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Abstract

In the semi-classical approach to the Skyrme model, nuclei are approximated by

quantum mechanical states on a finite-dimensional space of field configurations; in

zero-mode quantization this space is generated by rotations and isorotations. Here,

simulated annealing is used to find the axially symmetric Skyrme configuration which

extremizes the zero-mode quantized energy for the nucleon.

1 Introduction

The Skyrme model is an effective theory of pions and nucleons. It is a non-linear field theory
in which nuclei correspond, classically, to topological soliton solutions, called Skyrmions.
The model is non-renormalizable and so the approach usually taken is to reduce to a finite-
dimensional space of Skyrme configurations before quantizing. In this approach, quantum-
mechanical states on a space of topological charge B Skyrme configurations model baryon
number B nuclei at low energies.

The Skyrme Lagrangian is acted on invariantly by rotations and isorotations; this
generates from a single Skyrme configuration a space of energy-degenerate configurations.
This space is known as the space of zero modes and quantization on this space is called
zero-mode quantization. This approach began with the seminal paper [1] where the nucleon
and delta are constructed as quantum mechanical states on the zero-mode space generated
from the classical minimum energy configuration of unit baryon number.

In this paper, the spin-half, isospin-half quantum Hamiltonian is calculated on the
zero-mode space generated from a general axially symmetric configuration and simulated
annealing is used to find the Skyrme configuration that minimizes the energy of the lowest
state.

This approach has previously been considered for the zero-mode space of a general
spherical symmetric configuration [2, 3]. In this space the quantum Hamiltonian reduces
to a scalar, here it is a matrix. Aspects of our approach are also shared with a very recent
paper [4] which appeared when our paper was in preparation. The quantum Hamiltonian
used in that paper is a scalar ansatz motivated by the spherical Hamiltonian used in [1]
and differs from the Hamiltonian we derive here. In fact, we will see that this will not
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make a significant difference, the numerical results obtained for the nucleon in both papers
do not differ much from each other or from what would be calculated using the classical
minimum. However, the approach here is more direct than the approach described in [4]
and can be generalized to higher charge nuclei.

2 Quantization procedure

Written in terms of the vector currents Rµ = ∂µUU † of an SU(2) field U (x), the Skyrme
model has the Lagrangian

L =

∫

d3x

[−F 2
π

16
Tr (RµRµ) +

1

32e2
Tr ([Rµ, Rν ][R

µ, Rν ]) +
1

8
m2

πF 2
π Tr (U − 1)

]

, (1)

where mπ, Fπ and e are parameters that are adjusted to fit experimental data. Using Fπ/4e
as our unit of energy and 2/eFπ as our unit of length we obtain

L =

∫

d3x

[

−1

2
Tr (RµRµ) +

1

16
Tr ([Rµ, Rν ][R

µ, Rν ]) +

(

2mπ

Fπe

)2

Tr (U − 1)

]

, (2)

The Skyrmion mass for a static field Us (x) can be derived from this Lagrangian and is

M =

∫

d3x

[

−1

2
Tr (RiRi) −

1

16
([Ri, Rj ][Ri, Rj]) −

(

2mπ

Fπe

)2

Tr (U − 1)

]

. (3)

We wish to quantize the rotational and isorotational degrees of freedom. Rather than
acting on a specific Skyrme configuration, we want to consider the zero-mode space of fields
generated from a general static configuration Us (x) by isorotation C and rotation D:

U (x) = CUs

(

xD
)

C†, (4)

where C is in the 2 × 2 representation,

xD
i = Dijxj , (5)

and Dij is a three-dimensional matrix representation of D. Since rotation and isorotation
are symmetries of the original Lagrangian, these configurations are all energy-degenerate.
The effective Lagrangian on this restricted space of configurations can be calculated by
allowing C and D to depend on time, giving L = −M + Lrot, where Lrot is the kinetic
Lagrangian

Lrot =
1

2
ΩiUijΩj +

1

2
ωiVijωj − ωiWijΩj , (6)

with the rotational and isorotational angular velocities ω and Ω given by

Ωi = −iTr
(

σiC
†Ċ

)

,
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ωi = −iTr
(

σiD
†Ḋ

)

, (7)

and the moment of inertia tensors Uij , Vij and Wij given by the following integrals

Uij = −
∫

d3x

[

Tr (TiTj) +
1

4
Tr ([Rk, Ti][Rk, Tj ])

]

,

Vij = −ǫilmǫjpq

∫

d3x xlxp

[

Tr (RmRq) +
1

4
Tr ([Rk, Rm][Rk, Rq])

]

,

Wij = ǫjlm

∫

d3x xl

[

Tr (TiRm) +
1

4
Tr ([Rk, Ti][Rk, Rm])

]

. (8)

and
Ti = i

[σi

2
, U

]

U †, (9)

where the σi are the usual Pauli matrices.
In this paper, we will restrict our discussion to axially symmetric Skyrmion solutions.

