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ABSTRACT (203 words) 

In ITS (Intelligent Transportation System) equipped urban transportation systems non-
critical junctions are often ignored in short-term traffic condition prediction algorithms as the 
traffic data collection systems in these junctions are not adequate. The paper proposes a short-
term traffic volume model based on a combination of discrete wavelet transform (DWT) and 
Bayesian hierarchical methodology (BHM) applicable to non-critical junctions lacking 
continuous data collection systems. Unlike typical short-term traffic condition forecasting 
algorithms, large traffic flow datasets including information on current traffic scenarios are not 
required for the proposed model. In this model, a non-functional representation of the daily 
‘trend’ of urban traffic flow observations is achieved using DWT while the fluctuations in the 
traffic flow in addition to the variations represented by the ‘trend’ are modeled as a stochastic 
process using BHM. The time-varying variance (within day) of these fluctuations over the 
‘trend’ in urban traffic flow observations at a signalized intersection has been estimated in the 
model. The effectiveness and the accuracy of the model have been compared with a 
conventional short-term traffic flow forecasting time-series model based on Holt-Winters 
Exponential Smoothing (HWES) technique. Both the models are applied at two signalized 
intersections at the city-centre of Dublin and their performances have been discussed. 
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INTRODUCTION 

The major existing Urban Traffic Control Systems (UTCS) (like, SCATS and SCOOTS) 
collect traffic condition related data for real-time monitoring and operational purposes. In an 
Intelligent Transportation Systems (ITS) equipped transport network one of the important uses 
of traffic data collection is continuous forecasting of traffic conditions in near (short-term) future 
based on the current traffic conditions. A significant amount of research has been conducted to 
improve the real-time applicability of short-term forecasting techniques in relation to ITS. 
Extensive review on this subject is available from the studies of Van Arem (1) and Vlahogianni 
(2). The well known short-term forecasting techniques include non-parametric regressions [e.g. 
(3)], neural networks [e.g. (4)], linear and non-linear regression, historical average algorithms 
(such as, moving average technique or exponential smoothing technique) [e.g.(5)] and, ARIMA 
time-series models [e.g. (6),(7)].  

The existing short-term traffic forecasting algorithms require large datasets from 
historical observations and are heavily dependent on data from recent past available through 
continuous monitoring of traffic conditions. However, due to financial and operational 
constraints, generally the continuous collection of traffic condition related data is limited to the 
critical junctions in an urban transportation network. Hence, for non-critical urban signalised 
junctions where data related to traffic conditions (e.g. volume, speed or density) are not collected 
regularly or for junctions where the data collection system (inductive loop-detector or video 
imaging system) is out of service for a considerable period of time, the existing short-term traffic 
forecasting algorithms cannot be applied due to unavailability of data on real time traffic 
conditions. This paper develops a random process model to simulate short-term traffic flow 
time-series datasets that can be used in such situations. The proposed model is formulated based 
on a combination of discrete wavelet transform (DWT) (8) and Bayesian hierarchical 
methodology (BHM). 

