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Abstract—Parametric modeling strategies are explored in
conjunction with linear discriminant analysis for use in an elec-
troencephalogram (EEG)-based brain—computer interface (BCI).
A left/right self-paced typing exercise is analyzed by extending
the usual autoregressive (AR) model for EEG feature extraction
with an AR with exogenous input (ARX) model for combined
filtering and feature extraction. The ensemble averaged Bere-
itschaftspotential (an event related potential preceding the onset
of movement) forms the exogenous signal input to the ARX model.
Based on trials with six subjects, the ARX case of modeling both
the signal and noise was found to be considerably more effective
than modeling the noise alone (common in BCI systems) with the
AR method yielding a classification accuracy of 52.8 + 4.8% and
the ARX method an accuracy of 79.1 &+ 3.9% across subjects. The
results suggest a role for ARX-based feature extraction in BCIs
based on evoked and event-related potentials.

Index Terms—Autoregressive (AR) with exogenous input (ARX),
Bereitschaftspotential (BP), brain—computer interface (BCI), elec-
troencephalogram (EEG).

I. INTRODUCTION

OR SOME people with very severe disabilities (e.g.,

amyotrophic lateral sclerosis or brainstem stroke), a
brain—computer interface (BCI) may be the only feasible
channel for communicating with others and for environment
control. A BCI typically operates by harnessing signals arising
from processes within the brain without depending on the
brain’s normal output pathways of peripheral nerves or muscles
[1]. The most common signal employed for this purpose cur-
rently is the noninvasive, scalp recorded electroencephalogram
(EEG) [2]-[7]. Complex digital signal processing and pattern
recognition techniques are often employed to extract pertinent
features from the measured signals in real-time and subse-
quently used to drive communication and control applications
[1].

When designing a BCI, in addition to the technical method-
ology of recording, feature extraction, and pattern recognition,
the choice of feature and elucidation paradigm is paramount.
Broadly speaking, most EEG-based BClIs fall into one of four
categories: those based on oscillatory EEG components [2], [3];
those based on evoked potentials [4], [5]; those based on slow
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cortical potentials [6]; and, finally, those based on event-related
potentials [7]. Autoregressive (AR) models have proved popular
in the feature extraction stages of BCIs [8], [9]; see [10] for a
review of this method with application to the EEG. The all-pole
AR model lends itself well to modeling the EEG as filtered white
noise with certain preferred energy bands. The AR with exoge-
nous input (ARX) model is a natural extension to the AR model,
facilitating an external input filtered by both AR and moving av-
erage components. Cerutti ef al. [11] employed the ARX model
to filter movement-related brain macropotentials, thereby dras-
tically improving the signal-to-noise ratio of each trial for use
in pathophysiological detection. In this paper, we extend the fa-
miliar AR feature extraction technique traditionally applied in
brain-computer interfacing to the ARX case where an evoked or
event-related potential is employed as the exogenous input. The
ARX model characterizes the signal into its constituent parts of
noise (ongoing EEG) and signal (the ensemble average evoked
or event-related potential) [11] and the coefficients of the model
constitute the feature vector for subsequent classification.

II. METHODS

A. Experiment Paradigm

A left/right self-paced typing exercise paradigm was em-
ployed with subjects sitting upright and fingers in the standard
typing position at a Qwerty keyboard. The task consisted of
pressing the left or right “home keys” with the corresponding
fingers in a self-chosen order and timing. No feedback was
given. The EEG was recorded using two bipolar leads with
Grass P511 amplifiers (with 50-Hz line filter) from channels
C3 and C4 of the 10-20 system, corresponding to left and right
primary motor areas, respectively. The horizontal electrooculo-
gram (EOG) from the right eye was also recorded. The signals
were digitized at a sampling frequency of 512 Hz, low-pass
filtered with a cutoff 64 Hz and down-sampled to 128 samples
per second. Six subjects took part in the trials (all male, aged
between 22-25 years, in full health) in a single session per
subject each lasting 10 min, resulting in a total of 60 min of
data. Key presses were made on average every 2—3 s resulting in
200-300 epochs of 1500-ms length, ending 120 ms before the
keystroke, thus avoiding effects of EMG activity masquerading
as control signals. Trials where significant EOG activity took
place (eye blinks) were omitted (<2% of the collected data)
from analysis (achieved automatically by linearly detrending
and removing those time series whose maximum, rectified
EOG amplitude exceeded a threshold).

