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1. INTRODUCTION 
 

Self-organizing neural networks represent a family of useful clustering-
based classification methods in several application domains. One such 
technique is the Kohonen Self-Organizing Feature Map (SOM) (Kohonen, 
2001), which has become one of the most successful approaches to analysing 
genomic expression data. This model is relatively easy to implement and 
evaluate, computationally inexpensive and scalable. In addition, it exhibits 
significant advantages in comparison to other options. For instance, unlike 
hierarchical clustering it facilitates an automatic detection and inspection of 
clusters. Unlike Bayesian-based clustering it does not require prior hypotheses 
or knowledge about the data under consideration. Compared to the k-means 
clustering algorithm, the SOM exemplifies a robust and structured 
classification process. 

Self-organizing neural networks are based on the principle of 
transforming a set of p-variate observations into a spatial representation of 
smaller dimensionality, which may allow a more effective visualization of 
correlations in the original data. Murtagh and Hernández-Pajares (1995), 
among many others, have discussed the connections between SOMs and 
alternative data analysis techniques. Before its introduction to the area of 
functional genomics, SOMs had been extensively applied in different 
biomedical decision support tasks, including coronary heart risk assessment 
(Azuaje et al., 1998), electrocardiogram-based diagnostic studies 
(Papadimitriou et al., 2001) and tissue characterization in cancer studies 
(Schmitz et al., 1999). 
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Scientists may use SOMs to detect clusters of similar expression patterns.  
The SOM-based model was one of the first machine learning techniques 
implemented for the molecular classification of cancer.  Golub and colleagues 
(1999) reported a model to discover the distinction between acute myeloid 
leukemia and acute lymphoblastic leukemia. The application of SOMs was 
part of a systematic expression monitoring method based on DNA 
microarrays. They were able to illustrate not only a classification process to 
distinguish known categories of leukemia samples, but also a class discovery 
process to identify unknown relevant subtypes.  The authors suggested that it 
would be possible to achieve a sub-classification of higher resolution with a 
larger sample collection. Moreover, this classification technique may provide 
the basis for the prediction of clinical outcomes, such as drug response or 
survival.  This research is a good example of how a SOM-based classifier 
together with other statistical tools may support a complex knowledge 
discovery function.  

Another relevant study consisted of the application of SOMs to organize 
thousands of genes into biologically relevant clusters using hematopoietic 
differentiation data (Tamayo et al., 1999). This classification system 
indicated, for example, genes involved in differentiation therapy used in the 
treatment of leukemia.  It discussed some of the key attributes that make the 
SOM an adequate clustering technique for expression data.  It shows how 
SOMs can primarily be used to perform exploratory data analysis and 
facilitate visualisation-based interpretations. The authors developed 
Genecluster, which is a computer package to perform SOM-based 
classification of genomic expression data.  It has assisted, for instance, the 
generation of interpretations relating to the yeast cell cycle, macrophage 
differentiation in HL-60 cells and hematopoietic differentiation across 
different cell lines (Tamayo et al., 1999).   

Ideker and colleagues (2001) also used SOMs in an integrated approach 
to refining a cellular pathway model.  Based on this method they identified a 
number of mRNAs responding to key perturbations of the yeast galactose-
utilization pathway.   

The remainder of this chapter addresses two important questions on self-
organizing neural networks applications for expression data: a) How do these 
systems work?, and b) how can we use them to support genomic expression 
research?. It focuses on the application of SOMs in different expression data 
analysis problems.  Advantages and limitations will be discussed.  Moreover, 
an alternative solution based on the principle of adaptive self-organization 
will be introduced. This chapter will end with an overview of current 
challenges and opportunities. 
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2. SOMs AND MICROARRAY DATA ANALYSIS 
 
 The SOM is based on hypothetical neural structures called feature maps, 
which are configured and adapted by the effect of sensory signals or data 
observations (Kohonen, 2001). Their processing components, known as 
neurones, prototypes or cells, are spatially correlated after completing a 
learning or training process, such that those prototypes at nearby points on the 
resulting structure are more similar than those widely separated. Each 
prototype is associated with a weight vector mi. Thus, SOMs can be used to 
perform clustering functions (Murtagh and Hernández-Pajares, 1995).  Figure 
15.1 shows a typical SOM. 
 

 
Figure 15.1.  A typical SOM 

 
2.1 The SOM Clustering Algorithm 
 
 The SOM learning algorithm transforms any p-dimensional space into an 
ordered two-dimensional coordinate system.  Also one may say that the SOM 
algorithm implements a “nonlinear projection” of the probability density 
function, p(x), of the input data vector x onto a two-dimensional space 
(Kohonen, 2001). 

