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B and D meson decay constants in lattice QCD
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We have calculated the decay constants ofB andD mesons with lattice QCD. We use anO(a)-improved
action that takes light quark actions as a starting point, tuned so that it can be directly applied at the physical
masses of theb and c quarks. Our results aref B5164211

11468 MeV, f Bs
518528

11369 MeV, f D5194210
114

610 MeV, andf Ds
5213211

114611 MeV in the quenched approximation. The first error in each case is statisti-
cal, and the second is from perturbation theory. We show that discretization errors are under control in our
approach and smaller than our statistical errors. The effects of the quenched approximation may raise our
quenched result by up to 10%.@S0556-2821~98!07013-1#

PACS number~s!: 12.38.Gc, 14.40.Lb, 14.40.Nd
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I. INTRODUCTION

This paper uses lattice QCD to calculate the decay c
stants ofB and D mesons using anO(a)-improved action
that takes light quark actions as a starting point, tuned so
it can be directly applied at the physical masses of theb and
c quarks. TheB meson decay constantf B is of particular
phenomenological interest, since it is responsible for mos
the uncertainty in current determinations of the Cabib
Kobayashi-Maskawa matrix elementVtd from BB̄ mixing.
Recent calculations of the decay constants ofB mesons give
much lower values than the earliest calculations done in
static approximation because of several effects, all of wh
happened to be negative. Perturbative corrections turn o
be large and negative. The static approximation has la
statistical errors than methods with propagating quarks. T
led to contamination from excited states, which raised
estimate off B . The use of smeared sources and propaga
quark methods mitigate this problem. TheO(a) finite lattice
spacing corrections likewise turned out to be large and ne
tive.

Conversely, the earliest results for lighter quarks tend
to be too low. They were done using naive light quark me
ods with an incorrect and singular quark field normalizat
which forcedf MAM→0 in the heavy quark limit.

The combination of a too highf BAMB from the static
approximation and a too lowf DAMD from light quark meth-
ods led to very large estimates of the 1/M corrections to
f MAM in the static limit. With more recent results, includin
those presented here, the 1/M corrections are much reduce
References@1,2# contain reviews of some of the early wor

Currently, convenient inverse lattice spacings are
larger thana21'2 or 3 GeV. Therefore, discretization erro
that go like the quark mass in lattice unitsma to a power are
unpleasantly large for thec quark and completely out o
control for theb quark. This means that standard light qua
formulations for lattice fermion actions cannot be used un
tered for theb quark.

There are several ways of approximating heavy quark
lattice QCD calculations with control over discretization e
rors. These include nonrelativistic QCD@3,4,5# ~NRQCD!,
0556-2821/98/58~1!/014506~10!/$15.00 58 0145
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the static approximation@6,7#, and the approach of this pa
per, described in Refs.@8,9#. The methods vary significantly
both in ease of application and in suitability for various c
culations. The last takes the light quark actions of Wils
@10# and Sheikholeslami and Wohlert~SW! @11# as its lead-
ing approximation, but adds correction operators that end
resembling those of NRQCD rather than those of the st
dard Symanzik improvement program. Section II contain
general discussion of the various methods for heavy qua
It comments on our improved understanding about wh
methods work best in which situations, not all of which w
expected in advance. Section III treats in detail the particu
form of the action used in this paper. Our numerical resu
are presented in Sec. IV and compared with other rec
results in Sec. V.

II. METHODS FOR HEAVY QUARKS ON THE LATTICE

This work uses a formalism for propagating heavy qua
that reduces to the ordinary light quark formalism in the lig
quark limit @8,9#. We begin by comparing the various lattic
approaches to heavy quarks. NRQCD is based on an ex
sion in nonrelativistic operators~rotationally invariant, but
not Lorentz invariant! similar to that used in calculating rela
tivistic corrections in the hydrogen atom. It can be thought
as arising from a discretization of the action arising afte
Foldy-Wouthuysen-Tani~FWT! transformation of the quark
fields:

c→exp~uDig i !c, ~1!

with u chosen so that

D” 1m→D0g01m2
D2

2m
2

~D2!2

8m3 1¯ . ~2!

The rest mass term does not affect the dynamics of nonr
tivistic particles and is conventionally removed. Increasi
accuracy is achieved by truncating the series with increas
numbers of terms.

In B physics, one can use the simplest of all the metho
the static approximation, which is the truncation of the p
© 1998 The American Physical Society06-1



p
st
nt
e
ec

b

c
e

o
e

on

s

o
v
ic

te

er

or
in
n

ar
s
e
-

tz

W
ys-
s, is

all
s a
ime
hen
on
of

r-
il-

ve a
For
e-
, are

r se-
the
the
the

d
to

in

on-

nd
late
ge
o
a

W

oo
the

AIDA X. EL-KHADRA et al. PHYSICAL REVIEW D 58 014506
ceding series to a single term. Then the heavy quark pro
gator is a simple Wilson line in the time direction. It is mo
useful for the heaviest quarks. It is not much used rece
because it has a much worse signal-to-noise ratio than m
ods using propagating quarks, which is clear in retrosp
but was not foreseen.

