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Abstract

We discuss the existence of positive solutions for singular second-
order boundary value problems x′′ = µf (t, x, x′), ax(0) − bx′(0) = k ≥
0, x′(∞) = 0, where f may be singular at x = 0 and x′ = 0 and
can change sign. Via fixed point theory, we establish the existence of
positive solutions under some conditions on f . Our results deal with the
situation where the solutions approach the singularities of the equation.
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1 Introduction

Our aim is to establish existence of (nonnegative increasing) solutions to the
boundary value problem

x′′(t) = μf(t, x, x′), t ∈ (0, +∞) (1.1)

ax(0) − b lim
t→0

x′(t) = k, lim
t→∞

x′(t) = 0 (1.2)

where a > 0, b ≥ 0, k ≥ 0, μ > 0, f(t, x, z) is singular at x = 0 and z = 0 and
may change sign. Our result establishes this existence for sufficiently small
values of μ and with relatively few conditions on f (a certain bound on |f | and
a negativity condition on f(t, x, z) for small z). A parameter such as μ can be
called a Thiele modulus, though this terminology is usually applied when the
interval is finite [4, 5].

Our basic method is to apply fixed point results for cones in Banach spaces
to get existence, but we have to apply this method to a sequence of nonsingular
integral equation problems that approximate the problem of interest. The
choice of the approximate problems is somewhat delicate as is the process of
establishing that the solutions to the approximate problems converge.

There is considerable literature which is relevant to our work. Staněk [14]
considers x′′ = μq(t)f(t, x, x′) (0 < t < T ) with boundary conditions of the
type ax(0) − bx′(0) = k > 0, x(T ) = 0. The methods of [14] are quite similar
in outline to ours, despite the finiteness of the interval, but [14] requires the
functions q and f to be nonnegative (along with several other conditions).

Via the technique of upper and lower solutions Agarwal and O’Regan [2, 3]
discussed the existence of bounded solutions to equations

1

p(t)
(p(t)x′)′ = f(t, x, p(t)x′) (0 < t < ∞) (1.3)

subject to a boundary condition ax(0)− b limt→0 x′(t) = c0. In the case p(t) ≡
1, A. Constantin [6] established the existence of bounded solutions to equations
of the same kind (subject to certain growth conditions on f). In [2, 3, 6] the
function f(t, x, z) is always assumed continuous for (x, z) ∈ R

2. In [15], again
with p(t) ≡ 1, G. Yang considered positive solutions to (1.3) with boundary
conditions x(0) = x′(∞) = 0, allowing f(t, x, z) to be singular at x = 0 and
z = 0 but requiring boundedness of f as x → +∞. See also the general
references [12, 13] and the works [8, 10, 11, 16] but note that [10, 11, 16] do
not consider singular equations.

Theorem 1.1. Assume f ∈ C([0, +∞) × (0, +∞) × (0, +∞), R) and there
exist positive Φ ∈ C[0, +∞), h ∈ C(0, +∞) and g ∈ C(0, +∞) with ‖Φ‖∞ =

supt∈[0,+∞) |Φ(t)| < +∞,
∫ 1

0
h(s) ds < +∞ and
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∫∞
0

Φ(s) max 1
c
≤x≤c(1+s) h(x) ds < +∞ for each c ≥ 1. Suppose

|f(t, y, z)| ≤ Φ(t)h(y)g(z) (t > 0, y > 0, z > 0). (1.4)

Assume also there is β ∈ C(0, +∞), β(t) < 0 and constants 0 ≤ γ < 1, δ > 0
so that

f(t, x, z) ≤ xγβ(t) (t ≥ 0, x > 0, 0 < z ≤ δ). (1.5)

Then there is μ0 > 0 so that for each μ in the range 0 < μ ≤ μ0 (1.1)–(1.2)
has a solution x = x0 with x0(t) ≥ 0 and x′

0(t) > 0 (for all t ≥ 0).

Our result implies the result of [15] but in contrast to [15], f may be
superlinear at x = +∞. In contrast to [3] we allow f to have singularities and
our hypotheses admit unbounded solutions. Our result does not generalise
several results from the literature where singularities are not considered such
as [6, Theorem 1]. In the proof of [6, Theorem 4], a specific singular equation
on [0,∞) is considered where f(t, x, z) is monotone in z and this special feature
of the equation is used in establishing the existence of solutions. In addition
the solution obtained is bounded below by a positive constant and so does not
approach the singularity at x = 0.

Some of our methods are inspired by [1] and [15]. As corollaries, we dis-
cuss boundedness and unboundedness of positive solutions and we give some
concrete examples where our methods allow us to give a specific value for μ0.

2 Preliminaries

We will consider two spaces of functions in addition to the space C(0, +∞) of
continuous (R-valued) functions on the open interval (0, +∞) (and similarly
for other intervals in R). One is

C[0,∞] =

{
x ∈ C[0,∞) : x(∞) = lim

t→+∞
x(t) exists

}
,

(the continuous functions on the one point compactification of [0,∞)) normed
by the usual supremum ‖x‖∞ = supt≥0 |x(t)|. The other is C1

∞[0,∞) = {x ∈
C[0,∞) : x′ ∈ C[0,∞]} normed by ‖x‖ = max

(
supt≥0

|x(t)|
1+t

, supt≥0 |x′(t)|
)
. It

is easy to verify that the existence of x′(∞) = limt→∞ x′(t) implies finiteness

of supt≥0
|x(t)|
1+t

. See the following elementary lemma (with φ(t) = 1 + t).

Lemma 2.1. If φ(t) is continuous on [0,∞) with inft≥0 φ(t)= δ > 0 and

lim
t→∞

φ(t)
t

= 1, then there is K > 0 so that for each x(t) with x′ ∈ C[0,∞]

sup
t∈[0,∞)

|x(t)|
φ(t)

≤ |x(0)|
δ

+ K sup
t≥0

|x′(t)|
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and lim
t→∞

x(t)
φ(t)

= x′(∞).

