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The glueball-to-vacuum matrix elements of local gluonic operators in scalar, tensor, and pseudoscalar channels

are investigated numerically on several anisotropic lattices with the spatial lattice spacing in the range 0.1fm
– 0.2fm. These matrix elements are needed to predict the glueball branching ratios in J/ψ radiative decays

which will help to identify the glueball states in experiments. Two types of improved local gluonic operators

are constructed for a self-consistent check, and the finite volume effects are also studied. The lattice spacing

dependence of our results is very small and the continuum limits are reliably extrapolated.

1. Introduction

Glueballs, predicted by QCD, are so exotic
from the point of view of the naive quark model
that their existence will be a confirmation of
QCD. Extensive numerical studies have been car-
ried out to simulate the glueball spectrum and
resulted that the low-lying glueballs are in the
mass range 1 – 3 GeV, which suggests that the
J/ψ radiative decays are the ideal hunting ground
for glueballs. There are several possible glue-
ball candidates in the final states of J/ψ radia-
tive decays, however, more criteria are needed for
their unambiguous identifications, one of which
might be the partial widths of J/ψ radiative de-
cays into glueballs. To estimate these partial
widths, the vacuum-to-glueball transition matrix
elements(TME) of local gluonic operators should
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be derived first.
The techniques of lattice simulations in the

glueball sector have been substantially improved
in the past decade. Inspired by the success of
anisotropic lattice techniques in the simulations
of the glueball spectrum [1] and as a continua-
tion of former studies [2,3], this work is devoted
to the numerical study of TME on anisotropic
lattices with tadpole-improved gauge action.

2. LOCAL GLUONIC OPERATORS

The TME computed in this work are
〈0|S(x)|0++〉, 〈0|Tµν(x)|2++〉, and 〈0|P (x)|0−+〉,
where |JPC〉 refers to the glueball state with
the quantum number JPC , and the local oper-
ators S(x), Tµν , and P (x) are trace anomaly
g2TrGµνGµν(x), the energy-momentum tensor
g2Tr(Gµα(x)Gαν(x)− 1

4gµνG
2(x)), and the topo-

logical charge density g2ǫµνρσTrGµν(x)Gρσ(x),
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Table 1
The simulation parameters.

β ξ us as(fm) L3 × T #Meas.
2.4 5 0.409 0.222(2) 83 × 40 20000

123 × 64 10000
163 × 80 10000

2.6 5 0.438 0.176(1) 123 × 64 8600
2.7 5 0.451 0.156(1) 123 × 64 10000
3.0 3 0.500 0.120(1) 163 × 48 10000
3.2 3 0.521 0.101(1) 243 × 72 7900

respectively (Gµν(x) is the gauge field strength
and g the gauge coupling). Two types of lattice
local gluonic operators (Type-I and Type-II) are
constructed in this work.

Type-I operators are linear combinations of a
set of small Wilson loops according to the irre-
ducible representations of the lattice symmetry
group, namely, A++

1 , A−+
1 , E++, and T++

2 [4].
Letting OR(x) be the local operators of specific
quantum number R, the construction of Type-I
operators can be expressed as

OR(x) =
∑

i

CR
i ReTr(W

(i)
1 (x)+αW

(i)
2 (x)+. . .), (1)

where CR
i are the combinational coefficients. Dif-

ferent Wilson loops W1,W2, . . . are included with
proper factors α to improve the operator.

To construct Type-II operators, we define the
lattice gauge field strength F̂µν(x) as

F̂µν(x) = Im〈f(us)Pµν(x) + g(us)Rµν(x)〉c, (2)

where Pµν(x), and Rµν(x) are respectively the
plaquette and rectangle at x. 〈|〉c means the
clover average, f(us) and g(us) are factors includ-
ing the tadpole parameter us = (〈1/3TrPij〉)

1/4

and are chosen in a way that yields F̂µν(x) =
a2

s(Gµν(x)+O(a4
s)) (as is the spatial lattice spac-

ing). Proper combinations of TrF̂µν(x)F̂ρσ(x)
give the Type-II operators with reduced lattice
artifacts.

There are seven matrix elements calculated in
this work, which are denoted by (S,B), (S,E),
(E,B), (E,E), (T,B), (T,E), and (PS). Here ( ,B)
(or ( ,E)) means the operator is made up of color-
magnetic (or color-electric) field, and (PS) refers
to the pseudoscalar channel.
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(S,E)

(E,B)

(E,E)

(T,B)

(T,E)

(PS)

16 12 8 16 12 8 16 12 8
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Figure 1. Finite-volume effects of matrix ele-
ments.

3. SIMULATION DETAILS AND RE-

SULTS

Numerical simulations were carried out on
anisotropic lattices with tadpole-improved gauge
action [1]. Five independent simulations have
been done with input parameter listed in Table.
1.

With the tadpole improvement, the local glu-
onic operators on the lattice are all improved to
O(a4

s) (as is the spatial lattice spacing) at the tree
level. With applying the variational method to
the combinations of smeared Wilson loops with
different prototypes [1], glueball states are ob-
tained through correlators of smeared operators
which have large overlaps with glueball states.
Six independent runs were carried out, on lat-
tices with spatial lattice spacings in the range 0.1
fm – 0.22 fm, to measure the smeared-smeared
correlators CSS(t) and smeared-local correlators
CSL(t). The matrix elements are extracted by fit-
ting CSS(t) and CSL(t) simultaneously using the
correlated χ2 method. The fit models are taken
as

CSS(t) = X2e−Mt (3)

CSL(t) = XY e−Mt,

where X is the amplitude of the glueball opera-
tors, Y is the glueball-to-vacuum matrix element,
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Figure 2. Continuum extrapolations of matrix
elements of Type-I operators.

and M is the glueball mass.
The finite volume effects (FVE) of matrix ele-

ments are studied on lattices 83 × 40, 123 × 64,
and 163×80 at β = 2.4, ξ = 5, and the results are
shown in Fig. 1, where each point with a errorbar
is the fractional change, δG(L) = 1 − fG(L)/f̄G,
in the matrix elements (f̄G is the average value of
the matrix elements of glueball G over the three
lattice volumes, and fG(L) is the matrix element
of glueball G measured on lattice L3 × T ). The
labels L = 8, 12, and 16 denote the different lat-
tice volumes, and the labels along the vertical
axis represent the matrix elements of the differ-
ent local operators. To guide eyes, δG = 0 and
δG = ±0.02 are also drawn in Fig. 1 with solid
line and dash lines, respectively. All changes are
statistically consistent with zero, indicating that
systematic errors from FVE are negligible.

The simulated results of matrix elements at dif-
ferent lattice spacings are shown in Fig. 2 (Type-I
operators) and Fig. 3 (Type-II operators), where
as (in units of r0 ∼ (410(20)MeV )−1, the
hadronic scale parameter) dependences are ob-
served. The matrix elements can be reliably ex-
trapolated to the continuum limit by using the
form f(as/r0) = Tr30 + c2(as/r0)

2 + c4(as/r0)
4,

where Tr30, c2, and c4 are best-fit parameters.
We keep the a2

s term in the fitting model because
there are residual αsa

2
s artifacts in the gauge ac-
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Figure 3. Continuum extrapolations of matrix
elements of Type-II operators.

tion and some local operators. From the figures
one can find that the Type-II operators exhibit
better behaviors (for example, the matrix ele-
ments of T2 and E representations coincide, as
it should be when the rotational symmetry is re-
stored in the continuum limit).

The physically available predictions will not be
derived until the local gluonic operators are prop-
erly renormalized. The nonperturbative renor-
malization of these operators is in progress.
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