The third method, the one used in this paper, can
thought of as arising from a partial FWT transformation

c→exp~u8Dig i !c ~3!

and

D” 1m→D0g01m1a1Dig i2a2S D2

2m
1¯ D , ~4!

whereu8,u. This appears to be a crazy thing to do, produ
ing an action that combines the defects of the transform
and untransformed actions. On the other hand, it turns
that this is the action we have been using for a long tim
The Wilson and SW actions have just this form. In additi
to the usualc̄D” c term, thec̄D2c term added to cure the
doubling problem also contributes to the kinetic energy, a
Eq. ~4!. The relative strengths of the two terms change asma
is increased.

For the Wilson action,a151, anda25ma. These have
the property that the nonrelativisticc̄D2c term takes over
automatically from the Dirac-style kinetic energy termc̄D” c
asma→` in the Wilson action. The Wilson action turns int
a nonrelativistic action in the large mass limit. The hea
quarks in heavy-light mesons are highly nonrelativist
~p/mch;LQCD/mch;0.2 andp/mb;0.06.! Therefore, it is
the Wilson term, rather than the Dirac term, that contribu
most to the heavy quark kinetic energy.

We can write a lattice energy-momentum relation

E25M1
21

M1

M2
p21¯ , ~5!

where the ‘‘rest mass’’

M15E~0! ~6!

and the ‘‘kinetic mass’’

M2
215~]2E/]pi

2!p50 . ~7!

The Wilson action and most other actions have the prop
that M1 does not equalM2 for maÞ0. For nonrelativistic
particles, the rest mass does not affect the dynamics and
kinetic mass governs the leading important term. Theref
the rest mass is normally simply omitted from the action
NRQCD and in the static approximation, although there is
harm ~and no benefit! in including it. However, it cannot be
set to zero if one wishes to recover a sensible light qu
limit. It is easy to find a Wilson-style action which doe
satisfy M15M2 by letting the hopping parameter for th
time direction,k t , differ from the one in the spatial direc
tions, ks . The twok’s can be separately tuned so thatM1
5M2 with no loss of predictive power by requiring Loren
01450
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invariance in Eq.~5!. Nevertheless, sinceM1 does not affect
the physics of nonrelativistic systems, the Wilson and S
actions can be used without problems for nonrelativistic s
tems as long as the kinetic mass, and not the rest mas
used to set the quark mass. We can usek t5ks with an in-
correctM1 and a correctM2 .

The Wilson and SW actions and the action of NRQCD
use one-hop time derivatives. When the action include
large rest mass, this is a requirement, since two-hop t
derivatives introduce new states with complex energies w
ma.1. Therefore, heavy quark improvements of the Wils
action cannot follow the conventional Symanzik program
adding two-hop spacelike and timelike interactions atO(a2),
but must follow NRQCD and correct only the spatial inte
actions. The existence of the transfer matrix and the Ham
tonian ensures that this is possible.

The parameters of the action in our approach must ha
nontrivial mass dependence, just as those of NRQCD do.
ma.1, the wave function normalization, the relation b
tween the physical mass and the hopping parameter, etc.
completely different from theirma50 values. Whenma
,1, this mass dependence may be expanded in a powe
ries. For the Wilson and SW Lagrangians, this yields just
usual series of operators, with the same coefficients. If
mass-dependent coefficients in our style of interpreting
Lagrangian,

L5m~am!c̄c1z~am!c̄D” c1c~am!c̄smnFmnc1¯ ,
~8!

are expanded, the usual series of powers ofma multiplying
identical operators must result:

L5mc̄c1a1m2ac̄c1¯

1zc̄D” c1z1mac̄D” c1z2m2a2c̄D” c1¯

1cSWc̄smnFmnc1c2mac̄smnFmnc1¯ . ~9!

Sometimes in the Symanzik program,c̄smnFmnc and
mac̄smnFmnc are spoken of as if they were totally unrelate
operators. Even for light quarks, it makes more sense
think of them as different terms in anma expansion of an
ma-dependent coefficient analogous to the expansion inas
of an as-dependent coefficient. The fact that coefficients
the usual approach blow up asma→` is a property of the
expansion and not of the required functions in Eq.~8! them-
selves. They stay well behaved if sensible normalization c
ditions are applied.

With the added ingredient of decoupling the timelike a
spacelike parts of operators, it becomes possible to formu
an action that is systematically improvable, even for lar
ma. While for ma.1 the action becomes very similar t
NRQCD in its behavior, forma,1 it may be regarded as
resummation of the usual operators of the Wilson and S
actions to all orders inm.