Proof. Let K1 = supt∈[0,∞] |x′(t)| and K2 = supt∈[0,∞) t/φ(t). Then

|x(t)|
φ(t)

=
1

φ(t)

∣∣∣∣x(0) +

∫ t

0

x′(s) ds

∣∣∣∣ ≤ |x(0)|
δ

+ K1K2.

Given ε > 0, choose T > 0 so that |x′(t) − x′(∞)| < ε/3 and |1 − t/φ(t)| <
ε/(3K1) for all t ≥ T . Then, for t > T

x(t)

φ(t)
− x′(∞)

=
x(T ) − Tx′(∞)

φ(t)
+

∫ t

T
(x′(s) − x′(∞)) ds

φ(t)
+

(
t

φ(t)
− 1

)
x′(∞)

and, from the triangle inequality we deduce∣∣∣∣x(t)

φ(t)
− x′(∞)

∣∣∣∣ ≤
∣∣∣∣x(T ) − Tx′(∞)

φ(t)

∣∣∣∣+ t − T

φ(t)

ε

3
+

ε

3
< ε

for t > T1 and T1 large enough.

From [7] and [8] we know that C[0,∞] and C1
∞[0,∞) are Banach spaces.

We will also consider the cone P of non-negative elements in C1
∞[0,∞)

P = {x ∈ C1
∞[0, +∞) : x(t) ≥ 0, x′(t) ≥ 0 for t ∈ [0,∞)}. (2.1)

From the Arzela-Ascoli Theorem (or see [7]) we can state a criterion for
compactness in C[0,∞].

Lemma 2.2. Let M ⊆ C[0, +∞]. Then M is relatively compact in C[0, +∞]
if and only if it is (norm) bounded in C[0, +∞] and equicontinuous at each
point of [0,∞]:

(a) sup{‖x‖ : x ∈ M} < ∞, and

(b) for each t0 ∈ [0,∞] and ε > 0, there is a neighbourhood U0 of t0 ∈ [0,∞]
so that t ∈ U0, x ∈ M implies |x(t) − x(t0)| < ε.

The next lemma follows from [9, Lemma 2.3.1, Theorem 2.3.2].

Lemma 2.3. Let Ω be a bounded open set in real Banach space E that contains
the origin, P be a convex closed cone in E which is proper (that is P ∩ (−P ) =
{0}) and A : Ω∩P → P a continuous and completely continuous (that is, maps
bounded sets to relatively compact sets) operator. Suppose

λAx �= x,∀x ∈ ∂Ω ∩ P, λ ∈ (0, 1]. (2.2)

Then i(A, Ω ∩ P, P ) = 1 (where i(A, Ω ∩ P, P ) is the fixed point index of A on
Ω ∩ P with respect to P ) and the equation Ax = x has a solution x ∈ Ω ∩ P .
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Lemma 2.4. Let β ∈ C((0,∞)) with β(t) < 0 (all t ∈ (0,∞)), and let μ > 0,
T > 0 and 0 ≤ γ < 1. Suppose x ∈ P satisfies x(T ) > 0, limt→∞ x′(t) = 0 and

x′′(t) ≤ μβ(t)(x(t))γ (t ∈ [T,∞)).

Then

x′(t) ≥ μ

∫ ∞

t

(−β(s))(αT (s))γ ds for t ∈ [T,∞),

where

αT (t) =

(
(1 − γ)μ

∫ t

T

(τ − T )(−β(τ)) dτ

)1/(1−γ)

(t ≥ T ≥ 0).

Proof. Note that αT (t) is positive for t > T and satisfies the integral equation

αT (t) = μ

∫ t

T

(τ − T )(αT (τ))γ(−β(τ)) dτ (t ∈ [T,∞)). (2.3)

Integration from t to +∞ yields that

x′(t) ≥ −μ

∫ ∞

t

β(s) (x(s))γ ds, t ∈ [T, +∞).

Thus, for t ≥ T ,

x(t) > x(t) − x(T )

≥ −μ

∫ t

T

∫ ∞

s

β(τ) (x(τ))γ dτ ds

≥ −μ

∫ t

T

∫ t

s

β(τ) (x(τ))γ dτ ds

≥ μ

∫ t

T

(τ − T )(−β(τ)) (x(τ))γ dτ.

Note that αT (T ) = 0 < x(T ) and hence there is some interval [T, t∗0) with
t∗0 > 1 where x(t) > αT (t) holds. From the inequality

x(t) − αT (t) ≥ μ

∫ t

T

(τ − T ) ((x(τ))γ − (αT (τ))γ) (−β(τ)) dτ

(which follows using (2.3)) we can show that x(t) > αT (t) remains true for all
t ≥ T . This gives the conclusion of the lemma.
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3 Proof of the main result

Lemma 3.1. Let f0 ∈ C([0, +∞)× [0, +∞)× [0, +∞), R), c0 ≥ 0 and c1 ≥ 0.
Assume that for each M > 0 there is ΦM ∈ L1[0,∞) so that

x ∈ P, ‖x‖ ≤ M ⇒ |f0(t, x(t), x′(t))| ≤ ΦM (t) (t ≥ 0).

For x ∈ P (P as in (2.1)), we define a function (Ax)(t) (on t ∈ [0,∞)) by

(Ax)(t) = c0 + c1x
′(0) +

∫ t

0

max

{
0,

∫ ∞

s

f0 (τ, x(τ), x′(τ)) dτ

}
ds.

Then Ax ∈ P (for all x ∈ P ) and A : P → P is a continuous and completely
continuous map.

Proof. For x ∈ P , let M = ‖x‖ and then

0 ≤ (Ax)(t)

= (Ax)(0) +

∫ t

0

max

{
0,

∫ ∞

s

f0 (τ, x(τ), x′(τ))

}
dτ ds

≤ (Ax)(0) +

∫ t

0

∫ ∞

0

ΦM (τ) dτ ds

≤ (Ax)(0) + t‖ΦM‖1 < +∞.

