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Factorial states, upper multiplicity and norms of
elementary operators
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Abstract

Let π be an irreducible representation of a C∗-algebra A. We show that the weak∗ approximation
of factorial states associated to π by type I factorial states of lower degree is closely related to the
value of the upper multiplicity MU(π) of π. As a consequence, we give a representation-theoretic
characterization of those C∗-algebras A for which the set of pure states P (A) is weak∗-closed
in the set of factorial states F (A). We also study the matricial norms and the positivity for
elementary operators T on A. We show that if MU(π) > 1, then ‖T π‖k � ‖T‖n for certain
k > n, and similarly that the n-positivity of T implies the k-positivity of T π (where T π is
the induced operator on π(A)). We use these localizations at π to give new proofs of various
characterizations of the class of antiliminal-by-abelian C∗-algebras in terms of factorial states
and elementary operators. In the course of this, we show that antiliminal-by-abelian is equivalent
to abelian-by-antiliminal.

1. Introduction

A C∗-algebra A is said to be antiliminal-by-abelian [9] if it is an extension of an antiliminal
C∗-algebra by an abelian one. That is, either A has an abelian, proper, closed, two-sided ideal
J (possibly {0}) such that A/J is antiliminal or else A is abelian. This class of algebras
first appeared in [11] as being precisely the class for which the set of pure states P (A)
is weak∗-dense in the set of factorial states F (A). Subsequently, it was shown in [9] that
the antiliminal-by-abelian C∗-algebras also exactly solve two problems concerning elementary
operators on C∗-algebras. That is, they are precisely the algebras for which every positive
elementary operator is completely positive, and they are also the algebras for which the cb-norm
of every elementary operator coincides with the operator norm. Thus the antiliminal-by-abelian
algebras could be seen to form an unexpected link between properties of elementary operators
and the approximation of factorial states.

In [21], new techniques made this link direct. In [21, Theorem 1.4], it was shown that the
k-positivity of an elementary operator can be tested by using factorial states for which the
associated Gelfand–Naimark–Segal (GNS) commutant is of type Ij for j � k. From this, it
was shown that a certain approximation property of factorial states (which had previously
been shown equivalent to a notion of antiliminal by k-subhomogeneous in [11, Theorem 4.5])
exactly characterizes those C∗-algebras for which every k-positive elementary operator is
completely positive [21, Corollary 4.6]. A further equivalent condition is that the cb-norm
of every elementary operator is equal to the k-norm [22, Theorem 4.5].

In this paper, we establish a new perspective on the links between factorial states,
representation theory and elementary operators by localizing in the spectrum Â of A. We
begin by considering the approximation of factorial states associated with a fixed irreducible
representation π by type-I factorial states of lower degree (where a type-I factorial state φ
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is said to have degree k if the GNS commutant πφ(A)′ is a factor of type Ik (1 � k � ∞)).
We show that such approximation is closely related to the value of the upper multiplicity
MU(π) of π (Theorem 2.1). From this, we are able to deduce an extensive list of corollaries
concerning the approximation of (factorial) states by type-I factorial states of specified
degree.

In particular, by restricting the approximating states to be pure (that is, of degree 1), we
show that P (A) is closed in F (A) if and only if π is a Fell point for all π ∈ Â for which dimπ > 1
(Corollary 2.6(a)). This result combines with an earlier characterization of the condition P (A) ∩
S(A) ⊆ F (A) (see [3, Corollary; 11, Theorem 3.5]) to recover Glimm’s description of those C∗-
algebras for which P (A) is closed in the state space S(A) [16, Theorem 6]. This dissection of
Glimm’s theorem is somewhat analogous to the way in which the Glimm–Tomiyama–Takesaki
characterization of the condition P (A) ⊇ S(A) [15, 24] may be viewed as a combination of
[2, Theorem 3.3; 11, Theorem 3.4] (see the discussion in [11, pp. 131, 136]). We also show
that if the set Fn(A), consisting of all those type I factorial states with degree at most n, is
closed in F (A) (or even in S(A)) for some positive integer n then so is Fk(A) for all integers
k � n.

In Section 3, we turn to the estimation of the matricial norms of an elementary operator T
on A and of the induced operator Tπ on π(A) (see below). In Theorem 3.1, we apply Theorem
2.1 and the notion of tracial geometric mean from [23] to obtain inequalities ‖Tπ‖k � ‖T‖n

for certain values of k and n related to MU(π). By using [21, Theorem 1.4], we also show that
the n-positivity of T implies the k-positivity of Tπ. The remainder of Section 3 is primarily
concerned with obtaining partial converses to Theorem 3.1. This concludes with Theorem 3.8
which shows that the failure of Fell’s condition for an irreducible representation π is very closely
related to the inequalities ‖Tπ‖n+1 � ‖T‖n and also to analogous conditions on matricial
positivity.

In Section 4, we show that our localized techniques are strong enough to recover the results
of [11, 21, 22] discussed above. In particular, Theorem 2.1 leads to an alternative proof of
[11, Theorem 4.5], and Theorem 2.1 and Corollary 3.7 lead to an alternative proof of [22,
Corollary 4.5] and the corresponding parts of [21, Corollary 4.6]. These proofs are combined
in Theorem 4.3. In preparation for this, we establish two elementary results which may be of
independent interest. The first (Proposition 4.1) draws on [4] to give simple characterizations
of antiliminal C∗-algebras in terms of the upper multiplicity of irreducible representations.
The second (Proposition 4.2) includes the elementary, but apparently new, observation that
‘antiliminal-by-abelian’ is equivalent to ‘abelian-by-antiliminal’.

We end this section with some notation and preliminaries. We recall that if A is a C∗-algebra
and π ∈ Â, then π is said to be a Fell point if there exist a neighbourhood V of π and an element
a ∈ A such that σ(a) is a projection of rank 1 for every σ ∈ V [14, Section 4.1]. One of the
reasons for introducing the upper multiplicity MU(π) of π in [4] was to quantify the extent to
which Fell’s condition may fail to hold. It was shown in [4, Theorem 4.6] that π is a Fell point
if and only if MU(π) = 1. A convenient characterization of the inequality MU(π) � k, in terms
of the convergence of pure states, is given in [6, Lemma 2.1].

Let F∞(A) be the set of all states φ of a C∗-algebra A for which πφ(A)′ is a type-I
factor. See [11, Section 2] for a detailed discussion of such states. In particular, there is
a continuous, open map θ : F∞(A) → Â such that θ(φ) is the unique unitary equivalence
class in Â whose members are quasi-equivalent to the GNS-representation πφ. It follows
from [11, Proposition 2.1] that if π ∈ Â and if dim π � m, then F∞(A) ∩ θ−1(π) = Fm(A) ∩
θ−1(π).

