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ABSTRACT
Increasingly powerful fault management systems are required
to ensure robustness and quality of service in today’s net-
works. In this context, event correlation is of prime impor-
tance to extract meaningful information from the wealth of
alarm data generated by the network. Existing sequential
data mining techniques address the task of identifying possi-
ble correlations in sequences of alarms. The output sequence
sets, however, may contain sequences which are not plausi-
ble from the point of view of network topology constraints.
This paper presents the Topographical Proximity (TP) ap-
proach which exploits topographical information embedded
in alarm data in order to address this lack of plausibility
in mined sequences. An evaluation of the quality of mined
sequences is presented and discussed. Results show an im-
provement in overall system performance for imposing prox-
imity constraints.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications—Data Mining

General Terms: Algorithms, Experimentation

Keywords: Topographical proximity, event correlation, min-
ing sequential patterns, fault data, network configuration

1. INTRODUCTION
Given the growing complexity of today’s networks, the

task of ensuring robustness and maintaining quality of ser-
vice requires increasingly powerful network management sys-
tems. This steady increase in network size and complexity
produces a corresponding increase in the volume of data,
such as performance indicators or alarms, to be processed
by management systems. In particular, the area of fault
management remains a key problem for network operators,
as the speed at which faults are handled has very immediate
consequences for network performance. The complex, inter-
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connected nature of the network means that a single fault
may produce a cascade of alarms from affected network el-
ements. Conversely, intermittent, self-clearing alarms may
be raised without any attendant fault in the network. Event
correlation provides a means of dealing with this large vol-
ume of alarm data. Correlations define relations between
alarm events that facilitate the process of alarm filtering,
masking and prioritisation. While sequential data-mining
techniques have evolved to identify possible useful correla-
tions in alarm data, the task of identifying the subset of
important and plausible correlations remains heavily depen-
dent on the domain expertise of network equipment manu-
facturers and operators. On the other hand, alarm data
encodes substantial domain knowledge which may be ex-
ploited to improve the mining process. In particular, indi-
vidual alarms contain topographical information identifying
the network elements which generated them. This paper ad-
dresses the challenge of harnessing this latent domain knowl-
edge in order to provide criteria for automatically evaluating
the plausibility of mined alarm correlations.

Section 2 sets out current approaches to event correlation
and sequential data-mining. Section 3 outlines the Topo-
graphical Proximity algorithm which exploits topographical
attributes of alarm data for mining sequential patterns in
network alarm data. Section 4 describes experiments under-
taken to provide a qualitative evaluation of the topographi-
cal proximity approach for mining telecommunications alarm
data. The results are presented and discussed in section 5.

2. BACKGROUND
In the past, the task of network fault localization and

management was performed by human experts. The size
and complexity of today’s networks, however, mean that
the levels of human intervention required to perform this
function are prohibitively high. Currently, many systems
employ event correlation engines to address this issue. The
problem of automatically identifying events for correlation
has been tackled from various perspectives. Model traversal
approaches aim to represent the interrelations between the
components of the network [8] or causal relations between
possible events in the network [3] or a combination of the two
[10]. Correlations are identified as alarms propogate through
the model. Rule-based [6] and code-based [14] systems also
model the relations between events in the system, specifying
correlations according to a rule-set or codebook. Other AI
techniques, such as neural networks [13] or decision trees,
have also been applied to the task.

The approaches noted above vary in the level of expert



knowledge required to train the system. Neural networks,
for example, can require no expert input whereas model-
based techniques may be fully reliant on the insights of a
human expert. The domain of sequential data mining ad-
dresses the specific problem of identifying relationships or
correlations between events in a raw dataset which is inher-
ently sequential in nature, such as fault data which consists
of a series of timestamped events. The output of this min-
ing process may then be used as the input to a rule-, code-
or model-based approach. The basic objective is to find
noteworthy sequences of events, or sequential patterns, that
suggest relationships between constituent events. In prac-
tice, a noteworthy sequence often equates to a frequently
occurring sequence in the data set. However, in the case
of network alarm data, frequency as the sole measure of se-
quence “noteworthiness” is not a valid measure as frequency
may indicate redundancy. The research presented here is
motivated by the need to establish novel criteria for pattern
selection in sequential data mining.