For physics involving theb quark, NRQCD methods are
often easier and therefore more accurate. Taking thema
!1 limit is not possible, but correction operators are not t
hard to organize and add. This is particularly important in
6-2
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B AND D MESON DECAY CONSTANTS IN LATTICE QCD PHYSICAL REVIEW D 58 014506
Y system, where momenta are rather large and correc
operators are important in obtaining such things as the
rect spin-dependent spectrum. InB mesons, on the othe
hand, theb quarks are extremely nonrelativistic: (v/c)2

;(0.3 GeV/5.0 GeV)2;0.3%. Therefore, only the first few
operators in the action, which are the same in the two m
ods, are important. As long as these are normalized in
same way, it matters little what additional operators
hanging around. Therefore, inB mesons the effects of th
differences between NRQCD and our heavy quark meth
are minimal, and the two methods should yield nearly id
tical results.

For physics involving thec quark, heavy quark method
that can recover a relativistic form of the action are oft
easier and more accurate. The series inv2 is less convergent
so eliminating the need for it by takinga toward zero while
recovering a relativistic action may be more convenient.
hadrons containing charmed quarks, it is possible to do
culations with the Wilson and SW actions even with the o
interpretation of the coefficients. However, sincemcha
'5aLQCD, our ability to sum up the required series inma
exactly is likely to produce a faster approach to the c
tinuum limit than naive light quark methods.

For physics involving either theb or c quarks, both
NRQCD and our method can be used successfully. E
when one works better or worse than the other, we still le
something.

III. ACTION USED IN THIS CALCULATION

We have used the approach for heavy quarks outli
above to calculate the decay constants of theD, Ds , B, and
Bs mesons. We start with an action corrected toO(a), which
in general is

S5(
n

c̄ncn

2k t(
n

@c̄n~12g0!Un,0cn10̂1c̄n10̂~11g0!Un,0
† cn#

2ks(
n,i

@c̄n~12g i !Un,icn1 ı̂1c̄n1 ı̂~11g i !Un,i
† cn#

1
i

2
cBks (

n; i , j ,k
« i jk c̄ns i j Bn;kcn

1 icEks(
n; i

c̄ns0iEn; icn . ~10!

The second and third terms are the timelike and space
pieces of the kinetic energy of the Wilson action. The fou
and fifth terms are the spacelike and timelike pieces of
SW correction operator.

The action used to calculatef MAM may be simplified
from this form. As previously noted, whenmaÞ0, we find
that M1ÞM2 and that higher orders inp in Eq. ~5! do not
vanish as they should. Explicitly, we define
01450
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ma5
1

2k t
2@113z#, ~11!

where z[ks /k t . Then we can calculate the free lattic
propagator and expand inpa to derive

M1a5 log~11ma! ~12!

and

1

M2a
5

2z2

ma~21ma!
1

z

11ma
. ~13!

For nonrelativistic fermions, the physics of the system
influenced hardly at all by the rest massM1 . HereM2 con-
trols the leading order dynamics. We can therefore set

k t5ks5k, ~14!

but we must tunek so thatM2 equals the physical quar
mass.

Likewise, the physics of heavy-light mesons is insensit
to the final, spin-orbit term in Eq.~10!. ~This is not true of
some other quantities in heavy quark physics, such as
fine structure of quarkonia.! We can therefore set

cE5cB5c ~15!

and tunec to get the physics of the fourth operator in E
~10!, the s•B operator, correct. At the tree level, this re
quires the same value that it has for light quarks in the S
action,c5cSW51.

The decay constantf M parametrizes the matrix element

^0uAmuM ,p&5pm f M ~16!

of the axial vector current between the pseudoscalar me
M and the vacuum. Here the stateuM ,p& has the standard
relativistic normalization. Like the action, the axial vect
currentAm must be specified throughO(a). At the tree level
we take

Am52Ak t,hk t,lZAC̄hgmg5C l , ~17!

where the subscriptsh and l denote the heavy and ligh
quarks,ZA is a mass-dependent~re!normalization factor, and
C denotes a~rotated! field, specified below.

The factorsA2k arise from naive quark wave functio
mass dependence long in historical use. Wilson used the
normalization

zWF
naive5A2k ~18!

for massless fermions@10#. It is easy to see that this is cor
rect only in thema50 limit that Wilson was considering
Away from ma50, a straightforward examination of the fre
propagator shows that, if the quarks are to have their c
ventional canonical normalizations, the correct normalizat
is

zWF5A126k ~19!
6-3
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AIDA X. EL-KHADRA et al. PHYSICAL REVIEW D 58 014506
for the Wilson and SW actions or

zWF5A126ks ~20!

if k tÞks . These are equal to the conventional but incorr
normalization forma50: A2k5A126k51/2. As mha
→` (k t,h→0), the naive normalizations forcef M incor-
rectly to zero, unless the mass dependence ofZA compen-
sates accordingly. Indeed, the early estimates off D that were
too low stem from the naive assumptionZA'1, even when
mha;1. Combining Eqs.~18! and ~20!, we see that

ZA5A126ks,h

2k t,h

126ks,l

2k t,l
~21!