An elementary operator T on a C∗-algebra A has the form T (x) =
∑n

i=1 aixbi (x ∈ A),
where n � 1 and a1, b1, . . . , an, bn belong to the multiplier algebra M(A). If π is an irreducible
representation of A on a Hilbert space Hπ, then there is a unique extension to an irreducible
representation π of M(A) on Hπ. An elementary operator T on A (as above) induces an
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elementary operator Tπ on π(A) given by the formula

Tπ(y) =
n∑

i=1

π(ai)yπ(bi) (y ∈ π(A)).

If an elementary operator T on A can be written in the form T =
∑n

i=1 ai(·)bi for some n and
a1, b1, . . . , an, bn ∈ A, then we say that T is an elementary operator with coefficients in A.

2. Factorial states and upper multiplicity

Theorem 2.1, the main result of this section, shows how the upper multiplicity of an irreducible
representation π is related to the approximation of factorial states associated to π by type-I
factorial states of lower degree. Condition (1) is apparently stronger than the simpler condition
(2) but is, in fact, equivalent to it. The reason for including (1) is that it is needed for an
application to the norms of elementary operators (see Theorem 3.1).

Theorem 2.1. Let A be a C∗-algebra, let 1 � n � m < ∞ and let π ∈ Â. Consider the
following four conditions:

(1) Whenever φ1, φ2 ∈ Fm+1(A) satisfy θ(φ1) = θ(φ2) = π, there exist nets (φ(1)
λ )λ∈Λ and

(φ(2)
λ )λ∈Λ in Fn(A) such that θ(φ(1)

λ ) = θ(φ(2)
λ ) for each λ and φ

(i)
λ →λ φi (i = 1, 2).

(2) {φ ∈ Fm+1(A) : θ(φ) = π} ⊆ Fn(A);
(3) {φ ∈ F∞(A) \ Fm(A) : θ(φ) = π} ∩ Fn(A) is non-empty;
(4) MU(π) > m/n.

Then (3) ⇒ (4) ⇒ (1) ↔ (2). If dim π > m, then all four conditions are equivalent. If condition
(3) holds, then dim π > m.

Proof. The implication (1) ⇒ (2) is immediate. If dim π > m, then {φ ∈ Fm+1(A) \ Fm(A) :
θ(φ) = π} is non-empty and so (2) implies (3).

Now suppose that (3) holds but that MU(π) � k, the integer part of m/n. By (3), there exists
φ ∈ F∞(A) \ Fm(A) such that θ(φ) = π and φ ∈ Fn(A). Since φ ∈ F∞(A) \ Fm(A) and θ(φ) =
π, there is a countable set S of positive integers, containing {1, . . . , m + 1}, and a set {ξi :
i ∈ S} of non-zero mutually orthogonal vectors in Hπ such that φ =

∑
i∈S〈π(·)ξi, ξi〉 (see [11,

Proposition 2.1, proof of (i) and statement of (ii)]). On the other hand, since φ ∈ Fn(A), there
is a net (φλ) in Fn(A) such that φ = lim φλ. By continuity, πλ := θ(φλ) → π in Â.

Since MU(π) � k, it follows from [8, Theorem 2.5(ii)] that there exist q ∈ A+ and a
neighbourhood V of π in Â such that π(q) is a rank one projection and rank(σ(q)) � k for all
σ ∈ Â. Since πλ → π, we may assume that πλ ∈ V for all λ. Let ξ be a unit vector in Hπ such
that π(q)ξ = ξ. By Kadison’s transitivity theorem, there exists aj ∈ A such that π(aj)ξ = ξj

for 1 � j � nk + 1 (note that nk + 1 � m + 1). Since φλ → φ, we have

det([φλ(ajqa
∗
i )]

nk+1
i,j=1) −→λ det([φ(ajqa

∗
i )]

nk+1
i,j=1).

Now temporarily fix λ. Since φλ ∈ Fn(A) and πλ(q) has rank at most k, the matrix
[φλ(ajqa

∗
i )]

nk+1
i,j=1 can be expressed as a linear combination of nk or fewer matrices of the form

[〈πλ(aj)eπλ(a∗
i )η, η〉]nk+1

i,j=1 , where η ∈ Hπλ
and e is a rank one projection. However, the latter

matrix has rank at most 1 because if v is a unit vector such that ev = v then eπλ(a∗
i )η = tiv

for some scalar ti and so 〈πλ(aj)eπλ(a∗
i )η, η〉 = titj . Thus the matrix [φλ(ajqa

∗
i )]

nk+1
i,j=1 has rank

at most nk and hence has zero determinant.
It follows that

det([φ(ajqa
∗
i )]

nk+1
i,j=1) = 0.
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On the other hand,

φ(ajqa
∗
i ) =

∑
r∈S

〈π(aj)π(q)π(a∗
i )ξr, ξr〉

= 〈π(aj)π(q)π(a∗
i )ξj , ξj〉

= 〈ξj , π(ai)π(q)π(aj)∗ξj〉.

Thus the matrix [φ(ajqa
∗
i )]

nk+1
i,j=1 is diagonal, with (i, i)-entry equal to ‖ξi‖4. Thus the

determinant is non-zero, giving the required contradiction.
(4) ⇒ (1). Assume that (4) holds and suppose that φ1, φ2 ∈ Fm+1(A) satisfy θ(φ1) = θ(φ2) =

π. Let k be a positive integer such that MU(π) � k > m/n, and let ξ be a unit vector in Hπ. By
[6, Lemma 2.1], there exist a net (πλ) in Â and, for each λ, an orthonormal set {η1,λ, . . . , ηk,λ}
such that

〈πλ(·)ηj,λ, ηj,λ〉 −→ 〈π(·)ξ, ξ〉 (1 � j � k). (2.1)

Let Ã = A, if A is unital, and Ã = A + C1, if A is non-unital. For each σ ∈ Â, let σ̃ be the
unique extension of σ to Ã. Then, if j = l, it follows from [7, Lemma 2.5] that

〈πλ(a)ηj,λ, ηl,λ〉 −→ 0 (a ∈ Ã). (2.2)

Since φ1 ∈ Fm+1(A) and θ(φ1) = π, there exist p ∈ {1, 2, . . . ,m + 1}, an orthonormal
set {ξ1, . . . , ξp} in Hπ and positive scalars ti, . . . , tp such that

∑p
i=1 ti = 1 and φ1 =∑p

i=1 ti〈π(·)ξi, ξi〉. By Kadison’s transitivity theorem, there exist unitary elements u1, . . . , up

in Ã such that π̃(ui)ξ = ξi for 1 � i � p.
By a variant of the usual division algorithm, p = qk − r, where q � 1 and 0 � r < k. Then

q � n. If q � 2 and 1 � j � q − 1, then we define vj,λ =
∑k

i=1 t
1/2
i+(j−1)kπ̃λ(ui+(j−1)k)ηi,λ. Also,

whatever the value of q, we define

vq,λ =
k−r∑
i=1

t
1/2
i+(q−1)kπ̃λ(ui+(q−1)k)ηi,λ.