Mining for sequential patterns can be viewed as a subset
of the problem of mining for associations between dataset
elements in general, constrained by the temporal aspects of
the data. Much of the foundation work in sequential mining
techniques shares a common historical origin in the Apriori
association rule mining algorithm for transaction data [2].
Apriori is based on the assumption that a frequent set of
elements must consist of elements which are themselves fre-
quent. The algorithm generates a set of frequent sequences
by iterating through a “generate and count” process, gen-
erating candidate sequences of increasing length and prun-
ing the set based on sequence support, i.e. normalised fre-
quency. Candidates are generated by a process of merging
two existing sequences of length n − 1 to give a sequence of
length n, as in example 1.

ABC + ABD => ABCD (1)

The GSP [9] and WINEPI [7] algorithms were the first to
adapt the Apriori technique to mine for temporal associa-
tion rules in sequential data. Both employ a sliding time
window with a user-specified duration to traverse the input
data, extracting sequences according to user-specified mini-
mum and maximum sequence duration constraints. The two
algorithms do, however, differ significantly in design and im-
plementation details. Other Apriori-based approaches aim
to optimise performance within the same conceptual frame-
work. MINEPI [7] is an extension of the WINEPI algo-
rithm which optimises the space and time constraints by
compressing event sequences to their minimal occurrence
time window. FreeSpan [4] focuses on the candidate gen-
eration process employing a database of projected sequence
extensions to ensure that the system only generates candi-
dates that exist in the data. Extensions of this algorithm
modify the projected database structure and access to opti-
mise the depth-first search of possible candidate sequences.
SPADE [15] decomposes the search space and uses lattice-
based search strategies to optimise performance. Other ap-
proaches are designed to identify sequences according to cri-
teria other than frequency such as periodicity [5], causality
[11] or predictive power [12]. The research set out below
is loosely based on an Apriori approach and introduces a
novel criterion for sequence selection which evaluates se-
quence plausibility and coherence in the context of network
topology.

3. TOPOGRAPHICAL PROXIMITY
The sequential mining algorithms outlined in section 2

are capable of efficiently identifying thousands of event se-
quences in sequential input data. Therefore, post-processing
remains an essential component of a useful system whereby
sequences which are deemed to be uninteresting, because
they are redundant or implausible, are eliminated from the
output. This filtering may be automated using templates
or performed by domain experts. The Topographical Prox-
imity (TP) algorithm introduced in this paper constitutes a
means of determining the plausibility of a correlation be-
tween events in mined sequences at runtime of the min-
ing process. The measure quantifies how closely alarm-
generating elements are connected to each other in terms
of the logical structure of a network. The algorithm is
intended to be eclectic using any information available in
alarms which relates to the multiple topologies of a net-
work, from the topology of physical nodes to any of the
multiple views of the management information tree. In prac-
tice, the system uses the fully distinguished names (FDNs)
of network entities, both nodes and links, to extrapolate
information regarding the relative positioning of nodes in
the containment hierarchy of the management information
tree. The general assumption is that the closer the alarm-
generating elements within this topographical realisation of
the network, the more plausible, and hence interesting, the
relationship between the alarms and the greater likelihood
that there is some cause and effect relationship between
them.