Numerical simulations indicate that there is also a reflection symmetry in the xy-plane
and so the principal axes of inertia can be taken as the standard orthogonal axes, with
Uij = Vij = Wij = 0 where i 6= j, and we can set Uii = Ui and so forth. By inspection,
cylindrical symmetry in the xy-plane will also mean

U1 = U2, V1 = V2, W1 = W2. (10)

We can use axial symmetry to establish an additional identification between the normal
moments of inertia (see Appendix):

U3 = V3 = W3 (11)

Applying these restrictions to Lrot (6) we get

Lrot =
1

2

(

Ω2
1 + Ω2

2

)

U2 +
1

2

(

ω2
1 + ω2

2

)

V2 +
1

2
(Ω3 − ω3)

2 U3 − (Ω1ω1 + Ω2ω2)W2 (12)

or, written as a sum of complete squares,

Lrot =
1

2

(

V2 −
W 2

2

U2

)

(

ω2
1 + ω2

2

)

+
1

2
(Ω3 − ω3)

2 U3

+
1

2

[

(

Ω1 −
W2

U2

ω1

)2

+

(

Ω2 −
W2

U2

ω2

)2
]

U2. (13)

The rotation and isorotation angular momentum vectors L and K canonically conjugate
to ω and Ω are

L =
∂Lrot

∂ω

= (V2ω1 − W2Ω1, V2ω2 − W2Ω2, U3 (ω3 − Ω3)) ,

K =
∂Lrot

∂Ω
= (U2Ω1 − W2ω1, U2Ω2 − W2ω2,−U3 (ω3 − Ω3)) . (14)
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Note that L3=−K3: upon quantization, this is the axially symmetric condition expressed
in operator form. Our approach will be to find the minimum energy Skyrmion such that its
energy eigenstate is also a null eigenstate of L3 +K3. From (13) and (14), the Hamiltonian
for the rotational and isorotational degrees of freedom can now be calculated:

H = L.ω + K.Ω − Lrot

=
1

2







(

L1 + W2

U2

K1

)2

V2 − W 2

2

U2

+

(

L2 + W2

U2

K2

)2

V2 − W 2

2

U2

+
K2

1

U1

+
K2

2

U2

+
L2

3

U3






. (15)

For a spin-n,isospin-n particle, the angular momentum operators L can be written as
(2n + 1) × (2n + 1) dimensional matrix representation ΣL

1 , ΣL
2 , ΣL

3 of SU(2), as can the
isospin operators ΣK

1 , ΣK
2 , ΣK

3 of K for an isospin-n particle. If we define our quantum
state using the |l, l3〉 ⊗ |k, k3〉 basis, l, l3 and k, k3 being the quantum numbers for L and
K respectively, we can embed L and K into the resulting SO(3)L× SO(3)K direct product
space:

L 7→ ~ΣL ⊗ I2n+1

K 7→ I2n+1 ⊗ ~ΣK (16)

where I2n+1 is the (2n + 1)-dimensional identity matrix.
We can now find the lowest energy nucleon state; first we insert the spin-half, isospin-

half matrix representation of L and K into the Hamiltonian (15) to get:

H =
~

2
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κ1 0 0 0
0 κ1 κ2 0
0 κ2 κ1 0
0 0 0 κ1









(17)

where

κ1 =
1 +

(

W2

U2

)2

V2 − W 2

2

U2

+
1

U2
+

1

2U3
(18)

and

κ2 =
2W2

U2

V2 − W 2

2

U2

. (19)

There are two eigenvectors of H which are also eigenvectors of L3 +K3 with eigenvalue
zero:

|0, 0〉 ≡ 1√
2

(

|1
2
,−1

2
〉 ⊗ |1

2
,
1

2
〉 − |1

2
,
1

2
〉 ⊗ |1

2
,−1

2
〉
)