If 1 � j � q − 1, then it follows from (2.2) that

‖vj,λ‖2 =

〈
k∑

i=1

t
1/2
i+(j−1)kπ̃λ(ui+(j−1)k)ηi,λ,

k∑
l=1

t
1/2
l+(j−1)kπ̃λ(ul+(j−1)k)ηl,λ

〉

−→λ lim
λ

k∑
i=1

ti+(j−1)k〈π̃λ(ui+(j−1)k)ηi,λ, π̃λ(ui+(j−1)k)ηi,λ〉

=
k∑

i=1

ti+(j−1)k = μj (say). (2.3)

Similarly

‖vq,λ‖2 −→λ

k−r∑
i=1

ti+(q−1)k = μq (say). (2.4)

Therefore there exists a λ1 such that, for λ � λ1 and 1 � j � q, vj,λ = 0. Therefore, we may
define

wj,λ =
vj,λ

‖vj,λ‖
(λ � λ1, 1 � j � q).

For λ � λ1, we define

φ
(1)
λ =

q∑
j=1

μj〈πλ(·)wj,λ, wj,λ〉 ∈ Fn(A)
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(recall that q � n and note that
∑q

j=1 μj =
∑p

i=1 ti = 1). Let a ∈ A. Using (2.3) and (2.4), and
then (2.1) and (2.2), we obtain that

φ
(1)
λ (a) −→λ lim

λ

q∑
j=1

〈πλ(a)vj,λ, vj,λ〉

=
q−1∑
j=1

k∑
i=1

ti+(j−1)k〈π(a)π̃(ui+(j−1)k)ξ, π̃(ui+(j−1)k)ξ〉

+
k−r∑
i=1

ti+(q−1)k〈π(a)π̃(ui+(q−1)k)ξ, π̃(ui+(q−1)k)ξ〉

=
p∑

i=1

ti〈π(a)ξi, ξi〉 = φ1(a).

Similarly, we may find λ2 � λ1 and construct φ
(2)
λ ∈ Fn(A) for all λ � λ2 such that θ(φ(2)

λ ) =
πλ = θ(φ(1)

λ ) for all λ � λ2 and φ
(2)
λ →λ φ2.

(2) ⇒ (1). Assume (2) and let N = dim π. We have already seen that if N > m then (1) holds.
Also, if N � n then {φ ∈ Fm+1(A) : θ(φ) = π} ⊆ FN (A) ⊆ Fn(A) and so (1) holds. Therefore
we may assume that n < N � m. Then (2) holds with m replaced by N − 1. Since dim π >
N − 1, (1) holds with m replaced by N − 1. Since {φ ∈ Fm+1(A) : θ(φ) = π} ⊆ FN (A), we see
that (1) holds as required.

Finally, if (3) holds then, in particular, {φ ∈ F∞(A) \ Fm(A) : θ(φ) = π} is non-empty and
so dim π > m.

Corollary 2.2. Let A be a C∗-algebra, and let 1 � n � m < ∞. The following conditions
are equivalent:

(1) Fn(A) ∩ F (A) ⊆ Fm(A);
(2) Fn(A) ∩ F∞(A) ⊆ Fm(A);
(3) MU (π) � m/n for all π ∈ Â for which dim π > m.

Proof. Since F∞(A) ⊆ F (A), it is clear that (1) implies (2).
Suppose that (2) holds and suppose that π ∈ Â satisfies dim π > m. Then it follows from

Theorem 2.1 ((4) ⇒ (3)) that MU(π) � m/n.
Finally, suppose that (3) holds. Let U = {π ∈ Â : dim π > m}, an open subset of Â [13,

3.6.3(i)], and let J be the ideal of A such that Ĵ = U (so that J = {0} if U is empty). Then
A/J is m-subhomogeneous and J is liminal [4, Corollary 4.9]. Hence A is postliminal and
so F (A) = F∞(A). Let φ ∈ Fn(A) ∩ F (A) and let π = θ(φ). If dimπ � m, then φ ∈ Fm(A).
On the other hand, if dimπ > m, then MU(π) � m/n and so φ ∈ Fm(A) by Theorem 2.1
((3) ⇒ (4)).

The next result is a special case of Corollary 2.2 obtained by taking n = 1.

Corollary 2.3. Let A be a C∗-algebra, and let m be a positive integer. The following
conditions are equivalent:

(1) P (A) ∩ F (A) ⊆ Fm(A);
(2) P (A) ∩ F∞(A) ⊆ Fm(A);
(3) MU(π) � m for all π ∈ Â for which dim π > m.
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Corollary 2.4. Let A be a C∗-algebra, and let m be a positive integer. The following
conditions are equivalent:

(1) Fm(A) ∩ F (A) = Fm(A);
(2) Fm(A) ∩ F∞(A) = Fm(A);
(3) π is a Fell point for all π ∈ Â for which dim π > m;
(4) F[m/2]+1(A) ∩ F (A) ⊆ Fm(A);
(5) F[m/2]+1(A) ∩ F∞(A) ⊆ Fm(A).

Furthermore, if Fm(A) is closed in F (A), then Fk(A) is closed in F (A) for all k � m.

Proof. We begin by recalling from [4, Theorem 4.6] that, for π ∈ Â, MU(π) = 1 if and only
if π is a Fell point. Then the equivalence of (1), (2) and (3) follows from Corollary 2.2 by taking
n = m, and the equivalence of (3), (4) and (5) follows by taking n = [m/2] + 1 (in which case
MU(π) � m/n if and only if MU(π) = 1). The final part of the statement follows from the fact
that if (3) holds then it also holds when m is replaced by any k � m.

The equivalence of (1) and (3) in the next result has been previously obtained by Larry
Brown (private communication). Recall that S(A) is the state space of a C∗-algebra A.

Corollary 2.5. Let A be a C∗-algebra, and let m be a positive integer. The following
conditions are equivalent:

(1) Fm(A) ∩ S(A) = Fm(A);
(2) F[m/2]+1(A) ∩ S(A) ⊆ Fm(A);
(3) A is liminal, Â is Hausdorff, and π is a Fell point for all π ∈ Â for which dim π > m;
(4) Â is Hausdorff, and π is a Fell point for all π ∈ Â for which dim π > m.

Furthermore, if Fm(A) is closed in S(A), then Fk(A) is closed in S(A) for all k � m.

Proof. It is clear that (1) implies (2). Suppose next that (2) holds. Then, in particular,
P (A) ∩ S(A) ⊆ F (A). Hence A is liminal and Â is Hausdorff by [11, Theorem 3.5] together
with [3, p. 252]. The remainder of item (3) follows from Corollary 2.4 ((4) ⇒ (3)).