The algorithm is not reliant on a pre-defined network con-
figuration as it exploits the topographical information en-
coded in the alarms themselves. This information is eval-
uated relative to a specification of node types and of the
strength of possible relationships between node types. Con-
nections are inferred at run-time between pairs of alarm-
generating nodes in the data and a Topographical Proxim-
ity (TP) measure is assigned based on the strength of the
inferred connection. The TP measure is used to reject or
promote candidate sequences on the basis of their plausibil-
ity, i.e. the strength of their connection, thereby reducing
the candidate sequence set and optimising the space and
time constraints of the data mining process. The TP mea-
sure may also be used at post-processing to rank sequences
in terms of the connectedness of their constituent alarm
events. Section 3.1 outlines the assumptions underlying the
topographical proximity approach and details how the topo-
graphical proximity measure is calculated. Section 3.2 sets
out how the TP measure has been integrated into the se-
quential mining process.

3.1 TP Calculation Algorithm
The TP algorithm assumes a network which consists of

functional nodes connected by communication interfaces and
arranged in a logical co-operative and hierarchical structure,
as represented by the simplified schema in figure 1. Accord-
ing to this schema, alarm-generating or source node types
are generalised to Master, Servant and Child Nodes. These
nodes have functional subcomponents which may generate
fault alarms. Node subcomponents represent a node’s in-
ternal functionality, the functionality of the interfaces be-
tween nodes or logical communications artefacts. Aspects
of source node location and functionality relevant to a par-
ticular alarm are presented as alarm attributes. In particu-



Figure 1: Simplified Network Schema

lar, the source node FDN attribute identifies the node’s an-
cestors within the containment hierarchy. Other attributes
specify further topographical information, such as relevant
links or resources. The relationships defined between source
node types are categorised as node identity, adjacency, sis-
terhood and subsumption. The type of relationship and
the degree of certainty that there exists such a relationship
between alarm-generating nodes in the network is defined
according to the level of shared, reciprocal or disjunct topo-
graphical information extracted from the two alarms, as set
out in the table below.

Relationship category Information overlap

Identity Full Matching FDNs
Adjacency Reciprocal information
Subsumption, sisters Shared information
Unrelated nodes No shared information
Unrelated alarms Disjunct information

The TP calculation algorithm evaluates the logical dis-
tance between two instances of alarm-generating network
elements on the basis of the two source node types and the
relationship type extrapolated from the topographical in-
formation in the alarms. A finite set of TP values for the
possible relationships between different node types was de-
fined by domain experts and is stored in a relationship table
for use at run-time. The value has a minimum of zero for
nodes that have no logical connection in the network and
a maximum of one for nodes with a clear and close rela-
tionship in the network. At run-time, each alarm is parsed
for all available topographical information. This is used to
determine which relationship may hold between two alarm-
generating nodes and an appropriate Topographical Prox-
imity (TP) value from the relationship table is assigned, as
set out in algorithm 1.

The closest relationship is node identity (TP = 1), e.g.
two alarms originating from the Master1 node in figure 1.
The loosest connection is where two nodes have only a shared
subnetwork in common (TP = 0.2), e.g. two alarms origi-
nating from nodes Child1 and Child4 in figure 1. An ad-
jacency relation holds between alarms originating on nodes
Master1 and Master2 if there is a reference to LinkM M ,
TP = 0.9. If both alarms refer to the link, TP = 1. All
other connections are assigned values (0 ≤ TP ≤ 1) to re-
flect the closeness of the relationship.

3.2 TP Mining Algorithm
The mining algorithm incorporating the Topographical

Proximity measure derives from the MINEPI algorithm [7].

Algorithm 1 calculateTP

INPUT: alarm1, alarm2: two alarm events
OUTPUT: TPvalue
Identify node1, source node type of alarm1

Identify node2, source node type of alarm2

Identify relationship between node1 and node2, given
topographical information available
Look up TPvalue in the predefined relationship table.
Return TPvalue for this relationship

It uses a sliding time window to traverse the data, generating
candidate sequences of length n by combining two existing
sequences of length n − 1 and storing occurrences of all se-
quences above a user-specified frequency threshold for sub-
sequent iterations. However, where MINEPI is optimised for
time, storing the most compact, or minimal, occurrences of
all frequent sequences, the TP algorithm is optimised for se-
quence connectedness, storing sequence occurrences whose
TP value exceeds a given TP threshold parameter. The
algorithm to calculate topographical proximity for candi-
date sequences is set out in algorithm 2. The TP value
for an occurrence of a candidate sequence is the mean of
the TP values for the two existing sequence occurrences to
be merged and the proximity value calculated for the first
and last alarms of the new candidate. This latter TP cal-
culation is necessary to evaluate the new connection in the
candidate sequence, i.e. the connection which is not present
in the subsequences.