(We use ‖ · ‖1 for the integral norm on L1[0,∞).) Moreover,

0 ≤ (Ax)′(t) = max

{
0,

∫ ∞

t

f0 (τ, x(τ), x′(τ)) dτ

}

≤
∫ ∞

t

ΦM (τ) dτ, ∀t ∈ [0, +∞),

which yields that limt→∞(Ax)′(t) = 0. Consequently, A : P → P is well
defined.

To show that A : P → P is continuous, we consider a convergent sequence
(xm)∞m=1 in P converging to x0 ∈ P . By compactness of the sequence and its
limit there is M > 0 so that ‖xm‖ ≤ M for all m (and ‖x0‖ ≤ M). Because
of the elementary inequality |max{0, u} − max{0, v}| ≤ |u − v| we have

|(Axm)′(t) − (Ax0)
′(t)|

≤
∫ ∞

t

|f0 (τ, xm(τ), x′
m(τ)) − f0 (τ, x0(τ), x′

0(τ))| dτ

≤
∫ ∞

0

|f0 (τ, xm(τ), x′
m(τ)) − f0 (τ, x0(τ), x′

0(τ))| dτ. (3.1)
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Also,

|f0 (τ, xm(τ), x′
m(τ)) − f0 (τ, x0(τ), x′

0(τ))| ≤ 2ΦM(τ)

and (3.1) with the Lebesgue dominated convergence theorem then implies
(Axm)′(t) → (Ax0)

′(t) uniformly for t ≥ 0. One can show in a similar way
that (Axm)(0) → (Ax0)(0) and then by Lemma 2.1, we have Axm → Ax0.

Finally, let D ⊆ P be bounded and we claim that A(D) is relatively com-
pact in P (or equivalently in C1

∞[0,∞) since P is closed). Fix M > 0 so that
‖x‖ ≤ M for x ∈ D. We have

|(Ax)′(t)| ≤
∫ ∞

t

ΦM(s) ds (3.2)

≤
∫ ∞

0

ΦM(τ) ds,

which implies that {(Ax)′ : x ∈ D} is bounded. From (3.2) we see that the
functions (Ax)′ (x ∈ D) are equicontinuous at ∞. To show equicontinuity at
point t0 ∈ [0,∞) observe that

(Ax)′(t) = max

{
0,

∫ ∞

t

f0 (τ, x(τ), x′(τ)) dτ

}

= max

{
0,

∫ t0

t

f0 (τ, x(τ), x′(τ)) dτ

+

∫ ∞

t0

f0 (τ, x(τ), x′(τ)) dτ

}

from which we deduce that

|(Ax)′(t) − (Ax)′(t0)| ≤
∣∣∣∣
∫ t0

t

f0 (τ, x(τ), x′(τ)) dτ

∣∣∣∣
≤

∣∣∣∣
∫ t0

t

ΦM(τ) dτ

∣∣∣∣
and so it follows that {(Ax)′(t) : x ∈ D} is equicontinuous at t0. From
Lemma 2.2 we see that for any (xm)∞m=1 in D, there is a subsequence (which
we denote again by (xm)∞m=1) so that (Axm)′ converges uniformly on [0,∞] (to
some limit function in z ∈ C[0,∞]). Passing to a further subsequence we may
assume also that limm→∞(Axm)(0) = x0(0) exists. From Lemma 2.1 we can
then conclude that limm→∞ Axm = x0 where x0(t) = x0(0) +

∫ t

0
z(τ) dτ .

Lemma 3.2. Fix f satisfying the hypothesis (1.4) of Theorem 1.1, μ > 0,
a > 0, b ≥ 0, k ≥ 0 and n ∈ N. For x ∈ P (P as in (2.1)), we define a
function (Anx)(t) (on t ∈ [0,∞)) by

(Anx)(t) =
k

a
+

b

a
x′(0) +

∫ t

0

max

{
0,

∫ ∞

s

−μfn (τ, x(τ), x′(τ)) dτ

}
ds,



1196 B. Yan and R. M. Timoney

where we let fn(τ, x, z) = f
(
τ, x + τ+1

n
, z + 1

n

)
. Then Anx ∈ P (for all x ∈ P )

and An : P → P is a continuous and completely continuous map.

Proof. The idea is to apply Lemma 3.1 with f0(t, x, z) = −μfn(τ, x, z). What
we need is to establish the existence of ΦM ∈ L1[0,∞) for each M > 0 to
satisfy the assumption in Lemma 3.1.

To compress the notation we introduce

Hε,c(τ) = max
ε≤x≤c(1+τ )

h(x), Gε,M = max
ε≤z≤M

g(z). (3.3)

For x ∈ P , it is easy to see that

0 ≤ x(t) = x(0) +

∫ t

0

x′(s)ds ≤ x(0) + t‖x‖ ≤ (1 + t)‖x‖, ∀t ∈ [0, +∞).

Thus

1

n
≤ x(t) +

t + 1

n
≤ (1 + ‖x‖)(1 + t), ∀t ∈ [0, +∞).

Fix M > 0 and choose a c > 1+M big enough such that 1/c < 1/n. Then,
for x ∈ P with ‖x‖ ≤ M ,

1

c
≤ x(t) +

t + 1

n
≤ c(1 + t), ∀t ∈ [0, +∞). (3.4)

Thus, using (1.4),

|fn(τ, x(τ), x′(τ))| =

∣∣∣∣f
(

τ, x(τ) +
τ + 1

n
, x′(τ) +

1

n

)∣∣∣∣
≤ Φ(τ)h

(
x(τ) +

τ + 1

n

)
g

(
x′(τ) +

1

n

)

≤ Φ(τ)h

(
x(τ) +

τ + 1

n

)
G1/n,‖x‖+1/n. (3.5)

Together with (3.4) this implies that, for x ∈ P with ‖x‖ ≤ M ,

|f0(τ, x(τ), x′(τ))| ≤ ΦM (τ) = μΦ(τ)H1/c,c(τ)G1/n,M+1/n.

As ΦM ∈ L1[0,∞) by the hypotheses, we can apply Lemma 3.1 to get the
result.