5A~11mha!~11mla!, ~22!

where the second expression follows from Eq.~11!.
The remaining ingredient of Eq.~17! is the rotated field

C5~11d1g iDi !c, ~23!

where i is summed over the three spatial directions and
the tree level,

d15
z~11ma!

ma~21ma!
2

1

2M2a
. ~24!

The second term ofd1 is the same as the 1/m correction
present in NRQCD. It is a consequence of the Fold
Wouthuysen-Tani transformation in Eq.~1!. The first term of
d1 allows for the fact that the implicit Foldy-Wouthuysen
Tani transformation of Wilson-like actions takesu8Þu. The
numerical value ofd1 depends on the tuning ofz5ks /k l . In
most cases, and in particular whenz51, the contribution to
f M proportional to d1 is O(mLa2) when ma!1, but
O(L/m) when ma@1. In the latter region it is essential t
include it if one is interested in the 1/mh corrections to the
static limit. It also makes sense to include the rotation wh
ma,1.

The dominant mass dependence exhibited in Eq.~21! per-
sists beyond the tree level@8#. Quantum effects require fur
ther terms to be added to the right-hand side of Eq.~17! to
construct anO(a)-improved axial vector current. In our nu
merical work we neglect them and we setd1 to its tree-level,
mean-field-improved value.

Thus, toO(a0) andO(a1), we can use precisely the Wil
son and SW actions for much heavy quark physics. In
paper we will use the SW action:

S5(
n

c̄ncn

2k(
n,m

@c̄n~12gm!Un,mcn1m̂1c̄n1m̂~11gm!Un,m
† cn#

1
i

2
cSWk (

n;mn
c̄nsmnFn;mncn . ~25!
01450
t

t

-

n

is

There are two key differences between our use of this ac
for heavy quarks and the naive approach:~1! the use of the
correctly normalized quark fields and currents, and the ad
tional three-dimensional field rotation for the heavy quark
the currents;~2! the use of the kinetic mass rather than t
rest mass to set the quark mass. At higher orders ina, it is no
longer true that ordinary forms of the light quark action m
be used for heavy quarks. Two-hop corrections for time
rivatives cannot be used since they introduce new states
energies which become complex whenma.1. HereO(a2)
corrections must have a nonrelativistic form as in NRQC

Having determined the coefficients in the action at t
tree level, we now discuss their renormalization. In gene
the coefficientscn of operatorsOn in a Wilsonian effective
action depend on the physical parameters of the theory
on the renormalization scale. For lattice QCD we can wr

S~m/LQCD,LQCDa!5(
n

cn~ma,as!On , ~26!

wherem andas are the bare parameters of the lattice theo
In the usual Symanzik approach, these coefficients are
panded in bothas andma. It is usually an advantage if an
expansion inas can be avoided. Likewise, as remarked e
lier, there is an advantage in not expanding inma. The ex-
pansion inma is the source of the breakdown of the meth
for ma.1. If the cn are not expanded inma, applying stan-
dard normalization conditions yields well-behavedcn for
large ma, as shown at the tree level for a few importa
cases above. It is, of course, necessary that this be true
the cn in the full quantum theory as well.

Most quantum corrections done so far have only be
calculated in perturbation theory. It is clear that the tadpo
which dominate many lattice perturbation theory calcu
tions, create well-behaved contributions to the renormali
tion of these actions at all quark masses. Tadpole-impro
perturbation theory@12# suggests that the dominant perturb
tive correction to the renormalization of coefficients of o
erators is given by short distance tadpoles. They can be
timated by noting that the linkUm511 ig0Am2 1

2 g0
2Am

2

1¯ does not fluctuate around 1, as is implicitly assumed
the usual perturbative expansion, but around some sm
valueu0 . The so-called mean linku0 can be estimated from
the expectation value of any link-containing operator such
the plaquette (̂UP&5u0

4) or the expectation value ofUm

itself in the Landau gauge. By counting links in the action
Eq. ~10! or ~25!, one can see that the usual tadpole estima
of corrections to operator coefficientsk̃5ku0 and c̃SW

5cSWu0
3 are still valid for heavy quarks even though th

one-loop coefficients differ slightly.
The one-loop coefficients which have been calculated

far have the required property that they stay small and w
behaved asma is varied from 0 tò @13,14#. The part of the
one-loop correction to the local heavy-light axial vector cu
rent arising from the leading operators in the SW action
been calculated by Aokiet al. @15#. It also is well behaved
for all quark masses and has been incorporated into our
6-4



u

e
s
ve
nt
i

rg

re
on
za
r-

e

tu

A

h
e

er
e-
h

y
r
e

c-

to
nly

r
l

nd
ed
s
ged
ac-
xed
ith
s in

iz-
ts
oot
l er-
000
of
o
e
not
oor

ed
o-,

ared

-

nd
the

s
is

B AND D MESON DECAY CONSTANTS IN LATTICE QCD PHYSICAL REVIEW D 58 014506
sults. The part of the correction arising from theO(a) cor-
rection to the axial vector current is currently being calc
lated @16#.