The full candidate generation algorithm is set out in al-
gorithm 3. Candidate sequences must conform to user-
specified sequence duration, frequency and topographical
proximity parameters. The added cost of the TP compu-
tation is minimal as, for each occurrence of a new candidate
sequence, only one new TP calculation is carried out. Fur-
thermore, even this cost is offset by the reduction in search
space of candidate sequences at each iteration achieved by
imposing a minimum TP value threshold. The output to the
mining process is a set of sequences which are both frequent
and represent plausible connections in the network. Sec-
tion 5 explores the impact of the topographical proximity
measure on the accuracy of the mining algorithm.

Algorithm 2 calculateSequenceTP

INPUT: seq, {alarm1, alarm2 . . . alarmn}
OUTPUT: TPvalue
if length(seq) == 2 then

return calculateTP (alarm1, alarm2)
else

TPseq1 = Retrieve from memory TPalarm1···(n−1)

TPseq2 = Retrieve from memory TPalarm2···n

TPnew = calculateTP (alarm1, alarmn)

return
TPseq1+TPseq2+TPnew

3

end if

4. EXPERIMENTS
This TP algorithm was implemented for alarm data from

a 3GPP mobile telecommunications network. A set of exper-
iments has been conducted in order to provide a qualitative
evaluation of the mining algorithm at different topograph-
ical proximity thresholds. The absence of a gold standard
dataset with target sequences marked up in the data has



Algorithm 3 TP mining algorithm

INPUT: seq1, seq2: 2 sequences of length n − 1, e.g.
ABC and BCD
OUTPUT: newSeq: sequence of length n, e.g. ABCD
for all o1 such that o1 isa occurrence of seq1 do

for all o2 such that o2 isa occurrence of seq2 do
Posit occurrence onewSeq from start o1 to end o2

if Duration onewSeq ≤ maximumDuration then
TPnewSeq = calculateSequenceTP (onewSeq)
if TPnewSeq ≥ TPthreshold then

store onewSeq

end if
end if

end for
end for
if #occurrencesnewSeq ≤ frequencyThreshold then

Prune newSeq
end if

meant that research to date has tended to focus on system
performance in terms of computational complexity rather
than accuracy. The experiment described below aims to ad-
dress this shortfall with an evaluation of the quality of the
output of the mining algorithm. A synthetic gold standard
dataset was created by introducing synthetic alarms into real
network alarm data. It was possible then to evaluate sys-
tem performance in identifying sequences which are present
in known quantities and distributions in the data. The ex-
periment was run on a Pentium 4 3.2 GHz processor with
2 GB of RAM running Microsoft Windows XP Professional
version 2002.

4.1 Performance Metrics
The metrics used to determine performance in the experi-

ment reported below are the measures of precision and recall
borrowed from the Information Retrieval domain. In the
context of this mining experiment, the measures are defined
as follows:

• Precision: the number of correctly identified target
sequence instances relative to the total number of se-
quence instances found by the system.

Precision =
No. of correct instances found

Total no. of instances found
(2)

• Recall: the number of correctly identified target se-
quences relative to the total number of inserted target
sequences.

Recall =
No. of correct instances found

No. of instances in the target set
(3)

These two metrics may be combined to give a single in-
dicator of system performance, the F Score, which may be
interpreted as a measure of the accuracy and precision of the
result set. F Score is calculated according to the following
formula:

FScore =
2 * Precision * Recall

Precision + Recall
(4)

These metrics focus on the performance of the mining al-
gorithm in terms of its ability to identify patterns known
to exist in the data while restricting these patterns to ones
which represent plausible connections in a telecommunica-
tions network.

