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Dynamical fermion simulations using L�uscher's local bosonic actionalgorithmMike Peardon a (UKQCD collaboration)aDepartment of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3JZ, Scotland, UK.The two-avour Schwinger model is used to test the local boson action algorithm of M L�uscher. The autocor-relation time is found to rise linearly with the number of auxiliary boson �elds. An extension to the algorithm isproposed which exactly reproduces the full dynamical partition function for any number of boson �elds.1. Introduction1.1. The Schwinger modelThe Schwinger model (2d QED) with stag-gered fermions provides a computationally simpletesting ground for dynamical fermion algorithms.The theory is asymptotically free, so results relat-ing to algorithm performance should be similar tosimulations of QCD.The model provides a useful probe of the low-eigenvalue behaviour of the algorithm which isparticularly critical for the local boson methodsince the polynomial approximation breaks downhere. The presence of approximate zero modes [3](AZMs) associated with the topologically chargedsectors of the theory prove di�cult to handle.1.2. L�uscher's local bosonic algorithmThe algorithm [1] exploits a bosonic path in-tegral to simulate the fermion determinant of thefull theory via a polynomial approximation to theinverse of the fermionmatrix. The partition func-tion for the Schwinger model with 2 avours offermions isZ = Z DU detQ e�SG [U] (1)Q is an hermitian version of the fermion matrix,scaled so it has eigenvalues in the range (�1; 1)Q = 5(6D +m)�max (2)Consider an nth order polynomial approximation,Pn(s) to 1=s where 0 < s < 1. The polynomialhas n roots in the complex plane, and can bewritten

Pn(s) / nYi=1 (s � zi) (3)The optimal choice of roots comes from an anal-ysis of Chebyshev polynomials. The lower scalefor accelerated convergence is set by the choice ofparameter, �.With a set of roots, fzig the determinant of Qcan be replaced bydetQ2 / 1detPn(Q2) = 1Qni=1 det(Q2 � zi) (4)For the two avour theory, pdetPn(Q2) is re-quired. The hermitian fermion matrix of (2) haseigenvalues in � pairs which leads to a degener-acy in pairs of determinants in the product of (4).The square root is taken by removing one of thedeterminants in each pair.A set of auxiliary bosons is introduced withpartition function, ZLA which mimics the fermiondeterminantZLA[U ] = Z D�fD��f e���f (Q�pz�i )(Q�pzi)�f (5)so that detQ � ZLANote that the number of auxiliary �elds is halfthe order of the polynomial for two avour simu-lations.1.3. ImplementationUpdates are as follows:� the boson �elds are updated from a (gaus-sian) heatbath, since they have a localquadratic action.



Figure 1. The plaquette integrated autocorrela-tion time vs. order of polynomial (� = 0:005)� gauge �eld updates are over-relaxation only.Ergodicity is ensured as the total action ofthe theory is updated stochastically whenthe boson �elds are updated. There is lit-tle advantage in stochastic updates of thegauge �elds.2. Autocorrelation timesThe integrated autocorrelation time for the pla-quette is shown as a function of n and � for a16� 16 lattice, bare fermion mass = 0, � = 3:0.From �gure 1 we see that �int / n. TheCPU autocorrelation time (assuming the bosonupdates dominate) will therefore rise in propor-tion to n2. An estimate for the number of �eldsrequired to simulate fermions of mass m, is n /1=m. This implies the cost of the algorithm willrise at least as 1=m2.Figure 2 shows that the autocorrelation timealso rises as the lower scale of the approximationis reduced. The polynomial roots lie on an ellipsewith focii at � and 1 and with minor axis length2p�. As � is reduced, the smallest eigenvalues ofeach boson coupling matrix will decrease like � sothe autocorrelation time will rise approximatelylike 1=�The increase is not alleviated by increasing thedenominator of (2). For staggered fermions, (un-like Wilson fermions [2]) the spectrum containsfew eigenvalues near to s = 1.