One important quantity can be easily computed nonp
turbatively, to see that the required good behavior persist
all orders of perturbation theory. This is the quark wa
function renormalization, which is required for all curre
renormalizations. This is part of the vector current, which
easy to normalize nonperturbatively by inserting the cha
into any physical state, such as a 1S quarkonium state@8#.
Figure 1 shows the result of such a calculation, compa
with the tadpole-improved tree-level correct normalizati
and the naive normalization. The vector current normali
tion factorZV is defined analogously to the axial vector no
malization factorZA in Eq. ~21!. It is easy to see that th
good behavior of the correct normalization in Eq.~19! is
preserved when full quantum effects are included nonper
batively.

IV. NUMERICAL RESULTS

We turn now to a discussion of our numerical results.
preliminary version of our results appeared in Ref.@18#. In
Table I we show some details of our calculations. The lig
quark propagators are the same ones used to determin
light quark masses in Ref.@17#. They were calculated with
the SW action using a mean-field-improved coefficientcSW.
Here aV(1/a), aV(2/a), and aV(p/a), defined as in Ref.
@12#, are values of the strong coupling constant at sev
relevant scales.u0 is the mean link used in tadpole improv
ment.k l andkh are the hopping parameters used for the lig
and heavy quarks, respectively.a21( f K) and a21(1P-1S)
are the lattice spacings in physical units as determined bf K
and the 1P-1S splitting of charmonium, respectively. Fo
b56.1, 5.9, and 5.7, the hopping parameters closest to thb
hopping parameters arekb'0.099, 0.093, and 0.089, respe

FIG. 1. The current normalization factor 2kZV calculated non-
perturbatively from the quantitŷJ/cuV4uJ/c&, where the~unnor-
malized! local chargeV45c̄g0c should simply count the number
of fermions when properly normalized. The upper curve
126k̃, from mean-field-improving equation~19!. The lower curve
is the naive ansatz 2k̃.
01450
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tively. Those closest to charm arekch'0.126, 0.1227, and
0.119, respectively. The hopping parameters closest
strange are 0.1373, 0.1385, and 0.1405, respectively. O
modest interpolations in the quark mass are necessary foBs
andDs mesons.B andD physics must be obtained by chira
extrapolation to the physical light mass limit. Charm a
bottom k’s were obtained by demanding that spin-averag
kinetic masses of the 1S charmonium and bottomium state
match experiment, using the difference of the spin-avera
1P and 1S charmonium masses to determine the lattice sp
ing. For the strange quark, the hopping parameter was fi
from the kaon mass. We have also done calculations w
static propagators for the heavy quarks, which correspond
our notation toks50 andk t51/2.

Masses and matrix elements were obtained from minim
ing x2’s using the full correlation matrix. Decay constan
were obtained by dividing matrix elements by the square r
of the experimentally measured meson mass. Statistica
rors were calculated with the bootstrap method, using 1
bootstrap samples in each fit. Chiral extrapolations
f BAMB at b56.1, 5.9, and 5.7 are shown in Fig. 2. N
problems withx2 using linear fits were observed with th
k l ’s shown. In runs at lower quark masses, which we did
use here, occasional exceptional configurations and p
x2’s began to appear.

The possibility of contamination of the results by excit
states was checked by testing for consistency of one-, tw
and three-state fits usingd function, 1S, and 2S sources at
both source and sink. In the sources, one quark is sme
with the supposed wave function and the other is ad func-
tion. Shapes of the 1S and 2S sources were taken from lat
tice Coulomb gauge valence quark wave functions of theB
and D mesons. Figure 3 shows a comparison of one- a
two-state fits. The measured energy splitting between

TABLE I. Parameters used in the numerical calculations.

b 6.1 5.9 5.7

Volume 243348 163332 123324
Configurations 100 350 300
cSW 1.46 1.50 1.57
aV(1/a) 0.222 0.259 0.330
aV(2/a) 0.171 0.192 0.227
aV(p/a) 0.149 0.164 0.189
u0 0.8816 0.8734 0.8608
k l 0.1372 0.1382 0.1405

0.1373 0.1385 0.1410
0.1376 0.1388 0.1415
0.1379 0.1391 0.1419

0.1394 0.1423
kh 0.050 0.050 0.050

0.099 0.093 0.070
0.126 0.1227 0.089

0.126 0.110
0.119

a21( f K) ~GeV! 2.2123
17 1.5722

13 1.0121
12

a21(1P-1S) ~GeV! 2.6229
18 1.8025

15 1.1623
13
6-5



m
tw
at
s o
a

f
, t

on
e

an
no

n-
is a

d if
ex-
re-

ated
to

al
rs.
ion.
the

n-
on
in

e
the

t

te

.
s

AIDA X. EL-KHADRA et al. PHYSICAL REVIEW D 58 014506
ground and first excited states and the observed agree
between the ground state energies obtained in one- and
state fits suggests that the contamination from excited st
is small in the region used for fitting. The measured value
f MAM in one- and two-state fits agreed to within statistic
errors, with goodx2’s. For the three-state fits, thed function
source was added to the 1S and 2S sources. This resulted in
occasional poorx2’s, presumably due to the admixture o
large amounts of high statistics excited states. Therefore
final results were those of the two-state fits.