Given a number of samples, N, each one represented by a number of 
features, p, a Kohonen map (Kohonen, 2001) consists of a grid of k 
prototypes, mj ∈ pℜ  (vector defined by p elements) (Figure 15.1). The main 
goal is then to define associations between each sample or observation and the 
prototypes represented on the map. The number of prototypes, k, and other 
learning parameters need to be defined by the user.  Before starting the 
learning process the prototypes mj are randomly initialized. Each of the k 
prototypes, mj, may also be encoded with respect to an integer coordinate pair 
rj ∈ Q1 ⊗  Q2. Where Q1 = {1,…, q1}, Q2 = {1,…, q2} and 21 qqk ×= . Figure 
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15.2 illustrates a SOM consisting of 9 prototypes, which are used to 
categorise a number of samples.  The SOM learning process is summarised as 
follows. 

 

 
Figure 15.2. A SOM network before (panel A) and after (panel B) performing a learning 
process, based on a hypothetical data set of expression profiles linked to two classes of genes.  
The right panel indicates that the algorithm has successfully separated the classes under 
consideration 

 
Each observation, xi, is processed one at a time.  The first step in each 

learning cycle is to find the closest prototype mj to xi using, for example, the 
Euclidean distance in pℜ .  Then for all neighbours mk of mj, the idea is to 
make mk closer to xi, based on the following formula: 

 
mk-new  = mk + α ×  (xi - mk) mk ∈ Nj  (1) 

 
Where mk-new represents the new value for mk, α is called the learning 

rate, and Nj represents the neighbourhood of mj, which always includes mj. 
The main purpose of equation (1) is not only to move the SOM prototypes 

closer to the data, but also to develop a smooth spatial relationship between 
the prototypes.  This process is summarized in Figure 15.3. 

 

 
Figure 15.3.  The SOM learning algorithm: a single learning cycle 

 
The neighbours of mj are defined to be all mk, such that the distance 

between rj and rk is small. Commonly this is calculated using the Euclidean 
distance, and small is defined by a threshold value, Th.  The selection of the 
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size of Nj is crucial to achieve a proper clustering process.  For example, if the 
neighbourhood is too small at the beginning of the learning process, the SOM 
will not be ordered globally.  Thus, one can initiate it with a fairly wide Nj and 
let its size (threshold Th) decrease linearly during the learning process.   

The performance of the SOM learning algorithm strongly depends on the 
selection of the learning rate, α.  Typically α is linearly decreased from 1 to 0 
over a few thousand learning cycles.  For more information on the design 
principles of the SOM, the reader is referred to (Kohonen, 2001). 

A SOM can also be seen as a constrained version of the k-means 
clustering algorithm. If we define Th small enough such that each 
neigbourhood contains only one prototype, then the spatial interrelation 
between the prototypes is not achieved.  In that case it is possible to 
demonstrate that the SOM algorithm is a version of the k-means clustering 
method, which stabilizes at one of the local minima found by the k-means 
(Hasti et al., 2001).  

Figure 15.2 illustrates a hypothetical situation, in which two types of 
genes, each one associated with a different biological function, are clustered 
based on their expression profiles.  Panel A of Figure 15.2 shows a SOM at 
the very beginning of the learning process, while panel B portrays the clusters 
formed after completing a learning process. The prototypes are represented by 
circles, and the genes that are linked to each prototype are depicted randomly 
within the correspondent circle.  One may, for example, run the algorithm 
during 2600 learning cycles through this data set of 26 genes (100 cycles for 
each gene), and let Th and α decrease linearly over the 2600 iterations. This 
example depicts a case in which a SOM network has successfully detected a 
class structure in a data set, which may allow one to differentiate its samples 
in terms of their patterns of functional similarity. 

Once a SOM has been properly trained, one can use it to classify an 
unknown observation, which can also be referred to as a testing sample.  In 
this situation the prediction process consists of identifying the closest SOM 
prototype to the sample under consideration, and use that prototype as its class 
or cluster predictor.    

The following sub-section illustrates the application of the SOM to a 
genomic expression classification problem. 