Figure 2. The plaquette integrated autocorrela-tion time vs. � (n = 80)3. LARD - Local Action + Reduced De-terminantThe full partition function of the theory isZ = Z DU det Qe�SG [U]= Z DU det QpdetP(Q2 )pdetP(Q2 ) e�SG [U] (6)Employing the partition function of the localbosonic theory, (5),Z = Z DU det QqdetP(Q2 ) ZLA[U ] e�SG[U] (7)If the polynomial approximation were exact, theproduct of the two determinants in (7) would be1. In practise, use of a computationally accessiblenumber of polynomial terms (� number of boson�elds) means there is some error in the polyno-mial and hence uctuation in the product overcon�gurations. The product, ORD quanti�es theerror in the polynomial on every con�guration. Pis a polynomial, hence it is simultaneously diago-nisable with Q soORD =qdet Q2P(Q2 ) = V=2Yi �iP(�i) (8)where �i are one of each of the degenerate pairs ofeigenvalues ofQ2 The reduced determinant,ORD,has the following properties:1. the local boson method is \quenching" thisoperator



2. as P ! 1=s; ORD ! 13. signi�cantly reduced uctuations cf. detQWriting the partition function as,Z = Z DU ORD[U ]ZLA[U ] e�SG [U] (9)the algorithm will exactly reproduce the full un-quenched partition function, if a Metropolis ac-cept/reject step is included to incorporate the op-erator, ORD3.1. ImplementationThe updates of the gauge and boson �elds areidentical to those used in the original algorithm,with the additional constraint that the forwardand backward rates for updates are identical.This is required to ensure detailed balance for theentire Markov step.The exact algorithm is� calculate ORD on the gauge con�gurationfUg� update the bosons and gauge �elds accord-ing to the local boson method� recalculate ORD, and accept the new gaugecon�guration, fU 0g, with probabilityPacc = min[1; ORD[U 0]ORD[U ] ]To calculate ORD fully, the fermion matrix mustbe diagonalised. This is a computationally inten-sive step. In practise, for a suitable choice of theparameter, � the dominant contribution to uctu-ations in ORD come from the lowest lying modesof the fermion matrix. As a result, the eigenval-ues product of (8) can be cut-o� at some lowerbound.If all eigenvalues are extracted or a stochasticestimate of the determinant is used, the fermionmass appearing in the auxiliary boson couplingmatrix need not be equal to the true fermionmass. The mass used in the local boson partitionfunction can be tuned to maximise the acceptanceprobability of the Metropolis test.

3.2. Acceptance ratesThe acceptance probability of the globalMetropolis step is high enough to allow the use oflow n polynomials. Table 1 shows how the accep-tance probability alters as the number of sweepsover the lattice between Metropolis tests is in-creased.Table 1Acceptance probabilities for global Metropolisstep 16� 16 lattice, � = 3:0 (n = 16; � = 0:05)# Sweeps Acceptance rateper acc/rej1 0:50� 0:012 0:42� 0:014 0:30� 0:018 0:24� 0:014. DiscussionThe addition of the accept/reject step providesa possible method of reducing the constraint ofthe linear rise in autocorrelation times with thenumber of bosons. It also guarantees exactnessfor any choice of polynomial. This is of impor-tance in Schwinger model simulations due to theappearance of the topological AZMs.Whether the method improves performance for4d theories is less certain, as the cost of calculat-ing ORD (either exactly or stochastically) may beprohibitively expensive.Comparisons of performance against HMC arecurrently under investigation. The algorithmseems to have better update rates, particularlyrelated to the topological tunneling problem.5. AcknowledgementsI would like to thank Brian Pendleton for usefuldiscussions. I am grateful to PPARC for �nancialsupport. The numerical work was carried out onDEC Alpha-workstations in Edinburgh (PPARCgrant GR/J59142).REFERENCES1. M.L�uscher Nucl.Phys.B418:637-648,19942. M.L�uscher et.al. These proceedings3. H.Dilger DESY-93-181


