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We have calculated the decay constantBa&ndD mesons with lattice QCD. We use &Xa)-improved
action that takes light quark actions as a starting point, tuned so that it can be directly applied at the physical
masses of thé and ¢ quarks. Our results aré=164"{1+8 MeV, fg =185"3°+9 MeV, fr=194"13
+10 MeV, andeS= 213" ﬂi 11 MeV in the quenched approximation. The first error in each case is statisti-
cal, and the second is from perturbation theory. We show that discretization errors are under control in our
approach and smaller than our statistical errors. The effects of the quenched approximation may raise our
guenched result by up to 10%50556-282(198)07013-1

PACS numbgs): 12.38.Gc, 14.40.Lb, 14.40.Nd

I. INTRODUCTION the static approximatiof6,7], and the approach of this pa-
per, described in Ref$8,9]. The methods vary significantly
This paper uses lattice QCD to calculate the decay conboth in ease of application and in suitability for various cal-
stants ofB and D mesons using ad(a)-improved action culations. The last takes the light quark actions of Wilson
that takes light quark actions as a starting point, tuned so th&#0] and Sheikholeslami and Wohlgi$W) [11] as its lead-
it can be directly applied at the physical masses ofttend NG @pproximation, but adds correction operators that end up

¢ quarks. TheB meson decay constafi, is of particular resembling those of NRQCD rather than those of the stan-

phenomenological interest, since it is responsible for most ofi2’d Symanzik improvement program. Section Il contains a

the uncertainty in current determinations of the Cabibbo-d€neral discussion of the various methods for heavy quarks.
Kobayashi-Maskawa matrix elemelty from BB mixing It comments on our improved understanding about which
- p .

: > methods work best in which situations, not all of which was
Recent calculations of the decay constant8 ehesons give . . . . .
expected in advance. Section lll treats in detail the particular

much lower values than the earliest calculations done in th? X e )
: L - Torm of the action used in this paper. Our numerical results
static approximation because of several effects, all of which

h . . ; are presented in Sec. IV and compared with other recent

appened to be negative. Perturbative corrections turn out 10 ;
. ; - results in Sec. V.

be large and negative. The static approximation has larger

statistical errors than methods with propagating quarks. This

led to contamination from excited states, which raised the!l- METHODS FOR HEAVY QUARKS ON THE LATTICE

estimate offg. The use of smeared sources and propagating s work uses a formalism for propagating heavy quarks
quark methods mitigate this problem. Tt¥a) finite lattice 4t reduces to the ordinary light quark formalism in the light

spacing corrections likewise turned out to be large and Neg%juark limit[8,9]. We begin by comparing the various lattice
tive. approaches to heavy quarks. NRQCD is based on an expan-

Conversely, the earliest results for lighter quarks tendedjon jn nonrelativistic operatorgotationally invariant, but
to be too low. They were done using naive light quark meth-

: . : . - ~"ot Lorentz invariantsimilar to that used in calculating rela-
ods with an incorrect and singular quark field normalizationyistic corrections in the hydrogen atom. It can be thought of
which forcedf,,vM—0 in the heavy quark limit.

as arising from a discretization of the action arising after a

The combination of a too higligyMg from the static  Foldy-Wouthuysen-TaniFWT) transformation of the quark
approximation and a too lofi M from light quark meth-  fields:

ods led to very large estimates of theMl/corrections to
fum VM in the static limit. With more recent results, including y—exp( 6D;vy,) ¥, D
those presented here, théMiLEorrections are much reduced.
Reference$1,2] contain reviews of some of the early work. with 6 chosen so that
Currently, convenient inverse lattice spacings are no 5 -
larger thara™*~2 or 3 GeV. Therefore, discretization errors B + M Doyt M— D* (D9 e 9
that go like the quark mass in lattice unitea to a power are M=PoYo M= 5 8m? ' @
unpleasantly large for the quark and completely out of
control for theb quark. This means that standard light quark The rest mass term does not affect the dynamics of nonrela-
formulations for lattice fermion actions cannot be used unaliivistic particles and is conventionally removed. Increasing
tered for theb quark. accuracy is achieved by truncating the series with increasing
There are several ways of approximating heavy quarks imumbers of terms.
lattice QCD calculations with control over discretization er- In B physics, one can use the simplest of all the methods,
rors. These include nonrelativistic QC3,4,5 (NRQCD), the static approximation, which is the truncation of the pre-
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ceding series to a single term. Then the heavy quark propanvariance in Eq(5). Nevertheless, sindel; does not affect

gator is a simple Wilson line in the time direction. It is most

the physics of nonrelativistic systems, the Wilson and SW

useful for the heaviest quarks. It is not much used recenthactions can be used without problems for nonrelativistic sys-
because it has a much worse signal-to-noise ratio than mettems as long as the kinetic mass, and not the rest mass, is
ods using propagating quarks, which is clear in retrospectised to set the quark mass. We can kge kg with an in-

but was not foreseen.

correctM, and a correcM,.