1534-4320/$20.00 © 2005 IEEE



BURKE et al.: PARAMETRIC FEATURE EXTRACTION AND CLASSIFICATION STRATEGY FOR BRAIN-COMPUTER INTERFACING 13

Left movements
6 T T T

g
N
T

4l L

relative potential /), V

B i .

— <3
o= C4

-14 1 1 1
-2 -1.5 -1

t/s

Fig. 1.
at about 500-ms preceding movement.

B. Bereitschaftspotential (BP)

The experiment paradigm just described produces an
event-related potential known as the BP—a gradually rising
negative potential occurring about 1000 ms preceding the onset
of movement [15]. Deecke et al. [16] identified an additional
three components of the BP: a pronounced contralateral neg-
ativity over the precentral and parietal areas starting about
500200 ms prior to movement, a small positive deflection
beginning around 90 ms prior to movement, and a smaller
negative potential starting about 50 ms prior to movement
predominant over the primary motor cortex. Fig. 1 illustrates
the ensemble averages for C3 and C4 recordings for left and
right self-paced movements from a single subject. Note the
contralateral negativity commencing approximately 500 ms
before the onset of movement at O s.

C. Feature Extraction

To investigate the utility of the ARX method for feature ex-
traction we consider two feature sets for the purposes of com-
parison.

Case 1: The EEG time series is fitted with an AR model. The
AR model can be intuitively rephrased in the frequency domain
as white noise source driving an all-pole spectral shaping net-
work A~1(z) [10]. Fig. 2 illustrates the model structure with the
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Fig. 2. AR model structure.

output of the model given by (assuming without loss of gener-
ality a sampling interval of unity)

§(t) = —ary(t = 1) = -~ —an(t = na) +e(t) (1)

where e(t) is white noise and a; are the coefficients of the n,
order model.

Denoting 6 as the vector of model parameters, the forward
prediction error is given by

e(t,0) = y(t) — 4(t,0). @
To fit the model to the data y(t) collected over a period ¢t =
1,..., N, we choose such that it minimizes
1=
E(0) = & ;e (t,6). A3)

Typically, the least squares criterion is employed to find 4,
resulting in the Yule-Walker equations, which may be solved
easily [10].



14 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 13, NO. 1, MARCH 2005

e(t)

J(—pt) B(z) Al X

Fig. 3.  ARX model structure.

Case 2: Extending the previous case, an ensemble averaged
evoked or event-related potential forms the input to an AR
moving average (ARMA) model. Assuming a common denom-
inator for the ARMA filter and AR filter results in the ARX
model as illustrated in Fig. 3.

Equation (1) is now extended to

g}(t) = _aly(t_ 1) - ana(t_na)
+b18(t—k)+"'+bnb(t—k—nb+1)+€(t) @

where s(t) is the exogenous input, a; and b; are the coefficients
of the ny, n, order model, & is the delay (which we take as 0),
and e(t) is white noise. By using (2) and (3), the coefficients of
the ARX model can obtained by restating (4) as a linear regres-
sion and solving explicitly [12].

In both cases, Akaike’s final prediction error (FPE) may be
used as a guide for choosing model orders [13]. The FPE penal-
izes higher order models and is given by

_ N+4n,+n+1

FPE(9) = = F(6) 5)

where n, = 0 for the AR case.