Lemma 3.3. Fix f satisfying the hypotheses (1.4) and (1.5) of Theorem 1.1,
μ > 0, a > 0, b ≥ 0, k ≥ 0 and n ∈ N. Let An be as in Lemma 3.2. If 1/n < δ,
0 < λ ≤ 1 and x ∈ P satisfies x = λAnx, then

x′′(t) = λμfn (t, x(t), x′(t)) , t ∈ (0, +∞)

and x′(t) > 0 for t ≥ 0.
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Proof. Differentiating the formula defining An we have x′(t) ≥ 0 (for t ≥ 0),
x(t) ≥ x(0) ≥ 0, and limt→∞ x′(t) = 0. Because 1/n < δ, there is t0 > 0 so that
0 ≤ x′(t) + 1/n < δ for all t ≥ t0. From (1.5) we then have fn(t, x(t), x′

0(t)) =
f(t, x(t) + (t + 1)/n, x′

0(t) + 1/n) ≤ (x(t) + (t + 1)/n)γβ(t) < 0 for t ≥ t0 and
so differentiating the formula defining An gives

(Anx)′(t) = −μ

∫ ∞

t

fn (τ, x(τ), x′(τ)) dτ (t ≥ t0).

Since x = λAnx and fn(τ, x(τ), x′
0(τ)) < 0 (for τ ≥ t ≥ t0) we deduce x′(t) > 0

for t ≥ t0.
Thus {t ∈ [0,∞) : x′(s) > 0∀s > t} is nonempty (it contains t0) and has

an infimum t∗. If t∗ > 0 then we must have x′(t∗) = 0. We will show now that
x′(t∗) > 0 and this will also show that t∗ = 0, hence x′(0) > 0 must hold. If
x′(t∗) = 0, then by continuity of x′ we must then have t∗0 > t∗ such that

0 < x′(t), x′(t) +
1

n
< δ (t∗ < t ≤ t∗0),

and hence fn(τ, x(τ), x′
0(τ)) ≤ (x(τ) + 1

n
τ + 1

n
)γβ(τ) < 0 for t∗ < τ ≤ t∗0.

As x′(t) > 0 for t∗ < t ≤ t∗0, we have

x′(t) = λ(Anx)′(t) = −μλ

∫ ∞

t

fn (τ, x(τ), x′(τ)) dτ (3.6)

in the range t∗ < t ≤ t∗0. In particular (3.6) holds for t = t∗0 and, by continuity,
(3.6) also holds at t = t∗. Thus

0 = x′(t∗) = −μλ

∫ t∗0

t∗
fn (τ, x(τ), x′(τ)) dτ + x′(t∗0) > x′(t∗0) > 0,

a contradiction. We have therefore established t∗ = 0 (and x′(0) > 0).
We can now verify directly that x must satisfy

x′′(t) = λμfn (t, x(t), x′(t)) , t ∈ (0, +∞).

Notation 3.4. We will continue to use the notation (3.3) with h and g as in
the hypothesis (1.4). We also let I(z) = Ig(z) =

∫ z

0
u

g(u)+1
du. As g(u) > 0

we can see that I is continuous and strictly increasing on [0,∞) with I(0) =
0 and I([0,∞)) = [0, I∞) where I∞ =

∫∞
0

u
g(u)+1

du ∈ [0,∞] may be finite
or infinite. Thus there is a monotone increasing continuous inverse function
I−1 : [0, I∞) → [0,∞) with I−1(0) = 0.

Define, for R > 0.

ΨR(s) =

{ ‖Φ‖∞h(s) + RΦ(s)H1,1+R(s) s ≤ 1
RΦ(s)H1,1+R(s) s > 1.

For μ0 > 0 let J(μ0) = {c > 0 : μ0‖Ψc‖1 < I∞}.
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Lemma 3.5. Assume that f satisfies the hypotheses of Theorem 1.1. Then,
using the notation above, there is μ0 > 0 so that

sup
c∈J(μ0)

c
k
a

+ ( b
a

+ 1)I−1 (μ0‖Ψc‖1)
> 1. (3.7)

Moreover, for such μ0 there is R1 > 0 and ε > 0 so that

R1 >
k

a
+

(
b

a
+ 1

)
I−1 (I(ε) + μ0‖ΨR1+ε‖1) . (3.8)

Proof. Fix R′ > k/a and then we can find μ0 > 0 so that

μ0

(
‖Φ‖∞

∫ 1

0

h(s) ds + R′
∫ ∞

0

Φ(s)H1,1+R′(s) ds

)
< I∞

and

R′

k
a

+ ( b
a

+ 1)I−1
(
μ0

(
‖Φ‖∞

∫ 1

0
h(s) ds + R′ ∫∞

0
Φ(s)H1,1+R′(s) ds

)) > 1.

We have μ0 so that (3.7) holds.
Then there is R′′ > 0 so that R′′ > (k/a) + (b/a + 1) I−1 (μ0‖ΨR′′‖1) .

Further, by continuity of I and its inverse, we can choose ε > 0 so that

R′′ − ε >
k

a
+

(
b

a
+ 1

)
I−1 (I(ε) + μ0‖ΨR′′‖1)

and ε < R′′. Then let R1 = R′′ − ε.

Lemma 3.6. Assume that f satisfies the hypotheses of Theorem 1.1 and fn

is as in Lemma 3.2. Assume also that 0 < μ ≤ μ0, R1 > 0 where μ0, R1 and
ε > 0 satisfy (3.8) and n ≥ n0 > 1/ min{ε, δ}. Then the problem

x′′(t) = μfn (t, x(t), x′(t)) , t ∈ (0, +∞) (3.9)

x(0) =

(
k

a
+

b

a
x′(0)

)
, x′(∞) = 0 (3.10)

has a solution x = xn ∈ P with 0 < ‖xn‖ < R1 and x′
n(t) > 0 for all t ≥ 0.