The third method, the one used in this paper, can be The Wilson and SW actions and the action of NRQCD all

thought of as arising from a partial FWT transformation

J—exp(0'Diyi) ¢ ©)
and
DZ

—_—

D+m—>Do’)/o+ m+ alDi’yi_az om

(4)

where#’ < 6. This appears to be a crazy thing to do, produc-

ing an action that combines the defects of the transformed
and untransformed actions. On the other hand, it turns o

that this is the action we have been using for a long time
The Wilson and SW actions have just this form. In addition
to the usualyD ¢ term, theyyD?y term added to cure the
doubling problem also contributes to the kinetic energy, as i
Eq. (4). The relative strengths of the two terms changenas

is increased.

For the Wilson actiong;=1, anda,=ma. These have
the property that the nonrelativistigD?y term takes over
automatically from the Dirac-style kinetic energy tegfd
asma— in the Wilson action. The Wilson action turns into
a nonrelativistic action in the large mass limit. The heavy
quarks in heavy-light mesons are highly nonrelativistic.
(p/Mey~ A gcp/Mep~0.2 andp/m,~0.06) Therefore, it is

the Wilson term, rather than the Dirac term, that contributes

most to the heavy quark kinetic energy.
We can write a lattice energy-momentum relation

EZ:M§+m—lp2+--- : (5)

where the “rest mass”
M;=E(0) (6)

and the “kinetic mass”
M3 *=(PEIdp?)p-o- (7

use one-hop time derivatives. When the action includes a
large rest mass, this is a requirement, since two-hop time
derivatives introduce new states with complex energies when
ma> 1. Therefore, heavy quark improvements of the Wilson
action cannot follow the conventional Symanzik program of
adding two-hop spacelike and timelike interaction§g4?),

but must follow NRQCD and correct only the spatial inter-
actions. The existence of the transfer matrix and the Hamil-
tonian ensures that this is possible.

The parameters of the action in our approach must have a
ontrivial mass dependence, just as those of NRQCD do. For
ma>1, the wave function normalization, the relation be-
tween the physical mass and the hopping parameter, etc., are
completely different from theima=0 values. Whemma
<1, this mass dependence may be expanded in a power se-

"Nies. For the Wilson and SW Lagrangians, this yields just the

usual series of operators, with the same coefficients. If the
mass-dependent coefficients in our style of interpreting the
Lagrangian,

L= m(am)Zl,bJr z(am)ZlZ) Y+ c(am)ZoWwaer RN
(8)

are expanded, the usual series of powermeaf multiplying
identical operators must result:

L=myp+aymPagy+---
+2yD g+ z;mayD r+ Z,m2aZyD g+ - -
9)

+Csw'lf0',w|:,wl//+ szal//(T’uVF/”(//-i-"' .
Sometimes in the Symanzik progranyo,,F,,# and
mayo,,F ., are spoken of as if they were totally unrelated
operators. Even for light quarks, it makes more sense to
think of them as different terms in ama expansion of an
ma-dependent coefficient analogous to the expansioagin
of an as-dependent coefficient. The fact that coefficients in
the usual approach blow up asa—c is a property of the
expansion and not of the required functions in Ej.them-

The Wilson action and most other actions have the propertgelves. They stay well behaved if sensible normalization con-

that M; does not equaM, for ma# 0. For nonrelativistic

ditions are applied.

particles, the rest mass does not affect the dynamics and the With the added ingredient of decoupling the timelike and
kinetic mass governs the leading important term. Thereforespacelike parts of operators, it becomes possible to formulate

the rest mass is normally simply omitted from the action in

an action that is systematically improvable, even for large

NRQCD and in the static approximation, although there is nana. While for ma>1 the action becomes very similar to

harm (and no benefjtin including it. However, it cannot be

NRQCD in its behavior, foma<1 it may be regarded as a

set to zero if one wishes to recover a sensible light quarkesummation of the usual operators of the Wilson and SW

limit. It is easy to find a Wilson-style action which does
satisfy M;=M, by letting the hopping parameter for the
time direction, «;, differ from the one in the spatial direc-
tions, k5. The two k's can be separately tuned so thdy

=M, with no loss of predictive power by requiring Lorentz

actions to all orders im.