In short-term traffic flow forecasting algorithms, DWT has been mainly used by 
researchers as a de-noising technique in wavelet pre-processing of traffic flow observations for 
increasing the accuracy of the algorithms (9). Chen et al. (10) combined the wavelet transform 
with a Markov model to forecast traffic volume. In traffic pattern modeling, varied studies on 
optimized aggregation level (11), data reduction (12) and mesoscopic-wavelet model (13) have 
been carried out. In WA based traffic flow modelling, DWT using multi-resolution analysis 
(MRA) technique has the potential to decompose the fluctuations in the traffic flow observations 
at different or multiple time-scales (within a day). This feature of the MRA has been used in the 
proposed model to capture the ‘approximate’  variation of the traffic flow observations at a time-
scale of the order of  a day, smoothing out the short-term fluctuations, leading to the ‘trend’ of 
the traffic flow time-series dataset. The non-functional ‘trend’ obtained by this proposed 
technique has two distinct advantages over the trends obtained using most of the existing short-
term traffic flow forecasting time-series models. Firstly, the function-free form of the trend has 
better flexibility in accommodating the variations as compared to the trends in functional forms 
associated with most of the existing time-series models. Secondly, the DWT technique is a 
computationally efficient method to calculate the trend.  Once the ‘trend’ has been modeled, the 
random fluctuations over the ‘trend’ in traffic flow observations may be considered as an 
additive random process. The characterization of these random fluctuations is carried out 
following a Bayesian statistical approach. 
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The use of Bayesian statistics is quite recent in the field of traffic flow modelling and 
research on Bayesian networks (14), hierarchical regression models (15) and Bayesian SARIMA 
models (16) are only a few studies reported till date. The residuals derived for the time-series 
traffic flow observations have been modelled by the BHM. The advantage of using BHM is that 
the randomness is represented by a parametric statistical model with parameters stochastic in 
nature. This can account for the variation of the statistical variance of the traffic flow 
observations in a day (depending on the time of the day), the variance itself being treated as a 
random variable.  

The effectiveness and accuracy of the proposed traffic flow model is compared with a 
well-known short-term traffic flow forecasting algorithm based on Holt-Winters exponential 
smoothing (HWES) technique. The relative performances of the two models have been 
compared by considering two signalized junctions at the city centre of Dublin. For the sake of 
comparison, the junctions had to be chosen such that data collection system and recent data were 
available for the applying the HWES technique. However, the proposed wavelet-Bayesian 
hierarchical model is independent of the availability of recent data and can be useful for 
application at non-critical urban signalised junctions even in the absence of a continuous data 
collection system. 
 
TREND+BHM (TBHM) MODEL 
 
Non-Functional Trend Model 

Multi-Resolution Analysis  

The WA technique provides a time-frequency/time-scale representation of any 
signal/time-series data. The time-series is decomposed using DWT into linear combination of 
shifted and scaled versions of the original (or mother) wavelet basis function. MRA uses a 
computationally efficient technique by which different frequencies/scales of a signal are split at 
different resolutions to evaluate the DWT coefficients.  

 The DWT (8) of a signal X(t) generates a collection of coefficients 
( ) ( )

( ) ( )

,

 ,         where, Z=1,2,3...
,

J J k

j j k

c k X t

j k Z
d k X t
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ψ
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where < *, * > denotes inner product, t is time, { ( )} jd k are the detail coefficients at level j (j = 
1,2,…J) and { ( )} Jc k are the approximate coefficients at level J. The signal X to be analyzed is 
integral-transformed using a set of basis functions 

( ) ( )22 2
j

j
j k t t kψ ψ− −= −                           (2) 

The set of bases in Eq. (2) is constructed from the mother-wavelet ( )tψ by a time-shift operation 
(k) and a dilation operation (j). The function ( )J k tϕ  is a low-pass filter which can separate the 
low frequency component of the signal. Thus DWT decomposes a signal into a large time-scale 
(low frequency) approximation and a collection of details at different smaller time-scales (higher 
frequencies).  



Ghosh, Basu and O’Mahony        5 

The original signal can be reconstructed back from the decomposed approximation and 
the detail components.  

( ) ( ) ( )J j
j J

X t A t D t
≤

= + ∑                (3) 

where, ( )JA t  is the reconstruction of the approximation coefficients Jc  at level J and ( )jD t is 
the reconstruction obtained from the detail coefficients jd  at level j. In the reconstructed 
approximation ( JA ) and in the reconstructed details obtained at each stage/level (D1, D2 … DJ) 
the numbers of data points remain the same as the original dataset. 
 
Trend Model 

The ‘trend’ of a time-series data can loosely be defined as the ‘long-term’ change of the 
mean level of the data (17). In the daily trend model of the traffic flow observations from an 
urban signalized intersection, the word ‘long-term’ indicates stability over time on a daily basis. 
In this study, MRA is used to develop a representative daily trend model underlying the traffic 
flow observations over a day (18).  