The dominant finite lattice spacing errors for the Wils
action areO(a). When these have been removed, as th
have been in the SW action, the remaining finitea depen-
dence arises from a combination ofO(as

2), O(asa), and
O(a2). This means that attempts to extrapolate away
remaining finitea dependence are uncertain, since we do

FIG. 2. Chiral extrapolations off BAMB to m50 at b55.7
~top!, b55.9 ~center!, andb56.1 ~bottom!.

FIG. 3. Comparison of results of one- and two-state fits ab
55.9,kh50.1227~nearkch!, andk l50.1385~nearks!. Good con-
sistency between the two is observed in the fit range for the ligh
state.
01450
ent
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y
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have a theory of the functional form of the remaining depe
dence. The ideal situation when using improved actions
negligible dependence of the results ona. As shown in Figs.
4 and 5, to within statistical errors, this has been achieve
f K is used to determine the lattice spacing. The results
trapolated to zero lattice spacing are consistent with the
sults at the smallest lattice spacings. The results extrapol
to zero linearly and quadratically agree with each other
within a fraction of a percent. Thus, within our statistic
errors we do not find any evidence for discretization erro
The final results quoted are those of the linear extrapolat

The least understood source of uncertainty is due to
quenched approximation~the omission of sea quarks!. One
effect of the quenched approximation is that different a
swers for decay constants will be obtained depending
which physical quantity is used to set the lattice spacing
physical units. The Appendix tabulates results usingf K , f p ,
and the 1P-1S splitting in charmonium to set the scale. Th
well-measured physical quantity which most resembles

st

FIG. 4. f BAMB and f DAMD extrapolated to zero lattice spacing
The statistical error bands are 1s ranges of linear extrapolation
found in bootstrap runs.

FIG. 5. f Bs
AMBs

and f Ds
AMDs

extrapolated to zero lattice
spacing.
6-6
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heavy-light decay constants isf K . It therefore offers the bes
chance that some statistical, systematic, and espec
quenching errors inf M will cancel out. It is relatively easy to
determine numerically.@f p , for example, requires an add
tional chiral extrapolation which introduces larger statisti
error and unreliability. OurK consists of two degenerat
quarks of mass (ms1md)/2.# Taking a21 from f K has the
pragmatic defect that it yieldsf M ’s that lie at the bottom of
the range given by all of the standard methods of setting
lattice spacing, so that removing the quenched approxi
tion is more likely to move the results up than down. O
way of estimating the effect of the quenched approximat
is to examine the spread of values obtained by setting
lattice spacing in various reasonable ways. However,
shown in the Appendix, quantities similar tof M tend to give
similar results, while quantities more dissimilar, such
quarkonia spectra, can give results quite a bit different. I
not easy to quantify what is ‘‘reasonable.’’ The most qua
titative estimate so far of estimating the effects of quench
with actual unquenched calculations was given in Ref.@19#.
It compares results for quenched and unquenched calc
tions done in similar ways. They report quenching uncerta
ties of around20

15% for theD andDs mesons, and20
110% for

the B andBs .
We now summarize our results and uncertainties. In F

4 and 5 we show results forf DAMD, f Ds
AMDs

, f BAMB,

and f Bs
AMBs

, usingf K to set the lattice spacing in GeV. Ou
final results for the decay constants and their ratios
shown in Table II. Statistical errors in the decay consta
are obtained from bootstraps over extrapolations toa50 lin-
early in a. Thex2’s refer to these extrapolations. Statistic
errors in the ratios are obtained from bootstraps over
ratios of extrapolations thus obtained.

A common way of estimating the uncertainties from p
turbation theory is to do the perturbation theory at a range
plausible scales, say, 1/a–p/a. That method does not give
sensible result in this case. The scale variation has a m
larger effect at largea than at smalla. When the results are
extrapolated linearly toa50, they give the same answers

TABLE II. Final results for the decay constants and ratios in
quenched approximation. The first error for the decay constan
from statistics; the second is systematics, mostly from perturba
theory. An additional uncertainty of perhaps 10% is present in
decay constants due to the quenched approximation, as discus
the text. The error in decay constant ratios is statistical.

Final value x2/NDF

f B 164211
11468 MeV 1.32/1

f Bs
18528

11369 MeV 2.06/1
f D 194210

114610 MeV 0.77/1
f Ds

213211
114611 MeV 1.01/1

f D / f B 1.1926
16

f Ds
/ f Bs

1.1423
14

f Bs
/ f B 1.1324

15

f Ds
/ f D 1.1023

14

( f Bs
/ f B)/( f Ds

/ f D) 1.0324
14
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within 1%, even though the perturbative effect being e
trapolated is not at all linear ina. This is clearly an under-
estimate of the perturbative uncertainties. These are du
O(as

2) terms of the order of 3% plus the remainingO(as)
term which is currently being calculated. Assuming that t
term has roughly the same value that it has in NRQCD,
have taken 5% for the perturbative uncertainty.