For physics involving thé quark, NRQCD methods are
often easier and therefore more accurate. Taking ntae
<1 limit is not possible, but correction operators are not too
hard to organize and add. This is particularly important in the
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Y system, where momenta are rather large and correction

operators are important in obtaining such things as the cor- ma= Z—[1+3§], (11)

rect spin-dependent spectrum. Br mesons, on the other !

hand, theb quarks are extremely nonrelativisticv/€)®  where (=«./x,. Then we can calculate the free lattice

""(03 GeV/5.0 GeV3~03% Therefore, Only the first few propagator and expand pﬁ to derive

operators in the action, which are the same in the two meth-

ods, are important. As long as these are normalized in the Mja=log(1+ma) (12

same way, it matters little what additional operators are

hanging around. Therefore, B mesons the effects of the and

differences between NRQCD and our heavy quark methods 5

are minimal, and the two methods should yield nearly iden- 1 - 2{ + ¢

tical results. M;a ma(2+ma) 1+ma’
For physics involving the quark, heavy quark methods L ) ) )

that can recover a relativistic form of the action are often0r nonrelativistic fermions, the physics of the system is

easier and more accurate. The series?iis less convergent; Nfluenced hardly at all by the rest malg . HereM con-

so eliminating the need for it by takira toward zero while trols the leading order dynamics. We can therefore set

recovering a relativistic action may be more convenient. For o (14)

hadrons containing charmed quarks, it is possible to do cal- K= KT K

culations with the Wilson and SW actions even with the oldp ¢ \ve must tunec so thatM, equals the physical quark

interpretation of the coefficients. However, sinte;a  mass.

(13

~5aAqcp, our ability to sum up the required seriesrima Likewise, the physics of heavy-light mesons is insensitive
exactly is likely to produce a faster approach to the conyg the final, spin-orbit term in Eq10). (This is not true of
tinuum limit than naive light quark methods. some other quantities in heavy quark physics, such as the

For physics involving either thé or ¢ quarks, both  fine structure of quarkonipWe can therefore set
NRQCD and our method can be used successfully. Even

when one works better or worse than the other, we still learn Ce=Cg=C (15

something.
and tunec to get the physics of the fourth operator in Eq.

(10), the o- B operator, correct. At the tree level, this re-
quires the same value that it has for light quarks in the SW

We have used the approach for heavy quarks outline@ction,c=cgy=1.

Ill. ACTION USED IN THIS CALCULATION

above to calculate the decay constants of@heD, B, and The decay constarfty parametrizes the matrix element
B mesons. We start with an action correctedX@), which
insgeneral is (0|ALIM,p)=p,fu (16)

of the axial vector current between the pseudoscalar meson
M and the vacuum. Here the stdtd,p) has the standard,

SZ; Ynihn relativistic normalization. Like the action, the axial vector
currentA,, must be specified througB(a). At the tree level
" LT we take
— 102 [¥n(1=70)Unons o+ Y51+ 7o) Un o) B
AL =2V kenke 1 ZaVn Yy, sV, 17
_Ks; [Yn(1= YD) Unithnsi+ ¥nsi( 1+ y) U 1] where the subscripth and | denote the heavy and light

quarks,Z, is a mass-dependefre)normalization factor, and
i — ¥ denotes drotated field, specified below.
+ 2 CBKSn%:k &ijk¥nTijBnxin The factors\/ﬂ arise from naive quark wave function
o mass dependence long in historical use. Wilson used the field
] — normalization
+ICEKSZ ‘r/an'OiEn;i'r/fn- (10) )
! zZ0ave— 2, (18

The second and third terms are the timelike and spacelikgor massless fermiongl0]. It is easy to see that this is cor-

pieces of the kinetic energy of the Wilson action. The fourthrect only in thema=0 limit that Wilson was considering.

and fifth terms are the spacelike and timelike pieces of th&way fromma=0, a straightforward examination of the free

SW correction operator. propagator shows that, if the quarks are to have their con-
The action used to calculatEM\/ﬁ may be simplified ventional canonical normalizations, the correct normalization

from this form. As previously noted, whema#0, we find s

that M, # M, and that higher orders ip in Eq. (5) do not

vanish as they should. Explicitly, we define Zwr=V1—6«k (19
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for the Wilson and SW actions or

ZWF: \/1_ 6KS

(20
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There are two key differences between our use of this action
for heavy quarks and the naive approath):the use of the
correctly normalized quark fields and currents, and the addi-
tional three-dimensional field rotation for the heavy quark in

if k;# ks. These are equal to the conventional but incorrecthe currents(2) the use of the kinetic mass rather than the

normalization forma=0: 2x=1—-6x=1/2. As mya

—» (k;n—0), the naive normalizations forch, incor-

rectly to zero, unless the mass dependenc& ptompen-
sates accordingly. Indeed, the early estimatefg,ahat were
too low stem from the naive assumpti@n~1, even when
mpa~ 1. Combining Egs(18) and(20), we see that

- \/1—6Ks,h 1—6kg,
AT 2Kt,h 2Kt,|

=\(1+mpa)(1+ma),

(21)

(22

where the second expression follows from Etfl).
The remaining ingredient of Eq17) is the rotated field

W=(1+d;yDi)¢, (23

rest mass to set the quark mass. At higher ordess ihis no
longer true that ordinary forms of the light quark action may
be used for heavy quarks. Two-hop corrections for time de-
rivatives cannot be used since they introduce new states with
energies which become complex whera> 1. HereO(a?)
corrections must have a nonrelativistic form as in NRQCD.
Having determined the coefficients in the action at the
tree level, we now discuss their renormalization. In general,
the coefficients,, of operatorsO,, in a Wilsonian effective
action depend on the physical parameters of the theory and
on the renormalization scale. For lattice QCD we can write