4.2 Dataset
The basic dataset for each experiment consists of 96,991

individual radio access network (RAN) alarms from a live
telecommunications network plus 10,538 inserted alarms.1

The alarm format conforms to 3GPP FM standards [1] and
includes a timestamp with a granularity of milliseconds and
thirteen attributes relating to four broad categories of alarm
timing, event lifecycle, alarm type and alarm source infor-
mation. The RAN contained 2 RNC nodes, 304 RBS nodes
and 1800 cells.

4.2.1 Synthetic alarm sequences
The synthetic alarm sequences were designed to be unique

in the data but yet correspond to known correlation patterns
in telecommunications alarm data. The two sequences con-
form to the timing and network element constraints of two
common inter-event correlations identified by network ex-
perts in telecommunications alarm data. All attributes, in-
cluding topographical information, of the component alarms,
however, have been assigned synthetic values which do not
occur in the original dataset. Synthetic sequence A consists
of four alarms on the same network node, three within 10
milliseconds followed by a fourth alarm after 200 seconds.
Sequence B consists of two alarms on the same Master Node
occurring 200 seconds apart.

4.2.2 Synthetic Dataset
The two synthetic sequences were introduced into the orig-

inal dataset of 96,991 alarms. Synthetic sequences were in-
serted at random within sub-blocks of 10,000 alarms, be-
tween 100 and 200 times per sub-block. From a random start
time, all sequences are interleaved with existing alarms ac-
cording to the timing constraints specified for the synthetic
alarm sequence. The resulting dataset comprises 107,529
alarms: 96,991 original alarms plus 10,538 synthetic alarms,
1,668 instances of Sequence A and 1,933 of Sequence B.

4.3 Test Cases
The sequence length, time window and minimum support

system parameters for this experiment were dictated by the
constraints on target sequence insertion into the original
alarm data. Maximum sequence length was fixed at four
alarms per sequence. The time window parameter was fixed
at 240 seconds as both synthetic sequences have a duration
of approximately 200 seconds. The minimum support pa-
rameter, which specifies the required pattern frequency per
block of 10,000 alarms, was tested with the range of 50–175
occurrences at intervals of 25 occurrences. For each of the six
support threshold values, baseline system performance was
calculated using the basic MINEPI algorithm, TP = 0, and
seven further test cases were evaluated at 0.4 ≤ TP ≤ 1.0,
giving a total of 48 test cases. The aim was to investigate
the interactions between the support and TP threshold sys-
tem parameters and establish optimum parameter values for
the identification of known target sequences in the data.

4.4 Procedure
The mining algorithm was run on the set of 107,529 alarms

for the 48 test cases. Precision, recall and F Score values

1Core network alarms were excluded from this analysis, as,
although they may include interesting correlations, the core
network is separate from the structure defined in section 3
which is the basis of the TP calculation.
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Figure 2: Number of Patterns Found at timeWindow = 240 according to TP and Support Frequency thresholds

were calculated based on the number of occurrences of the
synthetic target sequences found relative to the number of
known occurrences in the synthetic dataset. The results are
presented and discussed in section 5.

5. RESULTS
The performance of the system is evaluated firstly in gen-

eral terms relating to the size of the output sequence set
identified for each test case and secondly with a precise qual-
itative evaluation on the task of identifying known sequence
instances in the data.