The remaining uncertainties in the quenched approxim
tion are likely to be smaller than the statistical and pertur
tive uncertainties. We do not see evidence in Figs. 4 an
for finite lattice spacing effects within our statistical error
We estimate that the effects of uncertainties in the deter
nation of the heavy quark mass are about 1% or 2%. Fi
volume errors are likewise expected to be small forB andD
mesons on our lattice volumes.

Quenching uncertainty estimates of around 10% are c
mon, based on ranges of results using different quantitie
set the lattice spacing. The crude, but quantitative estim
of quenching effects in Ref.@19# are within the range of the
less quantitative estimates. If we assume that the effect
the quenched approximation are similar for different qua
actions and apply the largest of their quenching uncertain
to our quenched results, we obtainf B5164211

1146820
116

MeV, f Bs
518528

1136920
118 MeV, f D5194210

11461020
120 MeV,

and f Ds
5213211

11461120
121 MeV, where the uncertainties ar

statistical, systematic other than quenching, and quench
The last uncertainty is less quantitative than the first two

Perturbative errors cancel in ratios of decay constants
is possible, but not proved, that deviations of ratios from
have quenching uncertainties of the usual 10–20 % size
that case they would be significantly smaller than our sta
tical uncertainties in these quantities. We have theref
quoted only statistical errors for these quantities.

Our value for f Ds
is compatible with the world averag

experimental value f Ds
5241621630 MeV @20#. The

double ratio (f Bs
/ f B)/( f Ds

/ f D) is within a few percent of 1,

FIG. 6. Comparison of the continuum limit results of this pap
~solid symbols! with the results of NRQCD~open symbols!. The
errors shown are statistical.
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n
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TABLE III. f BAMB in GeV3/2 at b56.1, 5.9, and 5.7, fitted
with the lattice spacing set in five different ways.

a21 b56.1 b55.9 b55.7

1P-1S 0.511235
126 0.455222

119 0.477222
120

f p ~two-state! 0.419213
137 0.407213

130 0.440212
125

f p ~three-state! 0.417238
156 0.36325

121 0.384212
121

f K ~two-state! 0.394213
125 0.371212

112 0.38526
110

f K ~three-state! 0.391210
135 0.357210

110 0.38727
110

TABLE IV. f BAMB in GeV3/2 and f B in MeV extrapolated to
a50, fitted with the lattice spacing set in five different ways.

a21 f BAM (a50) f B(a50) x2/NDF

1P-1S 0.490251
142 213222

118 2.04/1
f p ~two-state! 0.386227

158 168212
125 0.51/1

f p ~three-state! 0.349233
163 152214

127 1.63/1
f K ~two-state! 0.376225

132 164211
114 1.32/1

f K ~three-state! 0.331224
134 144210

115 3.51/1

TABLE V. f Bs
AMBs

in GeV3/2 at b56.1, 5.9, and 5.7, fitted
with the lattice spacing set in five different ways.

a21 b56.1 b55.9 b55.7

1P-1S 0.582232
126 0.520221

121 0.545224
122

f p ~two-state! 0.478210
136 0.465211

133 0.503213
127

f p ~three-state! 0.476241
160 0.41522

122 0.439212
123

f K ~two-state! 0.449210
123 0.42429

112 0.44026
111

f K ~three-state! 0.44527
132 0.40825

18 0.44226
110

TABLE VI. f Bs
AMBs

in GeV3/2 and f Bs
in MeV extrapolated to

a50, fitted with the lattice spacing set in five different ways.

a21 f Bs
AM (a50) f Bs

(a50) x2/NDF

1P-1S 0.567250
142 244222

118 2.80/1
f p ~two-state! 0.444222

161 192210
126 0.59/1

f p ~three-state! 0.395231
168 170213

129 1.81/1
f K ~two-state! 0.430219

129 18528
113 2.06/1

f K ~three-state! 0.374220
131 16129

114 6.51/1
01450
TABLE VII. f DAMD in GeV3/2 at b56.1, 5.9, and 5.7, fitted
with the lattice spacing set in five different ways.

a21 b56.1 b55.9 b55.7

1P-1S 0.332223
116 0.329215

113 0.323215
113

f p ~two-state! 0.27329
123 0.29429

120 0.29828
115

f p ~three-state! 0.271224
135 0.26222

113 0.26128
113

f K ~two-state! 0.25628
115 0.26827

18 0.26124
15

f K ~three-state! 0.25427
121 0.25824

15 0.26224
15

TABLE VIII. f DAMD in GeV3/2 and f D in MeV extrapolated to
a50, fitted with the lattice spacing set in five different ways.