&m/AQCD,AQCDm:; co(Ma,ag)O,,  (26)

wherem and « are the bare parameters of the lattice theory.

wherei is summed over the three spatial directions and, af, the usual Symanzik approach, these coefficients are ex-

the tree level,

B {(1+ma) 1

“ma(2+ma) 2M,a’ 24

The second term ofl; is the same as the ri/ correction

panded in bothwg andma. It is usually an advantage if an
expansion ineg can be avoided. Likewise, as remarked ear-
lier, there is an advantage in not expandingria. The ex-
pansion inma is the source of the breakdown of the method
for ma>1. If thec,, are not expanded ima, applying stan-
dard normalization conditions yields well-behaveg for

present in NRQCD. It is a consequence of the Foldy-arge ma, as shown at the tree level for a few important

Wouthuysen-Tani transformation in Ed@.). The first term of

cases above. It is, of course, necessary that this be true for

d; allows for the fact that the implicit Foldy-Wouthuysen- the ¢, in the full quantum theory as well.

Tani transformation of Wilson-like actions také5# 6. The
numerical value ofl; depends on the tuning ¢f= x4/« . In

Most quantum corrections done so far have only been
calculated in perturbation theory. It is clear that the tadpoles,

most cases, and in particular whés 1, the contribution to  which dominate many lattice perturbation theory calcula-

fum proportional tod; is O(mAa?) when ma<1, but

tions, create well-behaved contributions to the renormaliza-

O(A/m) whenma>1. In the latter region it is essential to tion of these actions at all quark masses. Tadpole-improved
include it if one is interested in therhj corrections to the perturbation theory12] suggests that the dominant perturba-
static limit. It also makes sense to include the rotation whenive correction to the renormalization of coefficients of op-

ma<1.
The dominant mass dependence exhibited in(E#). per-

sists beyond the tree leve]. Quantum effects require fur-

ther terms to be added to the right-hand side of @4) to

construct an®(a)-improved axial vector current. In our nu-

merical work we neglect them and we sktto its tree-level,
mean-field-improved value.

erators is given by short distance tadpoles. They can be es-
timated by noting that the linkU,=1+igoA,—395A%

+--- does not fluctuate around 1, as is implicitly assumed in
the usual perturbative expansion, but around some smaller
valueuy. The so-called mean linly can be estimated from
the expectation value of any link-containing operator such as
the plaquette (Up)=ug) or the expectation value dd,

Thus, toO(a°%) andO(a'), we can use precisely the Wil- jtself in the Landau gauge. By counting links in the actions,
son and SW actions for much heavy quark physics. In thigq. (10) or (25), one can see that the usual tadpole estimates

paper we will use the SW action:
S:; Unibn
-k, (11— TS i
Kn [¢n(1 'yu)Un,,u,‘/’n-%—,u,'i_‘/’n-%—,u(l"_'yu)un,,u‘/’n]
2

i —
+ E Cswk E (!jno-,uVFn;/J,V(/ln . (25)
n;uv

of corrections to operator coefficienie=«u, and Cgy
=cswu8 are still valid for heavy quarks even though the
one-loop coefficients differ slightly.

The one-loop coefficients which have been calculated so
far have the required property that they stay small and well
behaved amais varied from 0 toe [13,14]. The part of the
one-loop correction to the local heavy-light axial vector cur-
rent arising from the leading operators in the SW action has
been calculated by Aokét al. [15]. It also is well behaved
for all quark masses and has been incorporated into our re-
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1 — T TABLE |. Parameters used in the numerical calculations.
S B e
o8 | B 5.9, c— 14 Kk -0.14159 B 6.1 5.9 5.7
[ 7 Prfhe0ficn0lss Volume 28% 48 16% 32 18x24
06 | Configurations 100 350 300
[ Csw 1.46 1.50 157
: ay(l/a) 0.222 0.259 0.330
04T ay(2/a) 0.171 0.192 0.227
_ ] ay(mla) 0.149 0.164 0.189
Y e T : Uo 0.8816 0.8734 0.8608
[ DTN I 0.1372 0.1382 0.1405
ok ! . . RN 0.1373 0.1385 0.1410
0 0.2 04 08 0.8 1 0.1376 0.1388 0.1415
1 T’mu 0.1379 0.1391 0.1419
0.1394 0.1423
FIG. 1. The current normalization factoiZy calculated non- 0.050 0.050 0.050
perturbatively from the quantityd/ |V, /), where the(unnor- 0.099 0.093 0.070
malized local chargeV,= ¢y, should simply count the numbers 0.126 0.1227 0.089
of fe~rmions when properly normalized. The upper curve is 0.126 0.110
_1—6K, fr_om mean-IieId-improving equatiofl9). The lower curve 0.119
is the naive ansatzr a~3(f,) (GeV) 22177 1572 1.01°2
a~}(1P-19) (GeV) 2.62'8 1.80°2 1.16"3