In this study, DWT associated with the basis Daubechies’ 4 (db4) is used to decompose 
the signal (time-series traffic flow observations) into different time-scales. Initially, the original 
signal is decomposed into approximation coefficients c1 (low frequency/fluctuations or 
variability) and detail coefficients d1 (high frequency/fluctuations or variability). The 
approximation coefficients c1 (relative low frequency components) are again decomposed to 
approximation coefficients c2 and detail coefficients d2 at the next level. This procedure is 
repeated for further decompositions. The aim of repeating the decomposition procedure is to find 
an optimum approximation level for extracting the trend in the data. The optimum 
approximation level is the one in which the reconstructed approximation coefficients, Am (m is 
the optimum approximation level), are the optimal smoothed estimate of the traffic flow data 
which can truly represent the traffic flow pattern on an average day. This is essentially an 
averaging or smoothing technique in a statistical sense and is computationally similar to de-
noising technique in signal processing. The local variation in traffic flow observations due to 
signal control in the urban arterials is considered as fluctuations to be smoothed (for the 
mathematical treatment) in this methodology. The traffic flow pattern at any particular approach 
at any intersection in an urban transport network is similar for the weekdays. However, there can 
be some day-to-day variability due to other factors like, the day of the week, accidents or 
recurrent congestion in some other part of the transport network etc. These factors are 
uncontrollable and cannot be modeled as such. So, to obtain a ‘regular trend over an average 
day’, the Am values over some regular days (approximately, 20 days in this study) are to be 
averaged.  

The residuals are obtained by subtracting the ‘regular trend over an average day’ from 
the original traffic volume observations. The ‘non-functional trend model’ forms the skeleton of 
a background model for simulating traffic flow at an urban intersection. The subsequent 
modeling of the residuals helps to establish a tight simulation interval over the ‘trend’.  
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Bayesian Hierarchical Residual Model 

The Bayesian hierarchical (BH) model (19) is a parametric statistical model with a tree-
like structure based on the dependencies of the variables. The parameters of the model at each 
stage are represented by other parametric statistical models at the next stage.  

In this study, the variance of the residuals is assumed to be dependent on time and has to 
be modeled accordingly using another parametric statistical model. If R is the vector of the 
residuals averaged over 20 days, then in a normal hierarchical model, 

( )2~ N ,                  1, 2....t tm t T=R σ                (4) 

where, m is the sample mean of the residuals and tσ  is the standard deviation of the residuals for 
each time instant denoted by a subscript t. The vectors m, σ  and R are both of dimension {Tx1} 
where T is the number of time intervals or time instants in a day (for 5 minute aggregate traffic 
flow observations as used in this study, T = 288). The variance 2σ , of the residual dataset R 
changes with the time of the day. To model this time varying variability of the variance, the 
following parametric distribution is proposed. 

( )2~LN log( ),τσ y                            (5) 

As σ is always positive, a lognormal distribution is taken in equation 5 to ensure that all tσ  lie 
within ( )0,∞ . The lognormal distribution for each tσ  is centered at yt with standard deviation of 
τ. The variances of the high resolution components (sum of level 1, 2 and 3 reconstructed from 
detail coefficients) from traffic flow observations over multiple days (say, 20 days in this study) 
calculated over each hour of a day are considered as the initial estimates of the standard 
deviation of the residual (yt) for that hour of the day. The values of the vector y of dimension 
{Tx1} are constant and site specific. At the next stage of the tree-structure of the BH model the 
variance 2τ of the lognormal distribution is assumed to follow a uniform distribution, within a 
range ( )0, k  

 ( )~ U 0,              k kτ < ∞                 (6) 
where, k is an arbitrary constant signifying the maximum limit of the values of τ . The exact 
value of k does not influence the estimation process. In this study, the equations 4, 5 and 6 define 
the BH model for the residuals. In the model, the unknown parameters to be estimated are 
σ ( 1 2 288, ...........σ σ σ ) and τ . These unknown parameters are represented by a vector 