 
2.2 Illustrating Its Application 
 

By way of example, this technique is first tested on expression data from 
a study on the molecular classification of leukemias. The data analysed 
consisted of 38 bone marrow samples: 27 acute lymphoblastic leukemia 
(ALL) and 11 acute myeloid leukemia (AML) samples. Each sample is 
described by the expression levels of 50 genes with suspected roles in this 
disease.  These data were obtained from a study published by Golub and co-
workers (1999).  The original data descriptions and experimental protocols 
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can be found at the MIT Whitehead Institute Web site 
(http://www.genome.wi.mit.edu/MPR).   

The data were normalised such that the mean and variance of the genes 
are set to 0 and 1 respectively, which is the traditional pre-processing method 
used in expression analysis. The SOM networks were trained with 3800 
learning cycles. The initial value of the learning parameter α was equal to 0.1 
in all of the clustering experiments. Both values for α and Th were linearly 
decreased during the learning processes. 

 Figure 15.4 displays the clustering results based on a SOM network, 
which is defined by two prototypes: A and B.  All of the AML samples were 
grouped by prototype A. The samples belonging to the class ALL were 
assigned to prototype B, except two of them that were located in the first 
prototype. This configuration indicates that the cluster defined by the 
prototype A is representative of the class AML, and the cluster defined by the 
prototype B is associated with the class ALL.  Therefore, one may argue that 
this learning process was able to distinguish between the classes ALL and 
AML based on the expression values of 50 genes (Golub et al. 1999).   

 

 
Figure 15.4.  Expression data clustering using the SOM: two clusters of AML and ALL 
samples 
 

This type of clustering technique may also be used to predict the existence 
of subclasses or discover unknown categories. Figure 15.5 displays the 
clustering results based on 4 prototypes, which were used to categorise the 
same leukemia data set. 
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Figure 15.5.  Expression data clustering using the SOM: Four clusters of AML and ALL 
samples.  Clusters C and D are associated with two subtypes of ALL samples 

 
These results again suggest that it is possible to distinguish AML from 

ALL samples.  AML samples are encoded by prototype A, except one that 
was included in cluster B. Clusters B, C and D include the samples belonging 
to the ALL class.  A previous systematic study of these data demonstrated that 
the ALL samples may indeed be classified into two subtypes: T-ALL and B-
ALL (Golub et al., 1999).  The SOM clustering results depicted in Figure 15.5 
offers a useful insight into the existence of those subclasses.  Based on the 
composition of the clusters obtained in Figure 15.5, one may point out, for 
example, that cluster C can be labelled as the T-ALL cluster, while cluster D 
identifies the samples belonging to B-ALL. 

A second example deals with the molecular classification of diffuse large 
B-cell lymphoma (DLBCL) samples. The data consisted of 63 cases (45 
DLBCL and 18 normal) described by the expression levels of 23 genes with 
suspected roles in processes relevant to DLBCL (Alizadeh et al., 2000). These 
data were obtained from a study published by Alizadeh and colleagues 
(2000), who identified subgroups of DLBCL based on the systematic analysis 
of the patterns generated by a specialized cDNA microarray technique.  The 
full data and experimental methods are available on the Web site of their 
research group (http://llmpp.nih.gov/lymphoma).   

In this case a SOM network was trained with 12,600 learning cycles, and 
the other learning parameters were defined as above. The data were 
normalised such that the mean and variance of the genes are set to 0 and 1 
respectively.  Figure 15.6 shows the clustering results based on two 
prototypes A and B.   
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Figure 15.6. Expression data clustering using the SOM: Distinguishing subtypes of DLBCL 

 
Because both clusters A and B include Normal samples, this clustering 

configuration does not clearly distinguish Normal from DLBCL samples.  The 
reader is referred to (Alizadeh et al., 2000) for a discussion on the 
relationships between the Normal and DLBCL samples in terms of their 
expression patterns, which are indicative of different stages of B-cell 
differentiation. Nevertheless, these clustering results represent relevant 
information to recognise the two subtypes of DLBCL reported by Alizadeh et 
al. (2000): Activated B-like DLBCL and germinal centre B-like DLBCL 
(GC B-like DLBCL).  In this case, cluster A can be labelled as the cluster 
representing Activated B-like DLBCL samples, and cluster B may be used to 
identify GC B-like DLBCL. 

This section has dealt with the implementation and application of SOM 
networks for the analysis of expression data. The following section introduces 
some modifications to the original SOM, which may be useful to facilitate a 
knowledge discovery task based on this type of data. 
 