sults. The part of the correction arising from téa) cor-
rection to the axial vector current is currently being calcu-
lated[16]. tively. Those closest to charm arg,~0.126, 0.1227, and
One important quantity can be easily computed nonpere.119, respectively. The hopping parameters closest to
turbatively, to see that the required good behavior persists tetrange are 0.1373, 0.1385, and 0.1405, respectively. Only
all orders of perturbation theory. This is the quark wavemodest interpolations in the quark mass are necessayfor
function renormalization, which is required for all current andD, mesonsB andD physics must be obtained by chiral
renormalizations. This is part of the vector current, which isextrapolation to the physical light mass limit. Charm and
easy to normalize nonperturbatively by inserting the charggottom «'s were obtained by demanding that spin-averaged
into any physical state, such as & fjuarkonium stat¢8].  kinetic masses of theQ charmonium and bottomium states
Figure 1 shows the result of such a calculation, comparegéhatch experiment, using the difference of the spin-averaged
with the tadpole-improved tree-level correct normalization]p and 1S charmonium masses to determine the lattice spac-
and the naive normalization. The vector current normalizaing. For the strange quark, the hopping parameter was fixed
tion factorZy is defined analogously to the axial vector nor- from the kaon mass. We have also done calculations with
malization factorZ, in Eq. (21). It is easy to see that the static propagators for the heavy quarks, which corresponds in
good behavior of the correct normalization in E49) is  our notation toks=0 and«,=1/2.
preserved when full quantum effects are included nonpertur- Masses and matrix elements were obtained from minimiz-
batively. ing x%’s using the full correlation matrix. Decay constants
were obtained by dividing matrix elements by the square root
of the experimentally measured meson mass. Statistical er-
rors were calculated with the bootstrap method, using 1000
We turn now to a discussion of our numerical results. Abootstrap samples in each fit. Chiral extrapolations of
preliminary version of our results appeared in Hd®]. In fgYMg at B=6.1, 5.9, and 5.7 are shown in Fig. 2. No
Table | we show some details of our calculations. The lightproblems withy? using linear fits were observed with the
quark propagators are the same ones used to determine tkgs shown. In runs at lower quark masses, which we did not
light quark masses in Ref17]. They were calculated with use here, occasional exceptional configurations and poor
the SW action using a mean-field-improved coefficieg;.  x?'s began to appear.
Here ay(1/a), ay(2/a), and ay(w/a), defined as in Ref. The possibility of contamination of the results by excited
[12], are values of the strong coupling constant at severaltates was checked by testing for consistency of one-, two-,
relevant scalesyg is the mean link used in tadpole improve- and three-state fits using function, 1S, and 25 sources at
ment.«, andx;, are the hopping parameters used for the lightboth source and sink. In the sources, one quark is smeared
and heavy quarks, respectively. }(fc) anda (1P-1S) with the supposed wave function and the other i§ fanc-
are the lattice spacings in physical units as determinefiby tion. Shapes of the 3 and 2S sources were taken from lat-
and the P-1S splitting of charmonium, respectively. For tice Coulomb gauge valence quark wave functions ofBhe
B=6.1,5.9, and 5.7, the hopping parameters closest tb the and D mesons. Figure 3 shows a comparison of one- and
hopping parameters arg,~0.099, 0.093, and 0.089, respec- two-state fits. The measured energy splitting between the

IV. NUMERICAL RESULTS
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1.0

05
® fVM
0.8 W ] = fVM
04 |
06 | -~
=
z 3
eee s
gm 04 F 1 z
0.3 ]
02 ¢ o p=6.1 ’
0.2 : . - ‘ ‘
00 01 03 05 07 09 1

0.01 0.03 0.05 0.07 a(Gev™)
mas=In( 1+( 1/2k —1/2x, ) )
FIG. 4. fgM3 andfyMp extrapolated to zero lattice spacing.

FIG. 2. Chiral extrapolations ofgyMg to m=0 at 3=5.7 The statistical error bands arer Yanges of linear extrapolations
(top), B=5.9 (centey, and 8= 6.1 (bottom). found in bootstrap runs.