a21 f DAM (a50) f D(a50) x2/NDF

1P-1S 0.339234
127 248224

120 0.03/1
f p ~two-state! 0.262218

138 191213
128 0.43/1

f p ~three-state! 0.268220
139 196215

129 0.06/1
f K ~two-state! 0.265214

119 194210
114 0.77/1

f K ~three-state! 0.249213
115 182210

111 0.01/1

TABLE IX. f Ds
AMDs

in GeV3/2 at b56.1, 5.9, and 5.7, fitted
with the lattice spacing set in five different ways.

a21 b56.1 b55.9 b55.7

1P-1S 0.380222
116 0.376215

115 0.372216
115

f p ~two-state! 0.31228
124 0.33628

124 0.34329
118

f p ~three-state! 0.310225
140 0.30021

115 0.30028
116

f K ~two-state! 0.29327
115 0.30626

19 0.30123
17

f K ~three-state! 0.29025
123 0.29523

15 0.30223
16

TABLE X. f Ds
AMDs

in GeV3/2 and f Ds
in MeV extrapolated to

a50, fitted with the lattice spacing set in five different ways.

a21 f Ds
AM (a50) f Ds

(a50) x2/d.o. f

1P-1S 0.384235
131 274225

122 0.01/1
f p ~two-state! 0.295216

139 210211
128 0.42/1

f p ~three-state! 0.303220
146 216214

133 0.08/1
f K ~two-state! 0.299215

119 213211
114 1.01/1

f K ~three-state! 0.281211
117 20128

112 0.10/1
6-8
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in accordance with expectations from chiral symmetry a
heavy quark symmetry@21#.

V. COMPARISON WITH OTHER RESULTS

References @22,23,24,25# contain recent reviews o
heavy-light decay constants. Most recent calculations
consistent, with values of around 160 MeV forf B and around
195 MeV for f D . The JLQCD Collaboration has completed
calculation of heavy-light decay constants using methods
most identical to ours@26#. They have used ther mass rather
than f K to set the lattice spacing, but that makes negligi
difference. The results should agree to within statistical
rors, and they do. They obtainf B51636968611 MeV,
where the errors arise from statistics, systematics other
quenching, and quenching. These results are also reaso
compatible with results using Wilson fermions without t
O(a) correction which rely on extrapolating linearly t
a50 to remove the leading errors. The MILC Collabor
tion has obtained in preliminary resultsf B5153
61021320

136113 MeV, where the errors arise from statistics, sy
tematics other than quenching, and quenching@19#. Allton
et al. obtain higher results than the others, withf B5180
632 MeV and f D5221617 MeV, though not inconsisten
within errors@27#. They have used a tree-level coefficient f
the clover term which is 2/3 the value after quantum corr
tions. This should leave some residual discretization er
but they do not try to extrapolate it away, and it is respo
sible for their large error estimate forf B . In addition, they
have not performed thef B calculation at the physicalb quark
mass, but have extrapolated from the regionmba,1. This
may add a source of uncertainty which is hard to quantif

As remarked earlier, for theB meson system, the method
of NRQCD are also very similar to ours. This is less true
the D, c, andY systems. It is therefore interesting to com
pare recent results from the two methods. Figure 6 sh
results forf MAM as a function of 1/M from this paper and
from a recent NRQCD calculation@28#. The NRQCD calcu-
lation includes a fullO(a) correction and a full one-loop
l

l

87
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correction. This paper uses a fullO(a) correction, but is
missing the part of the one-loop correction arising from t
O(a) correction to the current, which has not yet been c
culated. The one-loop-corrected results are close to e
other in the region of theB mass, where we have reporte
our main results. However, the NRQCD one-loop correctio
increase greatly for largerM , becoming as large as225% in
the static limit, the result of a surprisingly large contributio
from theO(a) current correction.

For all of the heavy-light decay constants, the larg
source of uncertainty, and the one under the least quan
tive control, is the quenched approximation. The uncerta
ties from all other sources of error are now less than
approximately 10% range usually associated with
quenched approximation.

ACKNOWLEDGMENTS

We thank S. Hashimoto and A. Ali Khan for commun
cating the results in Refs.@15,28# to us prior to publication.
Fermilab is operated by Universities Research Associat
Inc. under contract with the U.S. Department of Energ
A.X.K. is supported in part through the DOE OJI progra
under Grant No. DE-FG02-91ER40677 and through the
fred P. Sloan foundation.

APPENDIX

We present in Tables III–X results for the decay consta
obtained with various fitting methods. We give two tables
each of the four decay constants. The first table conta
results for each of the three lattice spacings. The second t
gives the results of extrapolation to the continuum lim
along with thex2 of the fit. In each case, we performed th
analysis with quark masses determined from the sp
averaged 1S-onium state, using one of five methods of d
termining the lattice spacing: the 1P-1S charmonium split-
ting, f K from either two- or three-state fits, orf p from either
two- or three-state fits.
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