( )1 2 288, , ... Tτ σ σ σ=ξ  and are estimated by the Bayesian estimation technique (19). For the 
Bayesian inference, the posterior probability density function of the normal hierarchical model is 

( ) ( ) ( ) ( ), , ,p p L Lτ τ=ξ σ σR t R t t               (7) 

where, ( ),p ξ R t is the posterior density function of ξ ; ( ),L σ R t is the likelihood function of σ  

and ( ),L τ σ t is the likelihood function of τ ; ( )p τ  is the prior probability density function of 

parameter τ . As R is assumed to follow a normal distribution, the likelihood function of σ  given 
R and the time instant vector t (unit time interval = 5 minute) is 

( )
2

221

1, exp
22

T
t

t tt

RL
σπσ=

⎛ ⎞
= −∏ ⎜ ⎟

⎝ ⎠
σ R t                     (8) 
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Similarly, the likelihood function of τ  given σ , y and t is, 

( ) ( )2

2
1

log log1, exp
22

T t t

t t

y
L

σ
τ

τσ τ π=

⎡ ⎤−
⎢ ⎥= −∏
⎢ ⎥⎣ ⎦

σ
 

t                        (9) 

( )p τ  is equal to a constant as the prior probability density function of τ  is assumed as flat on 

the range ( )0,∞ . Hence, the posterior density from equation 7 is 

( ) ( )22

2 2
1 1

log log1 1, exp exp
2 2

T T t tt

t tt tt

yRp
σ

σ σ τσ τ= =

⎡ ⎤⎛ ⎞ −
⎢ ⎥∝ − −∏ ∏⎜ ⎟
⎢ ⎥⎝ ⎠ ⎣ ⎦

ξ
 

R t                    (10) 

which yields,  

( ) ( )22

2 2 2
1

log log1 1, exp
2 2

T t tt
T

t t t

yRp
σ

τ σ σ τ=

⎛ ⎞−⎛ ⎞ ⎜ ⎟∝ − −∏⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
ξ R t                                (11) 

 

( )22

12 2 2
10 0 0

log log1 1... exp ...
2 2

T t tt
TT

t t t

yR d d d
σ

τ σ σ
τ σ σ τ

∞ ∞ ∞

=

⎛ ⎞−⎛ ⎞ ⎜ ⎟− −∏∫ ∫ ∫ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
                              (12) 

By integrating out the other unknown parameters except for the one whose distribution is 
to be estimated, the ‘marginal distributions’ of each of the unknown parameters can be 
determined from the integral in equation 12. The computation of the marginal distributions of 
the unknown parameters in ξ involves evaluation of a multiple integral with problems of high 
dimensionality. In this paper, Markov Chain Monte Carlo (MCMC) method, a particular 
iterative variation of the Monte Carlo simulation techniques, is used to simulate the marginal 
probability distributions of the unknown parameters. There are two popular MCMC algorithms, 
(i) Gibbs sampler (20) and (ii) Metropolis-Hastings algorithm (21), (22). 

In the MCMC method, to simulate the marginal probability distributions for the unknown 
parameters in the vector ( )1 2, , ........ Tτ σ σ σξ , given an initial condition ( )(0) (0) (0) (0)

1 2, , ........ Tτ σ σ σ  

the following 289 steps are to be iterated (i denotes the number of iteration): 

1.     Sample 1iτ + from ( )1 ( ) ( ) ( )
1 2, ..... , ,i i i i

T tp τ σ σ σ+ y t  using Gibbs sampler technique  

2.       Sample 1
1
iσ + using Metropolis Hastings technique     

. 

. 