ground and first excited states and the observed agreemeéve a theory of the functional form of the remaining depen-
between the ground state energies obtained in one- and tW@ence. The ideal situation when using improved actions is a
state fits suggests that the contamination from excited statefegligible dependence of the resultsanAs shown in Figs.
is small in the region used for fitting. The measured values of and 5, to within statistical errors, this has been achieved if
fmVM in one- and two-state fits agreed to within statisticalf, is used to determine the lattice spacing. The results ex-
errors, with goody*'s. For the three-state fits, thefunction  trapolated to zero lattice spacing are consistent with the re-
source was added to th&Slnd 2S sources. This resulted in  sults at the smallest lattice spacings. The results extrapolated
occasional poony®’s, presumably due to the admixture of to zero linearly and quadratically agree with each other to
large amounts of high statistics excited states. Therefore, thgithin a fraction of a percent. Thus, within our statistical
final results were those of the two-state fits. errors we do not find any evidence for discretization errors.
The dominant finite lattice spacing errors for the WilsonThe final results quoted are those of the linear extrapolation.
action areO(a). When these have been removed, as they The least understood source of uncertainty is due to the
have been in the SW action, the remaining firatelepen-  quenched approximatiofthe omission of sea quarksOne
dence arises from a combination éi(ag), O(asa), and  effect of the quenched approximation is that different an-
O(a®). This means that attempts to extrapolate away angwers for decay constants will be obtained depending on
remaining finitea dependence are uncertain, since we do nowhich physical quantity is used to set the lattice spacing in
physical units. The Appendix tabulates results udiggf .,
and the P-1S splitting in charmonium to set the scale. The

3.0 _ ! !
well-measured physical quantity which most resembles the
@ .
05
20t
L JJ
5 =]
£ 0.4 |
©
§
. ¢ >
10raggssoseisne 8
+ 1-state 03 % — il
| o 2-state
i o f VM
0.0 : = &—a— B
1 6 1 16 . sz‘/M
t
0.2

) i 01 03 05 07 09 11
FIG. 3. Comparison of results of one- and two-state fitg3at a(GeV™)

=5.9, k,=0.1227(near«), andx;=0.1385(nearx). Good con-
sistency between the two is observed in the fit range for the lightest FIG. 5. fg (Mg_and fp_\Mp_ extrapolated to zero lattice
state. spacing.
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TABLE Il. Final results for the decay constants and ratios in the
quenched approximation. The first error for the decay constants is
from statistics; the second is systematics, mostly from perturbation

theory. An additional uncertainty of perhaps 10% is present in the 0.6 o NRQCD - 1 loop (q* =n/a)
decay constants due to the quenched approximation, as discussed in 0 NRQCD -1 loop (q* = 1/a)
the text. The error in decay constant ratios is statistical. % * this work - a=0 (q* = 2/a)
Final value x?/Npg 8 % %
%
fg 164" 14+8 MeV 1.32/1 0] & b %%
fa, 185" 13+ 9 MeV 2.06/1 Z 047 %
fo 194" 1+ 10 MeV 0.77/1
fo, 213" 11+ 11 MeVv 1.01/1
folfe 1198 ¢
fo /s, 1.14"%
o,/ 113753
fo/fo 1.10'3 027700 o0z o4 _os o8 1.0
(fg /fe)/(fp /fp) 1.03°; 1M (GeV ™)

FIG. 6. Comparison of the continuum limit results of this paper
heavy-light decay constantsfig . It therefore offers the best (solid symbols with the results of NRQCDopen symbols The
chance that some statistical, systematic, and especialffrors shown are statistical.
guenching errors iy, will cancel out. It is relatively easy to
determine numerically.f ., for example, requires an addi-
tional chiral extrapolation which introduces larger statistical™ “" ) L
error and unreliability. OurK consists of two degenerate est|rr21ate of the perturbative uncertainties. The'seT are due to
quarks of massri+my)/2.] Takinga~* from f has the O(ag) terms of the order .of 3% plus the remalr_uﬁyas) _
pragmatic defect that it yieldg,’s that lie at the bottom of term which is currently being calculateq. Assgmlng that this
the range given by all of the standard methods of setting thirm has roughly the same value that it has in NRQCD, we
lattice spacing, so that removing the quenched approximdl@Ve taken 5% for the perturbative uncertainty. _
tion is more likely to move the results up than down. One 1€ remaining uncertainties in the quenched approxima-
way of estimating the effect of the quenched approximatiorjf!on are Ilkel_y to be smaller than the §tat|st|c:_al ar_1d perturba-
is to examine the spread of values obtained by setting thHve uncertainties. We do not see evidence in Figs. 4 and 5

lattice spacing in various reasonable ways. However glor finite lattice spacing effects within our statistical errors.
shown in the Appendix, quantities similar tg, tend to give, We estimate that the effects of uncertainties in the determi-

similar results, while quantities more dissimilar, such agh@tion of the heavy quark mass are about 1% or 2%. Finite

quarkonia spectra, can give results quite a bit different. It j&/0lume errors are likewise expected to be smallBaandD

not easy to quantify what is “reasonable.” The most quan-MESONS on our lattice volumes.

titative estimate so far of estimating the effects of quenching QUenching uncertainty estimates of around 10% are com-
with actual unquenched calculations was given in RES]. mon, baseq on ranges of results using dlffert_ant_quantllnes to
It compares results for quenched and unquenched calculSet the lattice spacing. The crude, but quantitative estimates

tions done in similar ways. They report quenching uncertain®f quenching effects in Ref19] are within the range of the
ties of aroundfg% for theD andD mesons anoféo% for less quantitative estimates. If we assume that the effects of

the B andB,. the quenched approximation are similar for different quark

We now summarize our results and uncertainties. In Figsf.iCtionS and apply the largest of their quenching uncertainties