Now suppose that (3) holds. Since A is liminal and Â is Hausdorff, it follows from [20,
Proposition 9] (see also [2, Theorem 5.2]) that F (A) ∩ S(A) = F (A). Hence (1) holds by
Corollary 2.4 ((3) ⇒ (1)).

Clearly (3) implies (4), so assume now that (4) holds. Since the set of π ∈ Â for which
dim π > m is open [13, 3.6.3(i)], A has a closed two-sided Fell ideal J such that A/J is
m-subhomogeneous. Hence A is a type-I C∗-algebra. Since Â is Hausdorff, A is liminal.

The final part of the statement follows from the fact that if (3) holds then it also holds when
m is replaced by any k � m.

By taking m = 1 in Corollaries 2.3 and 2.5, we obtain the following results for pure states.
Part (b) is (a slight variant of) a well-known theorem of Glimm [16, Theorem 6] (see the
discussion in [11, p. 136]).

Corollary 2.6. Let A be a C∗-algebra.

(a) The following conditions are equivalent:
(1) P (A) ∩ F (A) = P (A);
(2) P (A) ∩ F∞(A) = P (A);
(3) π is a Fell point for all π ∈ Â for which dim π > 1.

(b) The following conditions are equivalent:
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(1) P (A) ∩ S(A) = P (A);
(2) A is liminal, Â is Hausdorff, and π is a Fell point for all π ∈ Â for which dim π > 1.

Glimm’s theorem is used in the proof of [11, Theorem 4.5]. We shall show in Section 4 that
the latter result can alternatively be obtained by using Theorem 2.1.

3. Upper multiplicity and elementary operators

Theorem 3.1. Let A be a C∗-algebra, let π ∈ Â and let n be a positive integer. Let k be
any positive integer such that k � nMU(π) (where it is understood that n ×∞ = ∞).

(1) For every elementary operator T on A, ‖Tπ‖k � ‖T‖n.
(2) For every n-positive elementary operator T on A, Tπ is k-positive.

Proof. If MU(π) = 1, then (1) and (2) are clear, so we assume that MU(π) > 1. Then it is
sufficient to prove (1) and (2) for k = rn, a multiple of n with 1 < r � MU(π). We will do this
by applying Theorem 2.1 ((4) ⇒ (1)) with m = k − 1 (so that MU(π) � k/n > m/n).

We begin by recalling that the set of pure states associated to π is weak∗-dense in P (π(A))
(see, for example, [13, 3.4.2(ii)]). It follows that {φ ∈ Fm+1(A) : θ(φ) = π} is weak∗-dense in
Fm+1(π(A)). Thus, given φ1, φ2 ∈ Fm+1(π(A)), it follows from (1) of Theorem 2.1 that there
exist commonly-indexed nets (φ(1)

λ )λ∈Λ and (φ(2)
λ )λ∈Λ in Fn(A) such that θ(φ(1)

λ ) = θ(φ(2)
λ ) for

each λ and φ
(i)
λ →λ φi ◦ π (i = 1, 2).

Let π be the unique extension of π to an irreducible representation of M(A), φ
(i)

λ the unique
extension of φ

(i)
λ to a state of M(A)) and φi the unique extension of φi to a state of π(M(A))

(i = 1, 2). Since the map from S(A) into S(M(A)) defined by unique extension of states is
weak∗-continuous, φ

(i)

λ →λ φi ◦ π (i = 1, 2).
Let T be an elementary operator on A. Thus T (x) =

∑N
i=1 aixbi (x ∈ A), where ai, bi ∈ M(A)

for 1 � i � N .
(1) Using the joint weak∗-continuity of tgm as a function of the states (see the proof of [10,

Lemma 2.1]), we obtain

tgm((Q((π(a∗
i ))i, φ1)), (Q((π(bi))i, φ2))) = lim

λ
tgm((Q(a∗), φ

(1)

λ ), (Q(b), φ
(2)

λ )) � ‖T‖n,

by [23, Corollary 2.2]. Taking the supremum of the left-hand side over pairs (φ1, φ2) satisfying
θ(φ1) = θ(φ2), we obtain from [23, Corollary 2.2] that ‖Tπ‖m+1 � ‖T‖n.

(2) Suppose that T is n-positive and a ∈ A. Then by [21, Theorem 1.4],
N∑

i=1

φ1(π(ai)π(a)∗)φ1(π(a)π(bi)) =
N∑

i=1

(φ1 ◦ π)(aia
∗)(φ1 ◦ π)(abi)

= lim
λ

N∑
i=1

φ
(1)
λ (aia

∗)φ(1)
λ (abi) � 0.

Since this holds for all a ∈ A and all φ1 ∈ Fk(π(A)), it follows from [21, Theorem 1.4] that Tπ

is k-positive.

Corollary 3.2. Let A be a C∗-algebra and suppose that π ∈ Â is a non-Fell point. Let
n � 1.

(1) For every elementary operator T on A, ‖Tπ‖n+1 � ‖T‖n.
(2) For every n-positive elementary operator T on A, Tπ is (n + 1)-positive.
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Proof. Since MU(π) > 1, n + 1 � 2n � nMU(π).

For the rest of this section, we consider the possibility of (partial) converses for Theorem 3.1.
For example, if MU(π) = M < ∞ and n � 1, can we necessarily find an elementary operator
T on A such that ‖Tπ‖k > ‖T‖n for k = nM + 1? Or, if MU(π) < ∞ can we find n � 1 and
T with the same property? To see that this does not hold in general, consider the case when
π is one-dimensional. Then Tπ is always just a scalar and ‖Tπ‖k = ‖Tπ‖ � ‖T‖ for all T
and all k > 1. More generally, if dimπ � nM , then ‖Tπ‖cb = ‖Tπ‖nM and so ‖Tπ‖cb � ‖T‖n

by Theorem 3.1. Thus we cannot obtain any converse if dimπ � nM , even if we take n = 1.
Therefore we shall suppose that dim π > nMU(π) (which is, of course, automatically satisfied
if dim π = ∞).

We shall show in Theorem 3.6(1) that if we impose the further condition that {π} is open in

S(π) := {σ ∈ Â : π and σ cannot be separated by disjoint open subsets of Â},

a condition that holds automatically if MU(π) = 1, then we can find the desired elementary
operator T on A. This leads easily to Corollary 3.7(1) which is a partial converse to
Corollary 3.2(1). Hand-in-hand with these results for norms, we obtain analogous results for
positivity.

Before proving Theorem 3.6, we need to establish two lemmas (Lemmas 3.3 and 3.5 below)
dealing with elementary operators which behave like certain known examples on a matrix
algebra. On the one hand, we have operators that behave like the transpose and, on the other
hand, operators that behave like an example due to Choi [12] of an operator Cn on Mn(C)
which is (n − 1)-positive but not n-positive.