. 
289.     Sample 1i

Tσ + using Metropolis Hastings technique 

The initial conditions ( )(0) (0) (0) (0)
1 2, , ........ Tτ σ σ σ  are as follows,   

( )

(0)

1
(0) (0) 2

1

0.5

~ Inverse-gamma 0.5 1 ,0.5 (log log )
T

t t
t

T yτ σ
−

=

⎧ = −
⎪
⎨ ⎡ ⎤⎛ ⎞− −∑⎪ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎩

σ y
                   (13) 



Ghosh, Basu and O’Mahony        8 

The steps 1 to 289 are repeated for 10000 times to simulate 10000 values for all the unknown 
parameters. 
  
 

HWES MODEL 

The HWES technique is a generalized version of the exponential smoothing technique 
for dealing with the variations in trend and seasonality in time-series data. In HWES, the weights 
associated with the observations are reduced from two directions, viz. seasonally and 
historically. The equations for the ‘additive’ HWES model are:  

• Updating the level index Lt (Overall Smoothing), 

( ) ( )( )1 11t t t s t tL y S L bα α− − −= + − +                                   (14) 

• Updating the trend index bt  (Trend Smoothing), 

( ) ( )( )1 1 11t t t t tb L L L bβ α− − −= − + − +                        (15) 

• Updating the seasonal index St (Seasonal Smoothing), 

( ) (1 )t t t t SS y L Sγ γ −= + −                                    (16) 

Using these three indices, the equation for forecast, t mF +  for the additive model is, 

t m t t t S mF L mb S+ − += + +                                                    (17) 

where, m is number of periods ahead. At any time point t, Lt stands for the smoothed 
observation, and yt stands for the original observation; α, β  and γ are the level, trend and 
seasonal smoothing parameters respectively and s is the number of periods in a seasonal cycle. 
Τhe constants, α, β  and γ are estimated by minimizing the MSE using any non-linear 
optimization technique. HWES being particularly good in modeling data with seasonality is 
suitable for modeling univariate traffic volume observations from an urban signalized 
intersection (7).  

 

ILLUSTRATIVE EXAMPLES 
 

As illustrative examples, univariate short-term traffic volume data are simulated and 
predicted for two representative junctions (TCS 183 and TCS 439) at the city-centre of Dublin 
on 12th and 13th July 2005 using the proposed TBHM model and the conventional HWES model 
respectively. The model fitting techniques and the comparison of the accuracies of both the 
models are discussed in this section.  
 
Traffic Flow Observations 
 

The univariate traffic flow time-series observations, used for modeling, are obtained 
from the inductive loop-detectors embedded in the streets of the junctions TCS 183 (critical 
junction) and TCS 439 (non-critical junction) as a part of the urban traffic control (UTC) data 
collection system of the city of Dublin. A map of the junctions is given in figure 1. In junction 
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TCS 183, the traffic volume passing through Tara Street, measured on the loop-detectors 
numbered 1, 2, 3, 4, and in junction TCS 439 the traffic volume passing through Townsend 
Street, measured on the loop-detectors numbered 1, 2, 3, are used in describing and evaluating 
the proposed traffic volume model. The data used for modeling was recorded from 15th June 
2005 midnight to 13th July 2005 midnight  

 

 
 

Figure 1  Diagram of the Junction TCS 183 and TCS 439 
 
In short-term traffic flow forecasting models data aggregate intervals from 3 min. to 30 

min. are used based on the forecasting algorithms. In view of the wavelet analysis techniques to 
be applied on the traffic volume observation a 5 min. data aggregation interval is chosen for this 
paper. In case of an urban transport network, the weekend travel dynamics is inherently different 
from the travel dynamics in the weekdays. In this study, the modeling is essentially carried out 
on the data observed during weekdays. A plot of the traffic flow data from both the junctions in 
vehicles per hour (vph) against time is shown in figure 2.  
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Figure 2 Trend and Traffic Flow Observations from Junctions TCS 183 and TCS 439 
 

 
Fitting TBHM Model 

This proposed wavelet based methodology of finding ‘regular trend over an average day’ 
is applied to univariate traffic flow observations obtained collectively over each 5 minute 
interval from the loop detectors at the intersections TCS 183 and TCS 439 at the city-center of 
Dublin. A plot of the traffic flow observations from the chosen sites on 12-07-2005 is given in 
figure 2.  

