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Abstract— This paper presents preliminary work on a hard-
ware implementation of a source separation algorithm employing
time-frequency masking methods. DUET (Degenerate Unmixing
Estimation Technique) has previously been shown to achieve
excellent source separation in real time in software. The current
work is a move towards a hardware realization of DUET that
will allow integration of the algorithm into consumer devices.
Initial stages involve investigating the performance of DUET
when implemented in fixed-point arithmetic and a considera-
tion of algorithmic changes to make DUET more amenable to
implementation on a DSP processor. Performance is compared
for floating-point and fixed-point implementations. A Weighted
K-means clustering algorithm is presented as an alternative to
gradient descent methods for peak tracking and demonstrated
to achieve excellent performance without adversely affecting
computational load. Preliminary performance figures are given
for an implementation on a TMS320VC5510 DSK.

I. INTRODUCTION

A. Problem Definition

DUET is a blind source separation technique capable of the

separation of N sources from 2 mixtures. The N sources can

be defined as s1(t), s2(t)...sN (t). Let x1(t) and x2(t) be the

mixtures derived from these sources as:

x1(t) =

N∑
j=1

sj(t), (1)

x2(t) =

N∑
j=1

ajsj(t − δj), (2)

where δj is the arrival delay between sensors resulting from

the angle of arrival, and aj is a relative attenuation factor

corresponding to the ratio of the attenuations of the paths

between sources and sensors. Yilmaz and Rickard [3] have

previously presented the theory in detail. However, the result

of interest in this paper is the fact that by presuming anechoic

conditions and that the source signals are approximately w-

disjoint orthogonal, only one source is active at any time-

frequency point. By using parameter estimation techniques to

estimate delay and attenuation values, it is then possible to

construct a time-frequency mask Mj that will isolate source

j from the mixtures, by locating corresponding peaks in a

two-dimensional histogram.

B. Gradient Descent Search

As outlined by Rickard et al. [2], in order to achieve

real-time operation of DUET, a gradient search technique

is used for mixing parameter estimation over time. Given

initial estimates of the delay and attenuation parameters a cost

function J(τ) can be derived as

J(τ) = min
a1,δ1,...,aN ,δN

∑
ω

−
1

λ
ln(e−λρ1 + · · · + e−λρN ), (3)

where

ρ(aj , δj , ω, τ)
.
=

1

1 + a2
j

|X1(ω, τ)aje
−iωδj − X2(ω, τ)|2.

(4)

Given that the number of sources being searched for is known,

it is possible to derive updates for the amplitude and delay

values (aj [k], δj [k]) from the current frame τk = kτ∆ as:

aj [k] = aj [k − 1] − βαj [k]
∂J(τk)

∂aj

, (5)

δj [k] = δj [k − 1] − βαj [k]
∂J(τk)

∂δj

, (6)

where β is a learning rate constant and αj [k] is a time and

mixing parameter dependent learning rate for time index k for

estimate j.

C. K-Means Clustering

Initial evaluation of the computational load in DUET re-

vealed that the main part of the effort lay in the evaluation

of gradients used in the parameter updates as described

in equations [5,6]. Furthermore, as the results section will

demonstrate, problems were encountered with the performance

of the fixed-point gradient descent. Hence, it was considered

worthwhile to investigate alternative methods of tracking the

peak values.

The K-means algorithm is a classic technique employed

in data clustering problems [6]. The algorithm efficiently

partitions the points of a data matrix into K clusters. It achieves

this by minimizing (in a least mean squares sense) the sum

of distances from each point to its nearest cluster center. Each

iteration starts by reassigning points to their nearest cluster

center. Each cluster center is then recalculated as the mean
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of all points which have been assigned to it. This process is

repeated until the cluster centers converge according to the

chosen criterion.

The use of a histogram space has proved to be very powerful

in DUET [1]. Rather than searching for peaks in the entire

amplitude-delay space, the data is placed into a bounded

histogram with a finite number of bins. The limitation of

this method for real-time operation is the use of a two-

pass approach. In the current work, K-means clustering is

used to allow peak tracking in histogram space in real-time.

A weighted version of the K-means algorithm is performed

on the histogram. For each frame of data, the (weighted)

histogram is updated with the powers of the corresponding

time-frequency points. The histogram bin centers are passed

to K-means and each point is weighted by the height of

that histogram bin. In this way, peak-tracking updates are

calculated using information from all previous frames. As the

results section demonstrates, this method yields very accurate

peak estimates.

II. REAL-TIME OPERATION

A. System Overview

The diagram in Figure 1 shows a block diagram of the

system used to implement DUET in real time.