Proof. We will consider the continuous and completely continuous operator
An of Lemma 3.2 (for n ≥ n0) and we aim to apply Lemma 2.3 to each An

where Ω = {x ∈ C1
∞[0, +∞) : ‖x‖ < R1}. To that end, we claim that there is

no x ∈ P ∩ ∂Ω = {x ∈ P : ‖x‖ = R1} with x = λAnx and 0 < λ ≤ 1.
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Assume on the contrary that the claim is false and x = x0 ∈ P , 0 < λ0 ≤
1, n ≥ n0 satisfy ‖x0‖ = R1 and x0 = λ0Anx0. By Lemma 3.3, x′′(t) =
λ0μfn (t, x(t), x′(t)) (for t > 0). Thus, by (1.4),

−x′′
0(t) ≤ μ

∣∣∣∣f
(

t, x0(t) +
t + 1

n
, x′

0(t) +
1

n

)∣∣∣∣
≤ μΦ(t)h

(
x0(t) +

t + 1

n

)
g(x′

0(t) + 1/n);

− (x′
0(t) + 1/n) x′′

0(t)

g(x′
0(t) + 1/n) + 1

≤ μΦ(t)h

(
x0(t) +

t + 1

n

)
(x′

0(t) + 1/n).

Integrating between t and ∞ we get

I(x′
0(t) + 1/n) − I(1/n)

≤ μ

∫ ∞

t

Φ(s)h

(
x0(s) +

s + 1

n

)
d

(
x0(s) +

s + 1

n

)

≤ μ

∫ ∞

0

Φ(s)h

(
x0(s) +

s + 1

n

)
d

(
x0(s) +

s + 1

n

)
. (3.11)

Since limt→+∞(x0(t)+ (t+1)/n) = +∞ and x0(t)+ (t+1)/n is increasing,
there are two situations: either x0(t)+

t+1
n

≥ 1 for all t ∈ [0, +∞); or x0(0)+ 1
n

<
1.

In the second case there is a unique T > 0 such that x0(T ) + 1
n
T + 1

n
= 1

and 1 ≤ x0(t) + 1
n
t + 1

n
≤ (R1 + ε)(1 + t), ∀t ∈ [T, +∞). And integrating

between t and ∞ we estimate (3.11) from above by

I(x′
0(t) + 1/n) − I(1/n)

≤ μ

∫ T

0

Φ(s)h

(
x0(s) +

s + 1

n

)
d

(
x0(s) +

s + 1

n

)

+μ

∫ ∞

T

Φ(s)h

(
x0(s) +

s + 1

n

)
d

(
x0(s) +

s + 1

n

)

≤ μ‖Φ‖∞
∫ T

0

h

(
x0(s) +

s + 1

n

)
d

(
x0(s) +

s + 1

n

)

+μ

∫ ∞

T

Φ(s)h

(
x0(s) +

s + 1

n

)(
x′

0(s) +
1

n

)
ds

≤ μ

(
‖Φ‖∞

∫ 1

0

h(s) ds + (R1 + ε)

∫ ∞

0

Φ(s)H1,R1+ε(s) ds

)
= μ‖ΨR1+ε‖1

(∀t ∈ [0, +∞)). In the first case we get the same estimate by taking T = 0 in
the above argument.
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Rearranging, and using I(1/n) < I(ε) together with monotonicity of I−1

we get

I(x′
0(t) + 1/n) ≤ I(ε) + μ‖ΨR1+ε‖1

x′
0(t) ≤ I−1 (I(ε) + μ‖ΨR1+ε‖1) < R1 (3.12)

by (3.8). Integrating again from 0 to t, we find

x0(t) = x0(0) +

∫ t

0

x′
0(s) ds ≤ x0(0) + tI−1 (I(ε) + μ‖ΨR1+ε‖1)

from which it follows that

sup
t≥0

|x0(t)|
1 + t

≤ x0(0) + I−1 (I(ε) + μ‖ΨR1+ε‖1)

≤ λ0
k

a
+ λ0

b

a
x′

0(0) + I−1 (I(ε) + μ‖ΨR1+ε‖1)

≤ k

a
+

(
b

a
+ 1

)
I−1 (I(ε) + μ‖ΨR1+ε‖1) < R1 (3.13)

by (3.8). From (3.12), (3.13) and 1/n < ε we get R1 = ‖x0‖ < R1, a contra-
diction. This establishes the claimed nonexistence of x0.

We can now apply Lemma 2.3 to An to obtain xn ∈ P ∩Ω with xn = Anxn.
By Lemma 3.3, x = xn must satisfy (3.9)–(3.10) and x′

n(t) > 0 for t ≥ 0.

Proof (of Theorem 1.1). Let n0 be as in Lemma 3.6. For n ≥ n0, let xn ∈ P
satisfy (3.9)–(3.10) and x′

n(t) > 0 for all t ≥ 0. Let Mn = supt∈[1,+∞) x′
n(t) and

η = infn≥n0 Mn. Now we show that η > 0. In fact, if η = 0, there is an {nj}
such that Mnj

+ 1
nj

→ 0 as j → +∞ and we can assume Mnj
+ 1

nj
< δ (all j).

Our assumption (1.5) implies that

fnj
(t, xnj

(t), x′
nj

(t)) ≤ β(t)

(
xnj

(t) +
t + 1

nj

)γ

, t ∈ [1, +∞).

Thus,

x′′
nj

(t) ≤ μβ(t)

(
xnj

(t) +
t + 1

nj

)γ

, t ∈ [1, +∞)

and hence

x′′
nj

(t) ≤ μβ(t)(xnj
(t))γ t ∈ [1, +∞).