The traffic flow observations over twenty days i.e. four weeks (as weekends are not 
included), in the month of June-July from the two chosen sites are decomposed into three levels 
of resolution using MRA with Daubechies’ 4 wavelet basis function. The three different levels 
represent the three different time scales. The wavelet coefficients for approximations and details 
are then reconstructed at all three levels (Figure 3). For the purpose of modeling, the 
reconstructed values of the approximation and detail coefficients are used in this study. At each 
level, during decomposition the high frequency part of the data is separated from the low 
resolution or the low frequency part. The low frequency part at level three is quite smooth 
(Figure 3) and can be used as a representative of the overall trend over a day in the traffic data. 
Hence, the third level is considered as the optimum level of decomposition to obtain optimum 
smoothed estimates of the times-series data.  
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Figure 3 Reconstructed Approximation Coefficients at Level 3 and Reconstructed 

Details Coefficients at Level 1, 2, 3 on 12-07-05 from TCS 183 
 
To model the representative trend for the two chosen approach lanes at the two chosen 

intersections, an average over 20 days of the reconstructed flow using level 3 approximations is 
considered. The selection of the average coefficients helps to reduce the effect of certain abrupt 
daily changes (introducing the effect of smoothing). In figure 2, the ‘regular trend over an 
average day’ is plotted in dotted lines over the traffic flow observations over 12th July, 2005 
from junctions TCS 183 and TCS 439. It can be observed from the graphs that the computed 
trend provides a very good approximation of the traffic volume on any arbitrary day.  

The residuals are obtained by subtracting the ‘regular trend over an average day’ from 
the original observations. A plot of the residuals for both junctions TCS 183 and TCS 439 on 12-
07-2005 is given in figure 4. From figure 4, it can be observed that the spread of the residuals 
vary with time as assumed in the BHM model.  
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Figure 4  Dot Plot of Residuals on 12-07-2005 
 

The simulated values of σ  for traffic volume for the two junctions are plotted in a graph in 
figure 5. The sample standard deviation of the residuals derived after subtracting the trend from 
the traffic volume observations on 12-07-2005 for the two junctions are shown as horizontal 
lines in the figure.  

 

 
 
Figure 5 Simulations of Values of σ  for TCS 183 (A) and TCS 439(B). 
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The estimates of σ  obtained from the BH model change with the time of the day. The 
estimates during the peak hours are higher than the estimated values of σt during the rest of the 
day and the estimates of σ during the early hours in the morning are the least. The nature of the 
variability of the variance of the residual conforms to the spread of the residual data points in 
figure 4. To illustrate the effectiveness of the BH model of the residuals a 95% confidence 
interval is constructed on the regular average trend. The original 5 minute traffic flow 
observations from intersections TCS 183 and TCS 439 on 12th and 13th July 2005 are plotted 
along with the simulated 95% confidence limit in figure 6(A) and 6(B). The error estimates of 
the TBHM model for both junctions are given in Table 1. 

 
 

Mean of 
Observations 

(12-07-05) 
(vph) 

Mean of 
Observations

(13-07-05) 
(vph) 

MAPE 
from 

TBHM 
Model 

(12-07-05) 
 

 MAPE 
from 

TBHM 
Model 

 (13-07-05)
 

MAPE 
from 

HWES 
Model 

(12-07-05) 
  

 MAPE 
from 

HWES 
Model 

 (13-07-05)
  

TCS 
183 1300.83 1253.9 19.99% 12.83% 21.75% 23.07% 

TCS 
439 374.7 362.8 27.55% 28.73% 35.27% 38.08% 

 
TABLE 1.  Error Estimates of TBHM and HWES Models 

 
 

 
 
Figure 6(A)  Simulated and Original Traffic Volumes on 12-07-2005 at TCS 183 
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Figure 6(B)  Simulated and Original Traffic Volumes on 12-07-2005 at TCS 439 
 
Fitting HWES Model 

Using the HWES model as described previously, short-term traffic volume forecasts are 
generated for 12th and 13th July, 2005.  