3. SELF-ADAPTIVE AND INCREMENTAL 
LEARNING NEURAL NETWORKS FOR MICROARRAY 
DATA ANALYSIS 
 

A number of research efforts have addressed some of the pattern 
processing and visualisation limitations exhibited by the original SOM.  It has 
been shown how these limitations have negatively influenced several data 
mining, visualisation and cluster analysis applications (Alahakoon et al., 
2000).  A SOM system requires the user to predetermine the network structure 
and the number of prototypes.  This trial-and-error task may represent a time-
consuming and complex problem.  Another important limitation is the lack of 
tools for the automatic detection of cluster boundaries.  Different approaches 
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A                                                 B
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have been proposed to improve the original SOM algorithm.  Investigations 
have suggested the application of self-adaptive and incremental learning 
neural networks (SANN), instead of static topology networks in order to 
improve several data classification applications (Nour and Madey, 1996), 
(Fritzke, 1994).   

Some of these approaches aim to determine the prototype composition, 
shape and size of the self-organizing structure during the learning process.  
These learning techniques are well adapted to application domains, such as 
expression analysis, which are characterised by incomplete data and 
knowledge.   

Recent advances include a neural network model known as Double Self-
Organizing Map (Su and Chang, 2001), which has been suggested for data 
projection and reduction applications.  The Fast Self-Organizing Feature Map 
algorithm (Su and Chang, 2000) aims to automatically reduce the number of 
learning cycles needed to achieve a proper clustering process.  Other authors 
have proposed to combine the SOM approach and advanced supervised 
learning techniques.  One example is the Supervised Network Self- Organizing 
Map (sNet-SOM) (Papadimitriou et al., 2001).  In this case a variant of SOM 
provides a global approximation of a data partition, while a supervised 
learning algorithm is used to refine clustering results in areas categorised as 
ambiguous or more critical for discovery purposes.  Other models designed to 
implement automatic map generation and cluster boundary detection include 
the Growing Cell Structure Network (GCS) (Fritzke, 1994), the Incremental 
Grid Growing Neural Network (IGG) (Blackmore, 1995) and the Growing 
Self-Organizing Map (GSOM) (Alahakoon et al., 2000).  The following 
subsection illustrates the application of one of these techniques to the problem 
of recognising relevant genomic expression patterns. 
 
3.1 A GCS-Based Approach To Clustering Expression 
Data 
 

GCS is an adapted version of the SOM, which has been applied to 
improve a number of pattern recognition and decision support systems 
(Azuaje et al., 1999), (Azuaje et al., 2000). One type of GCS can be described 
as a two-dimensional space, where its prototypes are inter-connected and 
organised in the form of triangles.  An initial topology for the GCS is 
organised as one two-dimensional triangle (Figure 15.7.a). The connections 
between cells reflect their separation distance on the prototype space.  Like in 
the original SOM each cell is represented by a weight vector mi, which is of 
the same dimension as the input data.  At the beginning of the learning 
process the weight vectors are assigned random values.  The learning process 
comprises the processing of input vectors and the adaptation of weight 
vectors, mi. But unlike the SOM there is no need to define prototype 
neighbourhoods. Moreover, the learning rate, α, is substituted by two constant 
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values, εw and εn, which represent the learning rates for the closest prototype to 
a sample (winning cell) and its neighbours respectively.  The value of these 
learning rates ranges between 0 and 1. 

 
a) b) 

  
Figure 15.7.  Growing Cell Structures. a) An initial topology of GCS. b) A GCS topology after 
a number of learning cycles 
 

GCS also performs an adaptation of the overall structure by inserting new 
cells into those regions that represent large portions of the input data (Fritzke, 
1994). Also, in some cases, when one is interested in more accuracy or when 
the probability density of the input space consists of several separate regions, 
a better modelling can be obtained by removing those cells that do not 
contribute to the input data classification. This adaptation process is 
performed after a number of learning cycles.  Figure 15.7.b depicts a typical 
GCS after performing a number of learning cycles.  The reader is referred to 
(Fritzke, 1994) for a complete description of this algorithm. Section 4 
discusses some of the advantages and limitations of this type of models. 