By Lemma 2.4

x′
nj

(t) ≥ μ

∫ ∞

t

(−β(s))(α1(s))
γ ds, t ∈ [1, +∞)
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and this contradicts η = 0.
Let ζ = min{δ/2, η}. Since limt→+∞ x′

n(t) = 0, set x′
n(tn) = ζ , tn ∈

[1, +∞). It is easy to see that x′
n(t) is decreasing on [tn, +∞). Now we show

that

x′
n(t) ≥ ζ, t ∈ [0, tn], n ≥ n0. (3.14)

In fact, if there is a t0 ∈ [0, tn] with x′
n(t0) < ζ , set t∗ = sup{t|x′

n(s) < ζ for all
s ∈ [t0, t]}. Obviously, t∗ ≤ tn with x′

n(t) < ζ for all t ∈ [t0, t
∗) and x′

n(t∗) = ζ .
Now (1.5) implies that

x′′
n(t) ≤ μβ(t)

(
xn(t) +

t + 1

n

)γ

, t ∈ [t0, t
∗],

which yields that x′
n(t) is decreasing on [t0, t

∗]. This is a contradiction to
x′

n(t∗) = ζ > x′
n(t0) and establishes (3.14).

Since x′
n(t) ≥ ζ for all t ∈ [0, tn] ⊇ [0, 1], xn(t) = xn(0) +

∫ t

0
x′

n(s) ds ≥ ζt
for all t ∈ [0, 1]. Since xn(t) is increasing on [0, +∞), we know that xn(t) ≥ ζ
for all t ∈ [1, +∞), n ∈ N0. Then,

ζ ≤ xn(t) +
t + 1

n
≤ (R1 + ε)(1 + t), t ∈ [1, +∞).

From (3.9) and (1.4) we get

−(x′
n(t) + 1/n)x′′

n(t)

g(x′
n(t) + 1/n) + 1

≤ (x′
n(t) + 1/n)|x′′

n(t)|
g(x′

n(t) + 1/n) + 1

≤ μΦ(t)(x′
n(t) + 1/n)h(xn(t) + (t + 1)/n)) (t > 0)

and integrating the inequality gives

|I(x′
n(t1) + 1/n) − I(x′

n(t2) + 1/n)|
≤ μ

∣∣∣∣
∫ t2

t1

Φ(t)h

(
xn(t) +

t + 1

n

)(
x′

n(t) +
1

n

)
dt

∣∣∣∣ . (3.15)

(for 0 ≤ t1, t2 < ∞). Then we have for t1 ≥ 1 and t2 ≥ 1

|I(x′
n(t1) + 1/n) − I(x′

n(t2) + 1/n)| ≤ μ

∣∣∣∣
∫ t2

t1

(R1 + ε)Φ(t)Hζ,R1+ε(t) dt

∣∣∣∣ .
(3.16)

If t1 ≤ 1 and t2 ≤ 1

|I(x′
n(t1) + 1/n) − I(x′

n(t2) + 1/n)|
≤ μ

∣∣∣∣
∫ t2

t1

Φ(t)h

(
xn(t) +

t + 1

n

)
d

(
xn(t) +

t + 1

n

)
dt

∣∣∣∣
≤ μ

∣∣∣∣∣‖Φ‖∞
∫ xn(t2)+(t2+1)/n

xn(t1)+(t1+1)/n

h(s) ds

∣∣∣∣∣ (3.17)
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(3.16) and finiteness of
∫∞
1

Φ(s)H1/c,c(s) ds guarantee that the functions
I(x′

n(t) + 1/n) (n ≥ n0) are equicontinuous at each point of [1,∞). Since
{x′

n(t) + 1/n : n ≥ n0} is bounded on [0, 1] by supn ‖xn‖+ 1/n0 ≤ R1 + 1, the
functions belonging to {xn(t)+(t+1)/n : n ≥ n0} are equicontinuous on [0, 1].

Together with (3.17) and the finiteness of
∫ T

0
h(s) ds (for T = 2R1+2 > 0) this

implies that the functions I(x′
n(t) + 1/n) (n ≥ n0) are equicontinuous at each

point of [0, 1]. Combining with equicontinuity on [1,∞) we get equicontinuity
at each point of [0,∞). Since I−1 is uniformly continuous on [0, I(R1 +1/n0)],
we can deduce that the functions x′

n(t) (n ≥ n0) are equicontinuous at each
point of [0,∞). A similar argument, using x′

n(∞) = 0 shows, via

|I(x′
n(t1) + 1/n) − I(1/n)| ≤ μ

∣∣∣∣
∫ +∞

t1

Φ(t)Hζ,R1+ε(t) dt

∣∣∣∣ (t1 ≥ 1),

that the functions are also equicontinuous at ∞.
We can therefore apply Lemma 2.2 to conclude that there is a subsequence

(x′
nj

)∞j=1 of (x′
n)∞n=n0

that converges uniformly on [0,∞] to some limit function
y ∈ C[0,∞]. Passing to a further subsequence, and using compactness of
[0, R1] we can also assume that limj→∞ xnj

(0) = ξ0 exists. We can then define
x0 ∈ C1

∞[0, +∞) by

x0(t) = ξ0 +

∫ t

0

y(τ) dτ

and we can see from the fact that xn satisfies (3.10) that x = x0 must satisfy
the boundary conditions (1.2). As xnj

∈ P we have x0(0) = ξ0 ≥ 0. As
x′

nj
(t) > 0 for all t we have x′

0(t) = y(t) = limj→∞ x′
nj

(t) ≥ 0.
By continuity at ∞ and x′

0(∞) = 0, there is t0 > 0 so that x′
0(t) < δ/3 for

t ∈ [t0,∞). By uniform convergence, there is j0 > 3/δ so that |x′
nj

(t)−x′
0(t)| <

δ/3 for all j ≥ j0 and t∈ [t0,∞). Hence 0 < x′
nj

(t) + 1/nj < δ for all t ≥ t0,
j ≥ j0. From (1.5) we have therefore

fnj
(τ, xnj

(τ), x′
nj

(τ)) ≤
(

xnj
(τ) +

τ + 1

nj

)γ

β(τ) (τ ≥ t0, j ≥ j0).

Since xn satisfies (3.9), Lemma 2.4 gives

x′
nj

(t) ≥ μ

∫ ∞

t

(αt0(τ))γ(−β(τ)) dτ (t ≥ t0, j ≥ j0).

