IRF actually

increases with shorter interstimulus intervals (ISIs) and reaches a

maximum at an average ISI of roughly 2 s (Birn et al., 2002). This

would suggest that the performance of the %AUC might improve

with more rapid presentation rates and that the results are
Fig. 5. The mean number of significantly active voxels as a function of the

number of events is replotted in panel A for all three analyses on the

Overlap data. The variance across the 20 samples for each of the analysis

types is plotted in panel B.
generalisable to other event-related fMRI experimental designs.

However, the Birn paper did not account for additional factors such

as the BOLD refractory period that might result in unexpected

effects when estimating haemodynamic shapes at shorter presenta-

tion rates. Therefore, further empirical analyses are needed to

determine if the results of this paper still hold for experiments with

more rapid event presentations.

Group comparison

The %AUC technique, which appears to asymptote after as few

as 25 events, derives a best-fitting haemodynamic curve for every

voxel in the brain and converts it into an activation measure

(%AUC). As the curve fitting can be either positive or negative

going, returning a positive or negative %AUC value, non-

responsive voxels should return a mean of 0 when voxelwise

group statistics are performed. Nonetheless, the flexibility of this

method may give rise to concerns about high levels of false

positives. Therefore, it is important to demonstrate that, in a group

study, the technique will determine relevant areas to be active

while minimising Type I errors. Twenty-five subjects (the number

of subjects established to give stable activation maps; Murphy and

Garavan, 2004b) performed one block of the Overlap task (30

events) and were analysed using both the GLM and %AUC

analysis techniques. At a threshold of P < 0.00005 with a cluster

criterion of 100 Al, the GLM analysis identified an area in the Left

Precentral Gyrus [432 Al in size, centred on (�34,�19,49)] but

none in the Right Precentral Gyrus. The %AUC analysis

discovered a similar area in the Left Precentral Gyrus [1891 Al
in size, centred on (�30,�24,51)], two in the Right Precentral

Gyrus [496 Al in size, centred on (36,�20,40), 419 Al in size,

centred on (37,�12,51)] and one in the Right Postcentral Gyrus

[484 Al in size, centred on (31,�32,52)]. If the cluster criterion is

relaxed for the GLM analysis, an area in the Right Precentral Gyrus

is found to be active [92 Al in size, centred on (37,�20,47)]. The

pattern of activation identified by these techniques, being restricted

to motor areas, demonstrates the ability of the %AUC measure to

identify areas of activation while minimising false positives.
Conclusions

The monotonic increase of the spatial extent of activation as a

function of number of events, demonstrated by Huettel and

McCarthy (2001), would appear to be a consequence of the

cross-correlation method used to determine active voxels. A

technique that does not depend on the goodness-of-fit to the data

has been proposed that displays the desired effect of reaching an

asymptote after what is, experimentally, a more attainable number

of events. This %AUC technique, and, perhaps to a lesser extent,

the GLM technique, are robust, replicable and can locate func-

tionally relevant areas in a group study. The number of events

required to yield stable activation maps was determined to be

approximately 25, which is well within the practical limits of

event-related fMRI studies.
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