, E0,0 =
~

2

4
(κ1 − κ2) (20)
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and

|1, 0〉 ≡ 1√
2

(

|1
2
,−1

2
〉 ⊗ |1

2
,
1

2
〉 + |1

2
,
1

2
〉 ⊗ |1

2
,−1

2
〉
)

, E1,0 =
~

2

4
(κ1 + κ2) (21)

The first eigenvector is a spherically symmetric state and also has the lower energy since
κ1 and κ2 are always positive; hence

EN =
~

2

4







(

1 − W2

U2

)2

V2 − W 2

2

U2

+
1

U2
+

1

2U3






(22)

and is therefore the energy of an axially symmetric nucleon. We see that in the spherically
symmetric case U2 = U3 = W2 = V2, and EN reduces to the rotational energy formula
obtained in [1]:

Esym
N =

~
2

2U3
l (l + 1) =

3

4

~

2Λ
(23)

where Λ = 1
3
(U1 + U2 + U3) = U3. The energies of all other eigenstates go to infinity in

the spherically symmetric limit.
The energy, M+EN , of the quantum state would be difficult to extremize using gradient-

based methods; instead, simulated annealing [5] is used to find the Skyrmion configuration
that minimizes this energy. Since the configuration is assumed to be axially symmetric,
the cartoon method [6] is used. The configuration is annealed on a quarter-disk two-
dimensional lattice with a radius of 250 lattice points and a lattice spacing of 0.06. A
variant of the Adaptive Simulated Annealing probability distribution [7] is used for the field
perturbations; this seems to improve the speed of convergence and allows an exponential
cooling schedule. The algorithm needs an initial configuration to perturb; any configuration
of unit baryon number will suffice, and the ansatz given in [8] is probably the easiest to
implement.

In Fig.1 and Fig.2, the results of our simulations are shown in comparison with results
obtained using the rigid body approximation used in [9]. The pion mass mπ was set to its
experimental value of 138 MeV in Fig.1, whereas in Fig.2 it was set to the larger value of
345MeV suggested in [4]; we see that the nucleon deformation only becomes noticeable at
high values of the pion mass.

3 Discussion

Although it has appealing mathematical and physical properties, the Skyrme model has
only been modestly successful in modeling nuclear dynamics. Perhaps one of the biggest
challenges is that the zero-mode quantization of the classical minimum fails to give even the
correct lowest energy state for many values of the baryon number [10, 11]. It is possible
that this is because inappropriate parameter values are used to calculate the classical
minima: for example, in [12] it is suggested that using a non-zero, or even an unphysically
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Figure 1: Plot of Fπ, as a function of e, for which the energy M + EN is equal to the
nucleon mass 939 MeV; the pion mass parameter mπ set to its experimental value of 138
MeV. Our results (bold circles) are compared with those obtained using the rigid body
approach taken in [9] (solid line).
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Figure 2: As Fig. 1, but with the pion mass parameter mπ set to the value of 345 MeV
suggested in [4]. Our results (bold circles) are compared with those obtained using the
rigid body approach taken in [9] (solid line).
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large, pion mass will significantly affect the structure of higher charge Skyrmions and alter
the symmetries on which the quantization is based [13]. Another possibility is that the
classical minimum is inappropriate and that the energy minimum of the effective quantum
Hamiltonian should be used for zero-mode quantization. In this paper this has been done
in the simple case of a axial symmetric nucleon; the higher charge cases will be more
challenging computationally but should follow in a similar way.
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Appendix: Identification of normal moments of inertia

Following [14], we establish a relation between U3, V3 and W3 for axially symmetric fields.
We first express the quantity ǫ3jkxjRk in polar coordinates:

ǫ3jkxjRk = (x ×∇)3 UU †

=
∂U

∂φ
U †. (24)

We can then identify ǫij3xjRi and − i
2
[σ3, U ] U † by looking at the general form of an axially

symmetric field with unit baryon number:

U = e
−iσ3φ

2 eif(r,z)niσie
iσ3φ

2 (25)

and taking its derivative with respect to φ:

∂U

∂φ
= −iσ3

2

(

e−
iσ3φ

2 eif(r,z)e
iσ3φ

2

)

+
(

e
−iσ3φ

2 eif(r,z)e
iσ3φ

2

) iσ3

2

= − i

2
[σ3, U ] . (26)

We see the expressions for the inertias U3, V3 and W3 in the moment of inertia integrals
(8) differ only in the terms ǫ3jkxjRk and − i

2
[σ3, U ] U †, and so

U3 = V3 = W3. (27)
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