Window
Amplitude

and Delay
FFT

xw
1
[n]

xw
2
[n]

x
1
[n]

x
2
[n]

X
1
(w)

X
2
(w)

Mask

Calculation

Peak

Tracking

N peak

delays

N peak

amplitudes

Overlap

and Add
IFFTWindow

sw
1
[n]

sw
N

[n]

s
1
[n]

s
N
[n]

X
1
(w

)

X
2
(w

)

C
u

rr
e

n
t

d
e

la
y

s

C
u

rr
e

n
t

a
m

p
li

tu
d

e
s

sm
1
[n]

sm
N
[n]

S
M

1
(w

)

S
M

N
(w

)

Fig. 1. DUET System - Block Diagram

With data input at 8KHz, data is processed in frames of

512 samples with a 75% overlap of successive frames. After

windowing with a hamming window, the frame is transformed

to the frequency domain via a 512-point FFT. Instantaneous

delay and amplitude values for this frame are calculated for

each time-frequency point as outlined by Rickard et al.[3]. Up-

dated parameter estimates for the actual amplitude and delay

values are obtained using the gradient update as explained in

equations [5, 6] above.

The masking operation involves calculating, for each time-

frequency point, which of the N peak amplitude and delay

values each point is closest too. This is done using a simple

Euclidean distance measure. In this way each time-frequency

point is only assigned to a single source. This “winner take

all” scenario greatly reduces computational complexity and,

as reported previously in [2], has little perceivable impact on

performance. The N masks are used to derive a time frequency

representation of each of the sources as

SMj(ω, τ) = Mj(ω, τ)X1(ω, τ). (7)

An inverse FFT on each of the N masked signals, followed

by windowing and overlap-and-add yields a new frame of each

of the N source signals.

B. Fixed-Point Migration

The aim of this work is to demonstrate the feasibility of

incorporating the DUET algorithm into high-end consumer

devices. Considering costs, it was hence appropriate that the

algorithm be targeted at a fixed-point rather than floating-

point processor. The TI C5510 family was chosen as the target

processor and the TMS320VC5510 DSK represented a low-

cost development platform for developing the algorithm. This

device is a 16-bit processor, operating at 200MHz and capable

of delivering up to 400 MIPs. The chip has 160K 16-Bit On-

Chip RAM and a dual MAC. Full details of the chip and DSK

are available online at the TI website [4] and Spectrum Digital

homepage [5].

A fixed-point implementation equivalent to the floating-

point system was carried out in C, as an intermediate step to

allow full system testing of the fixed-point migration. Within

this system a number of simplifications were made to speed

up development. Any functional blocks such as trigonometric

functions, FFT, log were not written as full fixed-point libraries

as these would be integrated when targeting the board. For

system evaluation, inputs and outputs of these functions were

appropriately quantized. This gives a slightly more advanta-

geous performance than the final system but was considered

appropriate for development purposes. All other values were

stored as 16-bits. For the port to the TMS320VC5510 DSK,

the free signal processing libraries supplied by TI were used.

III. EXPERIMENTS

This section outlines a number of experiments designed

to test the fixed-point performance of DUET. Performance is

compared to the original floating-point algorithm. Results on

the use of the Weighted K-means algorithm for peak tracking

are also given.

A. Fixed-Point Performance of Gradient Descent

The difference in peak estimates for amplitude and delay

were compared for the floating-point and fixed-point imple-

mentations of DUET. The table below details the average

percentage error in the Gradient Descent fixed-point estimate,

referenced to the floating-point value obtained for a mixture

of two sources.

A significant error has been introduced, particularly in the

delay estimate. Examining the evolution of the delay estimate
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Peak % Error

Amplitude 11.15

Delay 94.62

TABLE I

PERCENTAGE ERROR IN DELAY AND AMPLITUDE ESTIMATES FOR

GRADIENT DESCENT FIXED-POINT SYSTEM

over time in Figure 2 (a) and (b), it is clear that the delay

is not converging to the true value. Closer investigation has

shown that this error is largely attributable to underflow in

the derivative values for the gradient update. This arises due

to the large number of successive multiplies used. Even with

appropriate scaling, a significant number of derivative values

simply tend to zero. Clearly this method of peak tracking is

problematic using fixed-point arithmetic. The use of weighted

K-means alleviates this issue as is evident from Figure 2 (c)

and (d).
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Fig. 2. Emerging Peak Estimates for 2 Sources.