5.1 Performance Overview
The two plots in figure 2 give a general overview of system

performance represented by the number of patterns found
during the mining process for this dataset. In the absence of
a gold standard, it is not possible to know the correct num-
ber of patterns which a mining algorithm should identify.
In order to merit the computation of the mining process,
however, the output set should consist of a set of good se-
quences which is significantly smaller than the input data
set. The TP approach is designed to ensure that the output
sequences are “good” in the sense of plausible within the
network. Figure 2 examines how the system parameters of
support and TP threshold impact on the size of the output
sequence set. The first plot illustrates the expected outcome
that at high support thresholds there is a marked reduction
in the number of patterns identified in the data. Indeed,
the number of patterns found at high support thresholds
converges for all TP values. It is perhaps more interesting
to look at the behaviour of the algorithm at low support
thresholds:

• Low TP values (0.4 ≤ TP ≤ 0.6): there is a significant
increase in the size of the output set relative to the
MINEPI baseline;

• Mid TP values (0.7 ≤ TP ≤ 0.8) exhibit similar char-
acteristics to the baseline performance;

• High TP values (TP ≥ 0.9) the output set is consis-
tently smaller than the baseline.

These observations would suggest firstly that a low TP thresh-
old is not sufficiently powerful to restrict the output se-
quence set. This factor is offset by the quality of output
sequences which should reflect some plausible connection

between constituent alarm-generating nodes. Secondly, for
mid-range TP thresholds, baseline performance is achieved
with the added benefit of plausible sequences. Finally, for
high TP thresholds, the support parameter has little im-
pact on the size of the output set. Therefore, infrequent
sequences may be identified in the data without an atten-
dant explosion in the number of patterns found. This would
suggest that improvements in system performance may be
achieved by refining the node and connection type defini-
tions which determine TP assignment values at run-time.
These definitions may also be customised to specific mining
tasks.

5.2 Target Sequence Identification Task
The six plots in figure 3 present system performance on

the synthetic sequence identification task for each of the
six support parameter values. There is a very clear trend
across all support value thresholds: as the TP threshold in-
creases, there is marked increase in precision, recall and F
Score value with perfect performance, where all sequences
are correctly identified, for TP = 0.9, 1 at 50 ≤ support ≤
125. There is a reduction in the performance measures for
support ≥ 150. The decrease in recall for support = 150 rep-
resents a reduction in the number of target sequences found.
This result reflects the random nature of the sequence in-
sertion process, where not all blocks of 10,000 alarms con-
tain the same number of sequences and individual sequences
may not pass the support threshold for some processing
blocks. There is a marked reduction in performance for
support = 175 as no instances of synthetic sequence A were
found in the data. In fact, there is an average of 166 in-
stances of this sequence per 10,000 alarms in the data, there-
fore, it should not be found at this support threshold. This
point highlights the fact that the topographical optimisation
applied in this approach maintains a direct mapping between
the support threshold parameter and the actual frequency of
the constitutent alarms in the data, while this mapping may
be lost in the compacting process of the MINEPI algorithm.

The key point to note here, however, is that, for all fre-
quency levels, the use of a TP threshold results in improved
performance on the task of identifying specific instances of
prototypical target sequences in the dataset. The perfor-
mance plateau for 0.5 ≤ TP ≤ 0.8 would suggest that there
is a baseline TP value between 0.4 and 0.5 assigned for many



Figure 3: Performance metrics at timeWindow = 240, TP = {0, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}, 100 ≤ SupportFrequency ≤
175. Precision: -*-, Recall: -O-, F Score: -+-.

of the permutations of the target sequences in this data.
This gives further support to the hypothesis that even loose
topographical proximity constraints will ensure that mined
sequences converge with sequence types defined by network
analysts. Furthermore, there is no apparent trade-off be-
tween precision and recall values for this approach suggest-
ing that the mining process is both selective and accurate,
maintaining tight control on candidate sequence promotion
while exploring the full range of sequence instances.

6. CONCLUSIONS
The main contribution of this paper is to introduce the

Topographical Proximity (TP) measure for mining alarm
data for event correlations. This measure exploits the topo-
graphical information encoded in alarms to validate all can-
didate sequences at run-time with respect to the plausibility
of the possible correlation they represent. The second sig-
nificant contribution is to provide a qualitative evaluation
of the performance of the mining algorithm. The evalua-
tion results would strongly suggest that the performance of
the mining algorithm improves with the inclusion of the TP
measure.
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