Taking limits as j → ∞ we see that x′
0(t) > 0 holds for all t ∈ (t0,∞). We

claim that in fact x′
0(t) > 0 for all t ≥ 0. To see the claim, consider the set

{t ≥ 0 : x′
0(τ) > 0∀τ ∈ (t,∞)} ⊆ [0,∞), a nonempty set since it contains t0.

Denote the infimum of this set by t∗. If t∗ > 0 then necessarily x′
0(t

∗) = 0.
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We show that x′
0(t

∗) > 0 (so that t∗ = 0 and x′
0(0) > 0). If x′

0(t
∗) = 0, then

there is t1 > t∗ so that x′
0(t) < δ/3 for t∗ ≤ t ≤ t1. By unform convergence

there is j0 ≥ 3/δ such that |x′
nj

(t) − x′
0(t)| < δ/3 for j ≥ j0 and all t. Hence

x′
nj

(t) + 1/nj < δ for t ∈ [t∗, t1) and j ≥ j0. For j ≥ j0 fixed, consider
t∗j = sup{tj : x′

nj
(t) + 1/nj < δ∀t ∈ [t∗, tj)} ≥ t1 > t∗. Note that

x′′
nj

(t) = μfnj
(t, xnj

(t), x′
nj

(t))

< μ

(
xnj

(t) +
t + 1

nj

)γ

β(t) < 0 (t∗ ≤ t < t∗j) (3.18)

by (1.5). If t∗j < ∞, then x′
nj

(t∗j) = δ + 1/nj, but this is impossible because
(3.18) implies δ > x′

nj
(t∗)+1/nj > x′

nj
(t∗j)+1/nj = δ. Thus t∗j = ∞ for j ≥ j0.

From Lemma 2.4 we have

x′
nj

(t) ≥ μ

∫ ∞

t∗
(αt∗(τ))γ(−β(τ)) dτ (t ≥ t∗, j ≥ j0).

Taking the limit as j → ∞ shows x′
0(t

∗) > 0. We have therefore shown that
t∗ = 0 and x′

0(t) > 0 for t ≥ 0, which implies that x0(t) > 0 for all t ∈ (0, +∞).
Consequently, since limj→+∞ ‖xnj

− x0‖ = 0, we have

inf
j≥1

{
min
s∈[t,1]

xnj
(s), min

s∈[t,1]
x′

nj
(s)

}
> 0, t < 1

and

inf
j≥1

{
min
s∈[1,t]

xnj
(s), min

s∈[1,t]
x′

nj
(s)

}
> 0, t > 1.

From

x′
nj

(t) − x′
nj

(1) = μ

∫ t

1

fnj
(τ, xnj

(τ), x′
nj

(τ)) dτ, t ∈ (0, +∞),

letting j → +∞, the Lebesgue Dominated Convergence Theorem and (1.4)
guarantee that

x′
0(t) − x′

0(1) = μ

∫ t

1

f(τ, x0(τ), x′
0(τ)) dτ, t ∈ (0, +∞).

By direct differentiation, we have

x′′
0(t) = μf(t, x0(t), x

′
0(t)), t ∈ (0, +∞),

which is (1.1). We already established that x = x0 satisfies (1.2).
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4 Examples and consequences

Corollary 4.1. Assume that the hypotheses of Theorem 1.1 hold together with
one of the following conditions

(i) limt→∞ t
∫∞

t
β(τ) dτ = −∞

(ii)
∫∞

t0
(τ − t0)β(τ) dτ = −∞ for some t0 ≥ 0.

Then all solutions of (1.1)–(1.2) with x(t) ≥ 0 and x′(t) > 0 for t ∈ (0,∞)
are unbounded.

Proof. Let x0 be a nonnegative and strictly monotone increasing solution of
(1.1)–(1.2). Since limt→∞ x′

0(t) = 0, there is t′ ≥ t0 so that 0 < x′(t) < δ for
all t ∈ [t′,∞). From (1.5) and the integral form of (1.1) we have

x′
0(t) ≥ μ

∫ ∞

t

(x0(τ))γ(−β(τ)) dτ (t ≥ t′).

Hence, for t > t′,

x0(t) − x0(t
′) ≥ μ

∫ t

t′

∫ ∞

s

(x0(τ))γ(−β(τ)) dτ ds

= μ

∫ t

t′

∫ t

s

(x0(τ))γ(−β(τ)) dτ ds

+μ

∫ t

t′

∫ ∞

t

(x0(τ))γ(−β(τ)) dτ ds

= μ

∫ t

t′
(τ − t′)(x0(τ))γ(−β(τ)) dτ

+μ(t − t′)
∫ ∞

t

(x0(τ))γ(−β(τ)) dτ.

Given either of the two conditions we conclude x(t) → ∞ as t → ∞.

Corollary 4.2. Assume that the hypotheses of Theorem 1.1 hold and that for
each c′ > 0, c ≥ 1 there is T = T (c′, c) ∈ [1,∞) satisfying

∫ ∞

T

I−1

(
c′
∫ ∞

s

Φ(τ) max
1
c
≤x≤c(1+τ)

h(x) dτ

)
ds < ∞

(with I(z) =
∫ z

0
u/(g(u)+1) du). Then all solutions of (1.1)–(1.2) with x(t) ≥

0 and x′(t) > 0 for t ∈ (0,∞) are bounded.
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Proof. Let x0 be a nonnegative and strictly monotone increasing solution of
(1.1)–(1.2). From the assumptions limt→0+ x′

0(t) exists and limt→∞ x′
0(t) = 0.

It follows easily that x0 ∈ C1
∞[0,∞). As in (3.4) there is a c > 0 such that

1
c
≤ x0(t) ≤ c(1 + t) for all t ∈ [1, +∞). Then, we can see from (1.1) and (1.4)

that

|x′′
0(t)| ≤ μΦ(t)h(x0(t))g(x′

0(t))

−x′
0(t)x

′′
0(t)/(g(x′

0(t)) + 1) ≤ μΦ(t) max
1
c
≤x≤c(1+t)

h(x)‖x0‖, t ∈ [1, +∞).