[ S +14 +16
4 and 5 we show results fdiyMp, fo.\Mo., fa\Ms, to our quenched results, we obtaify=164"17+8"5

: : s’ MeV, fg =185 23+97 28 MeV, fp=194"13+107° MeV,
andfg /Mg, usingfi to set the lattice spacing in GeV. Our s +148 +2f y 10 o
i s s . . and fp =213"77+117 5" MeV, where the uncertainties are
final results for the decay constants and their ratios are s

shown in Table II. Statistical errors in the decay constantStatistical, systematic other than quenching, and quenching.

are obtained from bootstraps over extrapolationg=t® lin- Thf__’, Iatst gngertalnty Is less (qlqantl'iatlve ftr:jan the f'rStttW(t)' It
early ina. The y?’s refer to these extrapolations. Statistical . erturbative errors cancel in ratios of decay constants.

errors in the ratios are obtained from bootstraps over th%S possible, b.Ut not prov.ed., that deviations of rafios fr_om 1
ratios of extrapolations thus obtained. ave quenching uncertainties of the usual 10-20 % size. In

A common way of estimating the uncertainties from Ioer_that case they would be significantly smaller than our statis-

turbation theory is to do the perturbation theory at a range on'CE‘I uncertamtles'ln these quantities. We_have therefore
quoted only statistical errors for these quantities.

plausible scales, say,a+ m/a. That method does not give a o e forf. i tible with th Id
sensible result in this case. The scale variation has a much ©Ur value lorip 1S compatible wi € world average

larger effect at larga than at smalk. When the results are experimental value fp =241+21+30 MeV [20]. The
extrapolated linearly ta= 0, they give the same answers to double ratio (BS/fB)/(fDS/fD) is within a few percent of 1,

within 1%, even though the perturbative effect being ex-
|trapolated is not at all linear ia. This is clearly an under-
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TABLE Ill. fgyMg in GeV¥? at B=6.1, 5.9, and 5.7, fitted
with the lattice spacing set in five different ways.

PHYSICAL REVIEW D 58 014506

TABLE VII. f5yYMp in GeV¥? at 8=6.1, 5.9, and 5.7, fitted

with the lattice spacing set in five different ways.

a! B=6.1 B=5.9 B=5.7 a! B=6.1 B=5.9 B=5.7
1P-1S 0.511"2 0.455 2 0.477°2 1P-1S 0.332° %8 0.329' 13 0.323 12
f. (two-stat@ 0.419°%] 0.407°% 0.440°% f . (two-state 0.273 3 0.294°2° 0.298 3°
f. (three-statp 0.417° 3% 0.363 2 0.384'2} f.. (three-state 0.271°35 0.262 3 0.261° 2
fx (two-state 0.394°23 0.371°13 0.385 % fx (two-state 0.256 3° 0.268'8 0.261°3
f (three-state 0.391°3; 0.357°13 0.387°3° f (three-state 0.254°2 0.2583 0.262°3

TABLE IV. fgyMg in GeV®¥? andfg in MeV extrapolated to
a=0, fitted with the lattice spacing set in five different ways.

TABLE VIII. f5Mp in GeV¥2 andfy in MeV extrapolated to
a=0, fitted with the lattice spacing set in five different ways.

a™t fg\VM(a=0) fg(a=0) x*Npe a™t fpVM(a=0) fo(a=0) x?/Npe
1P-1S 0.490'¢2 213738 2.04/1 1P-1S 0.339'%; 24839 0.03/1
f. (two-state 0.386'3° 168" % 0.51/1 f, (two-state 0.262° % 191°% 0.43/1
f . (three-state 0.349' %3 152t%; 1.63/1 f, (three-state 0.268 3 196" 2 0.06/1
f (two-state 0.376 32 16417 1.32/1 fx (two-state 0.265 13 19413 0.77/1
f (three-state 0.331°3 14415 3.51/1 f (three-state 0.249° 13 1821 0.01/1

TABLE V. fg \Mg_in GeV?? at =6.1, 5.9, and 5.7, fitted
with the lattice spacing set in five different ways.

TABLE IX. fp_\Mp_in GeV¥?at B=6.1, 5.9, and 5.7, fitted

with the lattice spacing set in five different ways.