In order to exemplify some of the differences between the SOM and the 
GCS clustering models the hypothetical classification problem described in 
Section 2.1 is retaken. Panel A of Figure 15.8 depicts the results that one may 
have obtained using a standard SOM, whose shape and size were defined by 
the user. Panel B of the same figure portrays the type of results that one may 
expect from a GCS clustering model. In this situation the insertion and 
deletion of cells allowed the categorisation of the two types of genes into two 
separated regions of cells. Thus, one major advantage is the automatic 
detection of cluster boundaries.  Moreover, the distance between cells may be 
used as a measure of similarity between groups of genes. 
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Figure 15.8. Comparing SOM-based (panel A) and GCS-based (panel B) clustering, using the 
hypothetical classification example introduced in Section 2.1 

 

 
Figure 15.9. Expression data clustering using GCS: Distinguishing subtypes of DLBCL 

 
Figure 15.9 shows the clusters obtained using a GCS and the DLBCL 

expression data presented in Section 2.2.  The GCS network was trained with 
2500 input presentation epochs (2500 x 63 learning cycles), inserting a new 
cell every 500 epochs and deleting irrelevant cells every 1000 epochs. The 
learning parameters, εw and εn, were equal to 0.095 and 0.010 respectively.  
For a complete description of this and other experiments the reader is referred 
to (Azuaje, 2001). 

The resulting GCS consists of 6 cells or clusters containing the normal 
and DLBCL samples. The cell connections shown in Figure 15.9 do not 
reflect the weight vector distances. It shows that each cell corresponds to a 
representative cluster of the normal and DLBCL classes. For instance, cells 4 
and 6 categorise only normal and DLBCL samples respectively. The majority 
of the samples recognised by Cells 1 and 5 belong to the class DLBCL.  Cell 
3 recognises samples belonging only to the category DLBCL. Cells 1 and 3 
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comprise all of the GC B-like DLBCL subjects. Cells 2, 5 and 6 represent the 
clusters encoding the Activated B-like DLBCL subjects. Thus, this GCS 
network consists of two regions or macro-clusters, A and B, which identify 
the GC B-like and the Activated B-like DLBCL subjects respectively.  Unlike 
the results obtained from the SOM-based clustering, the GCS was also able to 
separate normal from DLCBL samples (Cell 4). Further descriptions and 
experimental procedures can be implemented to validate the statistical 
(Azuaje, 2001) and biomedical significance of these results. 

 
4. DISCUSSION 
 

This chapter has introduced the application of self-organizing neural 
networks for the analysis of genomic expression data.  Several studies have 
suggested the SOM model as a basic approach to expression clustering 
(Section 2).  Some of its advantages were illustrated and alternative solutions 
based on advanced principles of network self-organization were overviewed.  
It has been indicated that the application of SANN (Section 3) may support a 
deeper comprehension of a pattern discovery problem. This chapter has 
illustrated how a SANN model called GCS may be implemented to specify 
interesting molecular patterns or confirm known functional categories.   

SANN systems, such as GCS, offer several advantages in relation to the 
SOM and other expression data classification techniques.  In contrast to the 
SOM, SANN structures are determined automatically from the expression 
data.  Most of these models do not require the definition of time-dependence 
of decay schedule parameters.  SANN’s ability to insert and delete cells 
allows a more accurate estimation of probability densities of the input data.  
Its capacity to interrupt a learning process or to continue a previously 
interrupted one, permits the implementation of incremental clustering 
systems. SANN have demonstrated its strength to process both small and high 
dimensionality data in several application domains (Alahakoon et al., 2000), 
(Azuaje et al., 2000), (Papadimitriou et al., 2001). Some SANN may be 
implemented in either unsupervised or supervised learning modes (Fritzke, 
1994), (Papadimitriou et al., 2001). However, there are important limitations 
that need to be addressed. For example, in the GCS model there is not a 
standard way to define a priori the number of learning cycles and the exact 
number of cells required to properly develop a network. Some models, such 
the GSOM (Alahakoon et al., 2000), partially address this problem by 
introducing spread factors to measure and control the expansion of a network. 
In a number of applications it has been shown that techniques, like GCS and 
IGG, may be more susceptible to variations in the initial parameter settings 
than the SOM clustering model (Blackmore, 1995), (Köhle and Merkl, 1996).   

There are additional problems that merit further research in order to 
contribute to the advance of clustering-based genomic expression studies.  
Among them: The implementation of hierarchical clustering using SANN, 
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faster clustering algorithms, specialised techniques for the processing of time-
dependent or statistically-dependent data, and methods to automatically 
measure the contribution of a variable to the clustering results. 

It is crucial to develop frameworks to assist scientists during the design 
and evaluation of clustering applications. Some of such guidelines and 
methods were examined in Chapter 13. Evaluation techniques may support 
not only the validation of clusters obtained from SOM, SANN or any other 
procedures, but also they may enable an effective and inexpensive mechanism 
for the automatic description of relevant clusters.   
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