 

 
Figure 7(A) Forecasts from HWES model on 12th and 13th July from TCS 183 
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Figure 7(B) Forecasts from HWES model on 1212th and 13th July from TCS 439 
 

The initial values of the smoothing parameters are taken as, α = 0.05, β =0.02, δ = 0.03 
for modeling the original traffic flow data. The optimum values of the smoothing parameters are 
found out by minimizing the mean absolute percentage error (MAPE). The forecasts from the 
HWES along with the original observations are plotted in figure 7(A) and 7(B). The prediction 
accuracy of the forecasts obtained using the HWES model for junctions TCS 183 and TCS 439 
are discussed in Table 1. 

 
Comparison of Results 
 

The results from the proposed TBHM model and the conventional HWES model are 
compared based on their accuracy (quantitative) and effectiveness (graphical). The quantitative 
comparison of accuracy has been done by comparing the error estimates from both the models 
(Table 1) and the proposed TBHM model has been proved to be superior to the HWES model.  
Based on MAPE values, it can be concluded that the ‘non functional average trend’ model is a 
reasonably accurate and inexpensive method of modeling short-term traffic flow data for urban 
signalized intersections.  

The effectiveness of the two models are judged by comparing the variation in the traffic 
volume prediction intervals from the HWES model and the TBHM model (for 12th and 13th July 
2005) for both junctions TCS 183 and TCS 439 in figures 8(A) and 8(B).  
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Figure8(A)  Simulation and Prediction Interval from TBHM and HWES models for 

Traffic Volume at Junction TCS 183 
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Figure8(B)  Simulation and Prediction Interval from TBHM and HWES models for 
Traffic Volume at Junction TCS 439 

 
It can be observed the from the graphs that the simulation range obtained from the 

TBHM model varies with the time of the day (wider at peak hours and narrower at off-peak 
hours) unlike the seemingly constant prediction interval from the HWES model for traffic flow 
observations for both the junctions. In all the off-peak hour graphs the HWES model fail to give 
any satisfactory lower limit of prediction. Both the model give higher error estimates when 
traffic volumes are lower than 300 vph. 
 
CONCLUSIONS 
 

A novel formulation of a hybrid model (TBHM) using a combination of the DWT 
technique and the BH model to simulate daily short-term traffic flow time-series dataset at urban 
signalized intersections has been proposed in this paper. One of the major contributions of the 
model is in developing a wavelet-based ‘non-functional trend’ by isolating the low resolution 
component from the high resolution components of a univariate traffic volume time-series 
dataset. The proposed wavelet-based modeling of the trend is more flexible being not limited to 
any functional forms and is computationally inexpensive. In addition, the subsequent Bayesian 
hierarchical residual model can represent the time-varying statistical variance of the high 
resolution components of the univariate traffic flow time-series dataset. The consideration of this 
inherent property (time-varying variance) of the short-term traffic volume observations in the 
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proposed model reflects more realistically the real life behavior of traffic in an urban 
transportation network.  

The proposed TBHM model can simulate a short-term traffic volume range over a day 
reasonably accurately without using any observations from current and/or recent past unlike all 
other existing short-term traffic flow forecasting algorithms. Examples involving two urban 
signalized intersections in Dublin illustrate that the TBHM model is more effective with a time-
varying prediction interval is more effective than the well-known short-term traffic flow 
forecasting HWES model.   

A useful application of the proposed TBHM model can be for modeling traffic flow 
observations at non-critical junctions as well as critical junctions when the data collection 
systems for the same is not functioning for a considerable period of time leading to lack or 
absence of data from recent past. The proposed model can be effective in such scenarios where 
the existing short-term traffic forecasting models may not be applicable at all. 
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