An initial port to the TMS320VC5510 DSK has yielded

an upper estimate of 18 MIPS for the DUET functionality. It

should be noted that this is an unoptimized port which incor-

porates the gradient descent peak tracking (including estimates

of divide functionality) and current indications suggest a final

figure of 5 MIPs as highly achievable. Work is ongoing on

optimizing the performance of the algorithm in hardware. This

involves migrating to proprietary libraries for trigonometric

functions, the FFT and incorporating the weighted K-means

method of peak tracking.

B. Performance of Weighted K-Means

As an indicator of the comparative complexity of each

gradient descent and Weighted K-means for peak tracking, the

number of adds and multiplies for a speech file of length N

samples is shown in Table [II] for both algorithms.

Clearly, the computational complexity of Weighted K-means

is highly dependent on the number of bins used in the

histogram space. Reducing the number of histogram bins by

ADDS MULTIPLIES

Weighted K-Means (1282 bins) 6671N 4533N

Weighted K-Means (642 bins) 1555N 1062N

Weighted K-Means (322 bins) 318N 227N

Weighted K-Means (162 bins) 69N 53N

Gradient Descent 44N 165N

TABLE II

NO. OF ADDS AND MULTIPLIES FOR WEIGHTED K-MEANS AND

GRADIENT DESCENT ALGORITHMS.

a power of two reduces the number of adds and multiplies

by the same factor. For the separation of only two sources, it

has been found that smaller histogram spaces of 16× 16 bins

still yield good performance. However, a histogram space of

128 × 128 would be required for the case of more than 4

sources. An important advantage of Weighted K-means is that

it is possible to completely eliminate the need for any divides.

This is not possible with the current formulation of the gradient

descent estimate updates.

The error in peak estimates for a two-source and four-source

mixture at each frame is shown in Figure 3. The Weighted

K-means clearly outperforms Gradient Descent in terms of

accuracy for both a two-source mixture and a four-source

mixture.
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Fig. 3. Total percentage error plots for Weighted K-means and Gradient
Descent.

Further tests, using one thousand mixtures of the TIMIT

database, demonstrates the accuracy of Weighted K-Means as

compared to Gradient Descent Table [III]. The performance

of Gradient Descent drastically degrades when applied to

fixed-point arithmetic, as underflow issues dominate to such a

degree as to make comparisons meaningless. As can be seen

in Table [IV], the error performance achieved by Weighted

K-Means is far better than that of Gradient Descent, indicated

by the lower mean error and smaller variance value. Added

to this, Figure 4 shows histograms of the percentage errors

in terms of amplitude and delay. From these it is obvious

that the algorithms optimise accuracy by minimising delay

error, implying that a much higher resolution is required in the

amplitude direction. The delay error histograms Figure 4(b)

and (d) could possibly be improved by using a higher-order

all-pass filter to obtain a fractional delay.
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Fig. 4. Percentage Error in Amplitude and Delay for the two algorithms
obtained from one thousand tests.

Peak 1 Peak 2

Weighted K-Means (Floating point) 0.8625% 0.8650%

Gradient Descent (Floating point) 1.5650% 1.7700%

Weighted K-Means (Fixed point) 2.1625% 2.5075%

Gradient Descent (Fixed point) 43.2425% 66.835%

TABLE III

THE WEIGHTED K-MEANS AND GRADIENT DESCENT ALGORITHMS

PERCENTAGE PEAK ERRORS.

IV. CONCLUSION

This paper has presented initial work on the migration of the

DUET algorithm to a fixed-point implementation in hardware.

Significant problems were encountered in migrating to a

fixed-point implementation of DUET incorporating Gradient

Descent peak tracking. Weighted K-means clustering is shown

to outperform Gradient Descent for amplitude and delay peak

tracking without significant adverse effects on computational

load. Work is ongoing on the fixed-point implementation to

integrate Weighted K-means clustering and to optimize perfor-

mance on the DSP. Other algorithmic enhancements currently

being considered include the exploitation of the properties of

speech and improvements in performance in echoic conditions.

Mean Variance

Peak1 Peak2 Peak1 Peak2

Weighted K-Means (Amplitude) .0859 .0790 .3067×10−4 .3995×10−4

Weighted K-Means (Delay) -.0226 .0301 .7175×10−3 .7441×10−3

Gradient Descent (Amplitude) -1.1415 -.8837 .5627×10−3 .5049×10−3

Gradient Descent (Delay) -.0318 .0658 .0049 .0040

TABLE IV

MEAN AND VARIANCE OF PEAK ESTIMATES FOR 1000 TESTS (FLOATING

POINT).
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