In the proofs, we will use the notation Tn for the transpose mapping on Mn(C) and we will
use the fact that ‖Tn‖k = min{k, n}. Indeed, since ‖Tn‖ = 1, the fact that ‖Tn‖k � k follows
from a general estimate [18, Exercise 3.10 (ii)], while ‖Tn‖k � k (for k � n) follows from a
well-known argument [18, Exercise 1.8]. The fact that ‖Tn‖cb = ‖Tn‖n follows from [18, 8.11].
Combining these observations, one obtains the required formula ‖Tn‖k = min{k, n}.

The operator Cn : Mn → Mn, from [12], is Cn(x) = (n − 1)trace(x)In − x. We note that we
can express Tn and Cn as elementary operators by the formulae

Tn(x) =
n∑

i,j=1

ei,jxei,j , Cn(x) =
n∑

i,j=1

(n − 1)ei,jxej,i −
n∑

i,j=1

ei,ixej,j ,

with {ei,j : 1 � i, j � m + 1} the standard system of matrix units in Mm+1.

Lemma 3.3. Let k and m be positive integers, and let H be a Hilbert space of dimension
k(m + 1). Suppose that {Fi,j}m+1

i,j=1 is an (m + 1) × (m + 1) system of matrix units in B(H)
such that

∑m+1
i=1 Fi,i = 1. Let T and C be the elementary operators on B(H) defined by

T (S) =
m+1∑
i,j=1

Fi,jSFi,j

and

C(S) =
m+1∑
i,j=1

mFi,jSFj,i −
m+1∑
i,j=1

Fi,iSFj,j

(for S ∈ B(H)). Then

(i) ‖T ‖ = min{k,m + 1};
(ii) for r � 1, C is r-positive if and only if rk � m.
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Proof. Let L be the linear span of {Fi,j : 1 � i, j � m + 1}. Then we have a ∗-isomorphism
φ1 of Mm+1 onto L given by

φ1

⎛⎝m+1∑
i.j=1

λi,jei,j

⎞⎠ =
m+1∑
i.j=1

λi,jFi,j .

Since L is a factor, so is its commutant L′, and there is a ∗-isomorphism Θ of L ⊗ L′ onto
B(H) given by

Θ(S ⊗ T ) = ST (S ∈ L, T ∈ L′).

By considering dimension, the finite-dimensional factor L′ is ∗-isomorphic to Mk. Let φ2 be a
∗-isomorphism of Mk onto L′. Thus we have the following sequence of maps:

Mm+1 ⊗ Mk

φ1⊗φ2
−−−→ L ⊗ L′ Θ−→ B(H).

Temporarily fix i, j, r, s ∈ {1, 2, . . . ,m + 1} and define elementary operators R on B(H) and
Rm+1 on Mm+1 by R(·) = Fi,j(·)Fr,s and Rm+1(·) = ei,j(·)er,s. We claim that

R ◦ Θ ◦ (φ1 ⊗ φ2) = Θ ◦ (φ1 ⊗ φ2) ◦ (Rm+1 ⊗ idk), (3.1)

where idk is the identity map on Mk. By linearity, it suffices to check equality on ep,q ⊗ v,
where v ∈ Mk. Applying the left-hand side of (3.1), and using the fact that φ2(v) ∈ L′, we
obtain

Fi,jFp,qφ2(v)Fr,s = Fi,jFp,qFr,sφ2(v)
= (Θ ◦ (φ1 ⊗ φ2))(ei,jep,qer,s ⊗ v),

as required. It follows from (3.1) and linearity that

T ◦ Θ ◦ (φ1 ⊗ φ2) = Θ ◦ (φ1 ⊗ φ2) ◦ (Tm+1 ⊗ idk). (3.2)

and
C ◦ Θ ◦ (φ1 ⊗ φ2) = Θ ◦ (φ1 ⊗ φ2) ◦ (Cm+1 ⊗ idk). (3.3)

From (3.2) we have

‖T ‖ = ‖Tm+1 ⊗ idk‖ = ‖Tm+1‖k = min{k,m + 1}.
For r � 1, we may tensor both sides of (3.3) with idr and conclude that

C is r-positive ⇐⇒ Cm+1 is (kr)-positive ⇐⇒ kr � m.

We denote by τs the compact Hausdorff topology defined by Fell [14, Chapter II] on the set
Id(A) of all closed two-sided ideals of a C∗-algebra A. Note that a net (Iα) is τs-convergent
to I in Id(A) if and only if ‖a + Iα‖ → ‖a + I‖ for all a ∈ A (see [14, Theorem 2.2]). In the
proof of the next result, we shall apply [17, Theorem 3.1]. This is a convenient generalization
of some classical results on extending matrix units (see [14, Theorem 3.1; 16 Lemmas 10 and
11; 24 p. 506]). We shall also use the notion of a primal ideal from [5].

Lemma 3.4. Let A be a C∗-algebra and let 1 � m < ∞. Suppose that π ∈ Â, that
dim π > m and that MU(π) < ∞. Let J be a primal ideal of A contained in ker π. There
exist elements ai,j ∈ A (1 � i, j � m + 1), and a τs-neighbourhood V of J in Id(A) such that

(i) for each K ∈ V , {ai,j + K : 1 � i, j � m + 1} is an (m + 1) × (m + 1) system of matrix
units in A/K;

(ii) π(a1,1) has rank 1;

(iii) for each σ ∈
⋃

K∈V Â/K, σ(a1,1) has rank at most MU(π) (in B(Hσ)).
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Proof. Since MU(π) < ∞, it follows from [4, Theorem 4.4(i)] that π(A) contains K(Hπ),
the algebra of compact linear operators on Hπ. Let {ξ1, . . . , ξm+1} be an orthonormal set in
Hπ and let Ei,i be the rank one projection onto the linear span of ξi (1 � i � m + 1). For i = j
let Ei,j be the rank one partial isometry which maps ξj to ξi. Then {Ei,j : 1 � i, j � m + 1} is
an (m + 1) × (m + 1) system of matrix units in π(A). Let E =

∑m+1
i=1 Ei,i and note that there

is a ∗-isomorphism of Mm+1(C) onto Eπ(A)E mapping the standard matrix unit ei,j to Ei,j .
Let K = π−1(K(Hπ)), a closed two sided ideal of A which properly contains J . Since

MU(π) < ∞ and J is a primal ideal contained in kerπ, {π} is relatively open in Â/J [8,
Proposition 2.1(ii)] and hence in K̂/J . On the other hand, {π} is relatively closed in K̂/J
because π(K) is simple. Thus there is a ∗-isomorphism Ψ of K(Hπ) into K/J such that
π ◦ Ψ = idK(Hπ) and σ ◦ Ψ = 0 for all σ ∈ K̂/J \ {π}. Note that if σ ∈ Â/J and σ /∈ K̂/J then
σ ◦ Ψ = 0 too.