Integrating we get

I(x′
0(t)) − I(0) ≤ μ‖x0‖

∫ ∞

t

Φ(τ) max
1
c
≤x≤c(1+τ)

h(x) dτ, t ∈ [1, +∞),

and hence (since I(0) = 0 and I−1 is monotone) if t ∈ [t0,∞) for t0 ≥ 1
sufficiently large

x′
0(t) ≤ I−1

(
μ‖x0‖

∫ ∞

t

Φ(τ) max
1
c
≤x≤c(1+τ)

h(x) dτ

)
.

Integrating both sides and using the hypothesis we get x0 bounded.

Example 4.3. Consider the boundary value problem{
x′′ = μe−t

(
xb1 + xb2 + x−b3

)
(cos t + (x′)a1 − (x′)−a2) (t ∈ (0,∞))

x(0) − x′(0) = 0, limt→∞ x′(t) = 0

(4.1)

where a1 ≥ 0, a2 > 0, b2 ≥ b1 > 0, 0 < b3 < 1, b1 < 1 and μ > 0. Then there
is μ0 > 0 so that, for 0 < μ < μ0, the problem has a bounded nonnegative
strictly monotone increasing solution. If b2 + 1 < 2 − a1, μ0 = +∞.

To see that this is so we apply Theorem 1.1 and Corollary 4.2, where
k = 0, a = b = 1, Φ(t) = e−t, h(x) = xb1 + xb2 + x−b3 , g(z) = 1 + za1 + z−a2 ,
δ = (1/3)1/a2 , γ = b1 and β(t) = −e−t. It is easy to see that (1.4) and (1.5)
hold. Theorem 1.1 guarantees that there is μ0 > 0 so that for 0 < μ < μ0 the
problem has a nonnegative strictly monotone increasing solution.

Moreover, since limu→0+
1

1+ua2+aa1+a2
= 1, there is a δ0 with 1 ≥ δ0 > 0

such that for 0 ≤ u ≤ δ0,
u1+a2

1+ua2+ua1+a2
≥ 1

2
u1+a2 . Thus

I(z) =

∫ z

0

u

1 + g(u)
du =

∫ z

0

u1+a2

1 + 2ua2 + ua1+a2
du

≥
∫ z

0

1

2
u1+a2 du =

1

2(2 + a2)
z2+a2 (0 ≤ z ≤ δ0),
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which implies

I−1(y) ≤ (2(2 + a2)y)
1

2+a2 , 0 ≤ y ≤ I(δ0). (4.2)

Since lims→+∞
∫∞

s
Φ(τ)H1/c,c(τ) dτ = 0 (with the notation (3.3)), there is a

T = T (c′, c) > 0 such that max(c′, 1)
∫∞

T
Φ(τ)H1/c,c(τ) dτ < I(δ0). Then (4.2)

yields that∫ ∞

T

I−1

(
c′
∫ ∞

s

Φ(τ)H1/c,c(τ) dτ

)
ds

≤
∫ ∞

T

(
2(2 + a2)c

′
∫ ∞

s

Φ(τ)H1/c,c(τ) dτ

) 1
2+a2

ds < +∞.

As a result Corollary 4.2 guarantees that the solutions to (4.1) are bounded.
Assume now b2 + 1 < 2 − a1. For z ≥ 1,

I(z) =

∫ z

0

u

1 + g(u)
du

=

∫ 1

0

u

1 + g(u)
du +

∫ z

1

u

1 + g(u)
du

≥ I(1) +
1

3(2 − a1)
[z2−a1 − 1],

we have I([0,∞)) = [0,∞) and

z ≥ I−1

(
I(1) +

1

3(2 − a1)
[z2−a1 − 1]

)
, z ≥ 1.

Let y = I(1) + 1
3(2−a1)

[z2−a1 − 1], so that y ≥ I(1) can be arbitrary with z ≥ 1.
Hence

I−1(y) ≤ (3(2 − a1) (y − I(1)) + 1)
1

2−a1 (y ≥ I(1)). (4.3)

Finally, for any μ0 > 0, consider (3.7). We have already noted I∞ =
∞ and so J(μ0) = [0,∞). It is easy to see that, with the constant c0 =

‖Φ‖∞
∫ 1

0
h(s) ds,

k

a
+

(
b

a
+ 1

)
I−1

(
μ0

(
c0 + c

∫ ∞

0

Φ(s) max
1≤x≤(1+c)(1+s)

h(x) ds

))

≤ 2I−1

(
μ0

(
c0 + 3c(1 + c)b2

∫ ∞

0

e−s(1 + s)b2 ds

))
.

From (4.3), it is easy to see that if b2 + 1 < 2 − a1, then the left hand side of
(3.7) is ∞ for all μ0. Thus (4.1) has solutions for all μ (if b2 + 1 < 2 − a1).
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Example 4.4. Consider the boundary value problem (on t ∈ (0,∞)){
x′′ = μ(1 + t)−2

(
xb1 + xb2 + x−b3

)
(1 + (x′)a1 − (x′)−a2)

x(0) = 0, limt→∞ x′(t) = 0,
(4.4)

where 1 ≥ a1 ≥ 0, a2 > 0, 1 > b1 ≥ 0, 1 > b2 > 0, 1 > b3 ≥ 0 and μ > 0. Then
there is a μ0 > 0 such that the problem (4.4) has an unbounded nonnegative
strictly monotone increasing solution for all 0 < μ ≤ μ0.

To see that this is so we apply Theorem 1.1, Corollary 4.1, where k = 0,
a = 1, b = 0, Φ(t) = (1 + t)−2, h(x) = xb1 + xb2 + x−b3 , g(z) = 1 + za1 + z−a2 ,
δ = (1/3)1/a2 , γ = b1 and β(t) = −(1 + t)−2.

To apply Corollary 4.1 note that
∫∞
1

(τ − 1)β(τ) dτ = −∞.
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