-1

a B=6.1 B=5.9 B=5.7 a! B=6.1 B=5.9 B=5.7
1P-1S 0.582°28 0.520'%1 0.545 %2 1P-1S 0.380°25 0.376'12 0.372° 12
f.. (two-staté 0.478 38 0.465 32 0.503 %, f, (two-state 0.312°2 0.336'3* 0.3433°
f.. (three-state 0.476 52 0.415 %2 0.439°% f . (three-state 0.310'52 0.300'7° 0.300'3°
f (two-staté 0.449°% 0.424' %2 0.440° % f (two-state 0.293'1° 0.306'9 0.301°]
f (three-state 0.445 3 0.408'2 0.442° 0 fx (three-state 0.290'% 0.295'3 0.302'5

TABLE VI. fg \Mg_in GeV*?andfg_in MeV extrapolated to
a=0, fitted with the lattice spacing set in five different ways.

TABLE X. fp_Mp_in GeV¥?andfp,_in MeV extrapolated to
a=0, fitted with the lattice spacing set in five different ways.

-1

a fg,V\M(a=0) fg(@a=0)  x*/Npf a’! fo/M(a=0)  fp(a=0)  x’d.o.f
1P-1S 0.567"¢3 244738 2.80/1 1P-1S 0.384' 3 27432 0.01/1
f, (two-state 0.444°%} 19238 0.59/1 f . (two-state 0.295° % 21033 0.42/1
f . (three-state 0.395° %8 170733 1.81/1 f .. (three-state 0.303 55 21633 0.08/1
f (two-state 0.430°%3 185733 2.06/1 fx (two-state 0.299 12 2131 1.01/1
f (three-state 0.374°3} 161°3* 6.51/1 f (three-state 0.281° 1 201732 0.10/1
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in accordance with expectations from chiral symmetry anccorrection. This paper uses a ful)(a) correction, but is

heavy quark symmetr{21]. missing the part of the one-loop correction arising from the
O(a) correction to the current, which has not yet been cal-
V. COMPARISON WITH OTHER RESULTS culated. The one-loop-corrected results are close to each

other in the region of th& mass, where we have reported

h liaht d nstants. Most recent calculation rour main results. However, the NRQCD one-loop corrections
cavy-ig ecay constants. Vost recent calculalions arfg..q,ge greatly for largévl, becoming as large as25% in

consistent, with values of around 160 MeV fgrand around the static limit, the result of a surprisingly large contribution
195 MeV forfp . The JLQCD Collaboration has completed a ;

lculati fh lioht d tant ; thod Ifrom the O(a) current correction.
ca CE[J .‘3 '0?.0 | teavy-glzge] Tﬁca};]cons andstusmg me tﬁ Sa Eor all of the heavy-light decay constants, the largest
most identical to ourk26]. They have used thgmass rather source of uncertainty, and the one under the least quantita-

thaan to set the lattice spacing, but that.m.akes negligibletive control, is the quenched approximation. The uncertain-
difference. The results should agree to within statistical €lties from a,II other sources of error are now less than the

rors, and they do. _They Obta'f?:.163i9i8i.11 MeV, 3 proximately 10% range usually associated with the
where the errors arise from statistics, systematics other th Lo
X . enched approximation.
guenching, and quenching. These results are also reasonably
compatible with results using Wilson fermions without the
O(a) correction which rely on extrapolating linearly to ACKNOWLEDGMENTS

a=0 to remove the leading errors. The MILC Collabora- \ye thank S. Hashimoto and A. Ali Khan for communi-
tion has obtained in preliminary resultsfe=153 cating the results in Ref§15,28 to us prior to publication.
+10713"5" MeV, where the errors arise from statistics, sys-Fermilab is operated by Universities Research Association,
tematics other than quenching, and quencHib@. Allton  |nc. under contract with the U.S. Department of Energy.
et al. obtain higher results than the others, witg=180 A X.K. is supported in part through the DOE OJI program
*32 MeV andfp=221+17 MeV, though not inconsistent under Grant No. DE-FG02-91ER40677 and through the Al-
within errors[27]. They have used a tree-level coefficient for fred P. Sloan foundation.
the clover term which is 2/3 the value after quantum correc-
tions. This should leave some residual discretization error,
but they do not try to extrapolate it away, and it is respon-
sible for their large error estimate fdg. In addition, they We present in Tables IlI-X results for the decay constants
have not performed thig; calculation at the physicél quark  obtained with various fitting methods. We give two tables for
mass, but have extrapolated from the regiga<<1. This  each of the four decay constants. The first table contains
may add a source of uncertainty which is hard to quantify. results for each of the three lattice spacings. The second table
As remarked earlier, for thB meson system, the methods gives the results of extrapolation to the continuum limit,
of NRQCD are also very similar to ours. This is less true foralong with they? of the fit. In each case, we performed the
theD, ¢, andY systems. It is therefore interesting to com- analysis with quark masses determined from the spin-
pare recent results from the two methods. Figure 6 showaveraged $-onium state, using one of five methods of de-
results forf,,+/M as a function of I from this paper and termining the lattice spacing: thePt1S charmonium split-
from a recent NRQCD calculatid28]. The NRQCD calcu- ting, fx from either two- or three-state fits, 6r. from either
lation includes a full®(a) correction and a full one-loop two- or three-state fits.
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