Let B = Ψ(Eπ(A)E), a finite-dimensional C∗-subalgebra of A/J . By [17, Theorem 3.1],
there is a linear map L : B → A and a τs-neighbourhood U of J in Id(A) such that

(a) qJ ◦ L = idB ,
(b) for every K ∈ U , qK ◦ L is a ∗-isomorphism of B into A/K.
Let ai,j = L(Ψ(Ei,j)) ∈ A (1 � i, j � m + 1). Observe that, by (b), (i) holds for all τs

neighbourhoods V ⊆ U . Regarding π in the usual way as an irreducible representation of both
A and A/J , we have

π(a1,1) = (π ◦ qJ ◦ L ◦ Ψ)(E1,1) = (π ◦ idB ◦ Ψ)(E1,1) = E1,1

and so (ii) holds.
Suppose that there is no τs-neighbourhood V of J such that (iii) holds. Then there is a net

(Kα) in U which is τs-convergent to J and πα ∈ Â/Kα such that, for each α, rank(πα(a1,1)) >
MU(π). Using the τs-compactness of Id(A) and passing to a subnet if necessary, we may assume
that there exists I ∈ Id(A) such that ker πα → I (τs). For each a ∈ A,

‖a + J‖ = lim ‖a + Kα‖ � lim ‖a + ker πα‖ = ‖a + I‖.

Thus J ⊆ I.
Let ξα be a unit vector fixed by the projection πα(a1,1). We shall show that

〈πα(·)ξα, ξα〉 → φ := 〈π(·)ξ1, ξ1〉. (3.4)

Let x ∈ A. Then E1,1π(x)E1,1 = λE1,1, where λ = φ(x). Since qJ(a1,1) = Ψ(E1,1), π(a1,1

xa1,1 − λa1,1) = 0. Recalling that σ ◦ Ψ = 0 for all σ ∈ Â/J \ {π}, we obtain qJ(a1,1xa1,1 −
λa1,1) = 0. Since J ⊆ I, qI(a1,1xa1,1 − λa1,1) = 0 and so ‖πα(a1,1xa1,1 − λa1,1)‖ → 0. Hence

lim〈πα(x)ξα, ξα〉 = lim〈πα(a1,1xa1,1)ξα, ξα〉 = lim〈πα(λa1,1)ξα, ξα〉 = λ = φ(x).

This establishes (3.4).
Let � = MU(π) + 1. Since rank(πα(a1,1)) � �, there is an orthonormal set {ξ(1)

α , . . . , ξ
(�)
α } in

the range of πα(a1,1) for each α. Since ξα was an arbitrary unit vector fixed by π(a1,1), it
follows from (3.4) that for 1 � i � �, 〈πα(·)ξ(i)

α , ξ
(i)
α 〉 → φ. Applying [8, Lemma 5.2(i)] to the

net (πα), we obtain that

MU(π) � MU(π, (πα)) � � = MU(π) + 1,

a contradiction. Hence there is a τs-neighbourhood V of J such that V ⊆ U and (iii) holds.

If K is a closed two-sided ideal of a C∗-algebra A, then the quotient map A → A/K extends
uniquely to a ∗-homomorphism of M(A) into M(A/K). Hence each elementary operator S on
A induces an elementary operator SA/K on A/K such that SA/K(a + K) = S(a) + K (a ∈ A).
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Lemma 3.5. Let A be a C∗-algebra and let 1 � m < ∞. Suppose that π ∈ Â and dim π >
m � MU(π). Let J be a primal ideal of A contained in ker π.

There exists a τs-neighbourhood V of J in Id(A) and elementary operators T and C on A
with coefficients in A such that

(i) ‖Tπ‖m+1 � m + 1 and Cπ is not (m + 1)-positive;
(ii) for each K ∈ V , ‖TA/K‖ � MU(π) and CA/K is r-positive for 1 � r � m/MU(π);
(iii) there is a projection E ∈ π(A) of rank m + 1 with Tπ(·) = Tπ(E(·)E) and Cπ(·) =

Cπ(E(·)E).

Proof. There is a τs-neighbourhood V of J in Id(A) and elements ai,j ∈ A (1 � i, j � m + 1)
satisfying (i), (ii) and (iii) of Lemma 3.4. We define

T (x) =
m+1∑
i,j=1

ai,jxai,j and C(x) =
m+1∑
i,j=1

mai,jxaj,i −
m+1∑
i,j=1

ai,ixaj,j (x ∈ A).

Let Ei,j = π(ai,j) (1 � i, j � m + 1) and E =
∑m+1

i=1 Ei,i, a projection of rank m + 1. Then

Tπ(·) =
m+1∑
i,j=1

Ei,j(·)Ei,j and Cπ(·) =
m+1∑
i,j=1

mEi,j(·)Ej,i −
m+1∑
i,j=1

Ei,i(·)Ej,j

Since EEi,j = Ei,j = Ei,jE for all i and j, condition (iii) is satisfied.
There is an isometric ∗-isomorphism Ψ of Mm+1(C) onto Eπ(A)E mapping the standard

matrix unit ei,j to Ei,j . Then Tπ ◦ Ψ = Ψ ◦ Tm+1 and Cπ ◦ Ψ = Ψ ◦ Cm+1. Thus

‖Tπ‖m+1 � ‖Tπ|Eπ(A)E‖m+1 = ‖Tm+1‖m+1 = m + 1

(in fact, equality holds). Also since Cm+1 is not (m + 1)-positive, neither is Cπ|Eπ(A)E nor Cπ.
To show (ii), let K ∈ V and σ ∈ Â/K. Let k = rank(σ(a1,1)) � MU(π) and Fi,j = σ(ai,j)

(1 � i, j � m + 1), an (m + 1) × (m + 1) system of matrix units in σ(A) (unless k = 0 in which
case Fi,j = 0 for all i and j). Then

T σ(·) =
m+1∑
i,j=1

Fi,j(·)Fi,j and Cσ(·) =
m+1∑
i,j=1

mFi,j(·)Fj,i −
m+1∑
i,j=1

Fi,i(·)Fj,j .

If k = 0 then T σ = 0 = Cσ. If k > 0, then by Lemma 3.3 and the fact that compression by∑m+1
i=1 Fi,i is contractive and completely positive, we obtain that ‖T σ‖ � k � MU(π) and that

Cσ is r-positive whenever rk � m. Since k � MU(π), Cσ is r-positive whenever rMU(π) � m.
Letting σ vary in Â/K we conclude from [9, Lemma 1(v), (iv)] that ‖TA/K‖ � MU(π) and

that CA/K is r-positive whenever r � m/MU(π).

Let A be a C∗-algebra and π ∈ Â. Recall that

S(π) = {σ ∈ Â : π and σ cannot be separated by disjoint open subsets of Â}.

Theorem 3.6. Let A be a C∗-algebra and suppose that π ∈ Â is such that MU(π) = M <
∞ and M < dim π. Suppose in addition that {π} is relatively open in the set S(π). Let n be
any positive integer such that n < (dim π)/M .

(1) There exists an elementary operator S on A with coefficients in A such that
‖Sπ‖nM+1 > ‖S‖n.

(2) There exists an n-positive elementary operator R on A with coefficients in A such that
Rπ is not (nM + 1)-positive.
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Proof. By hypothesis, there is a closed two-sided ideal I of A such that π ∈ Î and
Î ∩ S(π) = {π}. Thus π is a separated point of Î. Let m = nM . Regarding π as an element of Î,
it is still the case that MU(π) = M < ∞ [8, Lemma 2.7] and also dim π > m. Let J = I ∩ ker π,
a primitive and hence primal ideal of I. Applying Lemma 3.5 to I, π and J , we obtain a τs-
neighbourhood V of J in Id(I), and elementary operators T and C on I, with coefficients in
I, and a projection E of rank m + 1 in π(I) such that

(i) ‖Tπ‖m+1 � m + 1 and Cπ is not (m + 1)-positive;
(ii) for each K ∈ V , ‖TI/K‖ � MU(π) and CI/K is n-positive;
(iii) Tπ(·) = Tπ(E(·)E) and Cπ(·) = Cπ(E(·)E).
Since π is a separated point of Î, the identity map from Prim(I) with the Jacobson topology

to (Prim(I), τs) is continuous at J [13, 3.9.4(a)]. Thus V ∩ Prim(I) contains a Jacobson-open
neighbourhood U of J in Prim(I). There exists a closed two-sided ideal L of I such that
Prim(L) = {P ∩ L : P ∈ U} and, since π ∈ L̂, there exists a positive element c ∈ L such that
‖c‖ = 1 and π(c) = E. We define elementary operators S and R on A by

S(x) = T (cxc) = (T |L)(cxc) (x ∈ A)

and

R(x) = C(cxc) = (C|L)(cxc) (x ∈ A).

It follows from (iii) that Sπ|π(I) = Tπ and Rπ|π(I) = Cπ. Hence, by (i), ‖Sπ‖m+1 � m + 1 and
Rπ is not (m + 1)-positive.

Let σ be an irreducible representation of L and let σ̄ be the unique extension of σ to an
irreducible representation of I on the Hilbert space Hσ. Then K := ker σ̄ ∈ U ⊆ V . Hence, since
(T |L)σ = (T σ̄)|σ(L), we have ‖(T |L)σ‖ � ‖T σ̄‖ � ‖TI/K‖ � M . It follows from [9, Lemma 1(v)]
that ‖T |L‖ � M and hence ‖S‖ � M . Hence, using [18, Exercise 3.10(ii)],

‖S‖n � n‖S‖ � nM < m + 1 � ‖Sπ‖m+1.

With σ and K as in the previous paragraph, we have CI/K is n-positive and hence so is C σ̂.
Since (C|L)σ = (C σ̄)|σ(L), we obtain that (C|L)σ is n-positive. It follows from [9, Lemma 1(iv)]
that C|L is n-positive. Finally, R = ι ◦ C|L ◦ D, where D is the (completely positive) mapping
from A into L given by D(x) = cxc and ι : L → A is the inclusion, and so R is n-positive.

The proof of Theorem 3.6 shows that one may replace the condition on S(π) by the
assumption that π is a separated point of Â, for then one may apply Lemma 3.5 directly to
A with J = ker π. Alternatively, if MU(π) < ∞ (so that π(A) ⊇ K(Hπ)) and π is a separated
point of Â then {π} is automatically open in its closure S(π). For a separable C∗-algebra A,
the set of separated points in Â is a dense Gδ subset [13, 3.9.4].

Corollary 3.7. Let A be a C∗-algebra and n a positive integer. Suppose that π ∈ Â and
that dim π > n.

(1) Suppose that ‖Tπ‖n+1 � ‖T‖n for all elementary operators T on A with coefficients in
A. Then MU(π) > 1, that is, π is not a Fell point.

(2) Suppose that for every n-positive elementary operator T on A with coefficients in A, Tπ

is (n + 1)-positive. Then MU(π) > 1.

Proof. (1) Suppose that MU(π) = 1. Then {π} is relatively open in S(π) [4, Lemma 4.3].
By Theorem 3.6(1) (with M = 1), there exists an elementary operator T on A with coefficients
in A such that ‖Tπ‖n+1 > ‖T‖n. This contradicts the hypothesis.

The proof of (2) is similar, using Theorem 3.6(2).
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Combining Corollaries 3.2 and 3.7, we obtain the following result.

Theorem 3.8. Let A be a C∗-algebra, let π ∈ Â and suppose that dim π > 1. The following
conditions are equivalent:

(1) MU(π) > 1 (that is, π is not a Fell point);
(2) for all n � 1 and all elementary operators T on A, ‖Tπ‖n+1 � ‖T‖n;
(3) there exists a positive integer n < dim π such that for all elementary operators T on A

with coefficients in A, ‖Tπ‖n+1 � ‖T‖n;
(4) for all n � 1 and every n-positive elementary operator T on A, Tπ is (n + 1)-positive;
(5) there exists a positive integer n < dim π such that for every n-positive elementary

operator T on A with coefficients in A, Tπ is (n + 1)-positive.

4. Factorial states and norms of elementary operators

In this section, we shall apply Theorem 2.1 to give an alternative proof of [11, Theorem 4.5], and
the results of Section 3 to give alternative proofs of [22, Corollary 4.5] and the corresponding
parts of [21, Corollary 4.9]. We shall also need the following two propositions, which may be
of independent interest.

Proposition 4.1. Let A be a C∗-algebra. The following conditions are equivalent:

(1) MU(π) = ∞ for all π ∈ Â;
(2) MU(π) > 1 for all π ∈ Â;
(3) A is antiliminal.

Proof. (2) ⇒ (3). Suppose that A has a non-zero postliminal ideal J . Then J contains a
non-zero ideal I with continuous trace [19, 6.2.11]. Let π ∈ Î. Then π is a Fell point of Â and
so MU(π) = 1 by [4, Corollary 4.2].

(3) ⇒ (1). Suppose that there exists π ∈ Â such that MU(π) < ∞. Then by [4, Proposition
2.3(ii)] there is a non-empty open subset U of Â such that MU(σ) < ∞ for all σ ∈ Â. Let J
be the non-zero ideal of A such that Ĵ = U . By [4, Remark 2.4(b); 8, Lemma 2.7], the upper
multiplicity of each element of Ĵ (when computed relative to Ĵ) is finite. Hence J is liminal by
[4, Corollary 4.9].

The next proposition is elementary but, perhaps, slightly surprising. It shows, in particular,
that the notion of ‘antiliminal-by-abelian’ [9] is the same as ‘abelian-by-antiliminal’.

Proposition 4.2. Let A be a C∗-algebra and k a positive integer. The following conditions
are equivalent:

(1) A is k-subhomogeneous or A is antiliminal or A has a k-subhomogeneous ideal I such
that A/I is antiliminal;

(2) A is k-subhomogeneous or A is antiliminal or A has an antiliminal ideal J such that
A/J is k-subhomogeneous;

Proof. (1) ⇒ (2). Suppose that A has a k-subhomogeneous ideal I such that A/I is
antiliminal. Let

U = {π ∈ Â : dim π > k},
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a non-empty open subset of Â [13, 3.6.3(i)]. Let J be the (non-zero) ideal of A such that Ĵ = U .
Since Î and Ĵ are disjoint, I ∩ J = {0}. it follows that the quotient map qI : A → A/I maps J
injectively onto an ideal of A/I. Hence J is antiliminal. By construction,

Â/J = {π ∈ Â : dim π � k}

and so A/J is k-subhomogeneous.
(2) ⇒ (1). Suppose that A has an antiliminal ideal J such that A/J is k-subhomogeneous.

Let V be the interior of Â/J (regarding the latter as a closed subset of Â) and let I be the
ideal of A such that Î = V . Then I is k-subhomogeneous (unless V is empty in which case
I = {0}) and I ∩ J = {0}.

The quotient map qI : A → A/I maps J injectively onto an ideal of A/I. Moreover, qI(J)
is an essential ideal of A/I since Ĵ is dense in Â/I (regarded as subsets of Â). Since J is
antiliminal so is qI(J) and hence so is A/I (for, if K were a non-zero liminal ideal of A/I, then
qI(J) ∩ K would be a non-zero liminal ideal of qI(J)).

We now show how Theorem 2.1 and the results of Section 3 enable us to recapture the
following combination of [11, Theorem 4.5; 21, Corollary 4.6; 22, Corollary 4.5].

Theorem 4.3. Let A be a C∗-algebra and n a positive integer. The following conditions
are equivalent:

(1) Fn(A) is weak∗-dense in F∞(A);
(2) Fn(A) is weak∗-dense in Fn+1(A);
(3) A is n-subhomogeneous or A is antiliminal or A has a n-subhomogeneous ideal I such

that A/I is antiliminal;
(4) ‖T‖cb = ‖T‖n for every elementary operator T on A;
(5) ‖T‖n+1 = ‖T‖n for every elementary operator T on A with coefficients in A;
(6) every n-positive elementary operator on A is completely positive;
(7) every n-positive elementary operator on A with coefficients in A is (n + 1)-positive.

Proof. (1) ⇒ (2). This is immediate.
(2) ⇒ (3). Let U = {π ∈ Â : dim π > n}, an open subset of Â. If U is empty then A is

n-subhomogeneous.
Suppose that U is non-empty and let J be the ideal of A such that Ĵ = U . Let π ∈ U . Since

dim π > n, there exists φ ∈ Fn+1(A) \ Fn(A) such that θ(φ) = π. By (2), φ ∈ Fn(A). It follows
from Theorem 2.1 ((3) ⇒ (4)) that MU(π) > n/n = 1. By [4, Remark 2.4(b); 8, Lemma 2.7],
the upper multiplicity of each element of Ĵ (when computed relative to Ĵ) is greater than 1. By
Proposition 4.1, J is antiliminal. If J = A then, by definition of U, A/J is n-subhomogeneous.

We have shown that A satisfies condition (2) of Proposition 4.2 and so, by that proposition,
condition (3) holds.

(3) ⇒ (1). Since Ff (A) (the set of type-I factorial states of finite degree) is norm-dense
in F∞(A), it suffices to show that Ff (A) ⊆ Fn(A). If A is n-subhomogeneous then Ff (A) =
Fn(A). Therefore, we may assume that A/I is antiliminal where either I = {0} or I is an
n-subhomogeneous ideal of A.

Suppose that φ ∈ Ff (A) \ Fn(A) and let θ(φ) = π. Since φ /∈ Fn(A), π ∈ Â/I. By Proposi-
tion 4.1, MU(π) = ∞ (in Â/I and hence in Â). There exists m � n such that φ ∈ Fm+1(A) \
Fm(A). Hence dimπ > m. Since MU(π) = ∞ > m/n, it follows from Theorem 2.1 ((4) ⇒ (2))
that φ ∈ Fn(A).

(3) ⇒ (4). Let T be an elementary operator on A. By (3) and [9, Lemma 2(ii)], we may
reduce to the two cases where A is either n-subhomogeneous or antiliminal. Suppose first that
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A is n-subhomogeneous. For π ∈ Â, we have ‖Tπ‖cb = ‖Tπ‖n [18, Proposition 8.10]. Then (4)
follows by taking the supremum over π and using [9, Lemma 1(v)].

Suppose now that A is antiliminal and m � n. Let π ∈ Â. By Proposition 4.1, MU(π) = ∞.
Hence, by Theorem 3.1(1), ‖Tπ‖m � ‖T‖n. Taking the supremum over π ∈ Â, we obtain that
‖T‖m � ‖T‖n [9, Lemma 1(v)]. Finally, taking the supremum over m � n, we obtain that
‖T‖cb = ‖T‖n.

(4) ⇒ (5). This is immediate.
(5) ⇒ (2). If Fn+1(A) = Fn(A), then there is nothing to prove, so suppose that φ ∈ Fn+1(A) \

Fn(A) and let π = θ(φ). Then dim π > n. Assuming (5), and using [9, Lemma 1(v)] again, we
have

‖Tπ‖n+1 � ‖T‖n+1 = ‖T‖n

for all elementary operators T on A with coefficients in A. By Corollary 3.7(1), MU(π) > 1.
By Theorem 2.1 ((4) ⇒ (2) ), φ ∈ Fn(A).

(3) ⇒ (6). Let T be an n-positive elementary operator on A. By (3) and [9, Lemma 2(i)],
to show that T is completely positive we may reduce to the two cases where A is either
n-subhomogeneous or antiliminal. Suppose first that A is n-subhomogeneous. For π ∈ Â, we
have Tπ is n-positive by [9, Lemma 1(iv)] and π(A) is ∗-isomorphic to Mr(C) for some r � n.
Hence Tπ is completely positive by [18, Theorem 6.1]. Hence T is completely positive by [9,
Lemma 1(iv)].

Suppose now that A is antiliminal and m � n. Let π ∈ Â. By Proposition 4.1, MU(π) = ∞.
Hence, by Theorem 3.1(2), Tπ is m-positive. Since this holds for all π ∈ Â, it follows from [9,
Lemma 1(iv)] that T is m-positive as required.

(6) ⇒ (7). This is immediate.
(7) ⇒ (2). This is similar to the proof that (5) implies (2), but uses [9, Lemma 1(iv)] and

Corollary 3.7(2).
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