D. Classification

A linear discriminant analysis (LDA) was employed for the
pattern recognition task in this paper. Consider a set of c classes
Ck. Given an input vector x of features, the classification
problem may be formulated in terms of a set of discriminant
functions y1(z),y2(z), ..., y.(x) where an input vector X is
assigned to class CY, if

ye(e) > yi(x),  forall j # k ©)
i.e., choose the class for which the corresponding discriminant
function is largest. We may derive a discriminant function in
terms of Bayes’ theorem given by

p(z|Ck)P(Ck)

PO =00

. )

Bayes’ theorem relates the posterior probability to the
product of the class conditional probability and prior proba-
bility. The p(x) term serves as a normalization term so that
posterior probabilities sum to unity. The usefulness of Bayes’
theorem (7) stems from the fact that it is easier to calculate
the right-hand side than the left-hand side. One of the simplest
discriminant function is y, = P(Cy|z) and can be extended
further by omitting the class independent probability from (7)
and taking the logarithm to obtain

yr(w) = In(p(x | Ck) + In(P(Cy)). (8

TABLE 1
PARAMETRIC MODEL ORDERS AND CLASSIFICATION ACCURACY
| n, ny ARX acc. % AR acc. %

Subject 1 4 2 82.1 55.1
Subject 2 4 2 77.8 55.0
Subject 3 3 2 79.5 60.1
Subject 4 4 2 71.8 47.7
Subject 5 3 2 81.1 49.1
Subject 6 3 2 82.2 49.5

Mean: 79.1 52.8

An assumption is made that a normal distribution exists for
the class conditional densities, given in d dimensions as

1 1
p(z) = W exp{—i(x — ,uk)TE,:l(a: — Mk)}
9

where the mean vector and covariance matrix are given, respec-
tively, by

n=E(z)
S = B[z — p)(x — )T

By assuming that covariance matrices are identical for all
classes X, = X, and neglecting constant terms, one forms the
linear discriminant function

1
yr(x) = pp 271 — Spp X7 + In(P(Cy)).

5 (10)

In case 1, the coefficients of two AR models, one for each
channel C3 and C4 were employed as inputs to the LDA clas-
sifier. For case 2, the coefficients of four ARX models, (two for
each channel with the ensemble average of left movements and
right movements as exogenous inputs, respectively) were used
as inputs to the classifier.

III. RESULTS

To obtain an estimate of accuracy, a cross-validation proce-
dure was employed [14]. The trials for each session (consisting
of parametric model coefficients) are first randomly shuffled and
subsequently divided into N distinct segments. N — 1 segments
are used to train a LDA classifier and the remaining segment is
used as the test set. This process is repeated for each IV possible
test sets and the mean test set accuracy is computed. Finally,
the complete process with a new random shuffle is repeated M
times to yield a mean accuracy and standard deviation. The data
is uniformly processed with M = 20 and N = 10.

Table I displays the LDA classification accuracy for each sub-
ject in addition to the parametric model orders that yielded op-
timum accuracy for the ARX model (the Akaike FPE was used
as a starting point for selection of model orders). In all subjects,
the optimum classification accuracy was obtained for the same
order n, in both the ARX and AR models.

Fig. 4 illustrates the mean accuracy and standard deviation
over each shuffle for each subject for the AR and ARX models in
the feature extraction stage. The mean accuracy over all subjects
for ARX features is 79.1 £ 3.9% while for AR features is 52.8 £
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Fig. 4. Mean accuracy % over M = 20 random shuffles for each subject for AR and ARX features.

4.8%. The results show clearly that for each subject the ARX
set of features yields higher classification accuracy than the AR
features.

IV. DISCUSSION

The ARX model, while elegant in its simplicity, assumes a
linear superposition of the evoked or event-related potential with
the background EEG activity. This is a clear simplification of the
actual nonlinear interaction expected [11]. The common denom-
inator structure of the ARX model, implying that noise enters
early in the modeled process, seems physiological reasonable
as ongoing EEG contributions from neighboring neural popula-
tions contribute mostly to the background noise [15]. Modeling
the contributions of both the known signal (ensemble averaged
evoked or event-related potential) and the noise (EEG) yields
better features for the classifier and is an intuitively satisfying
result.

The ARX model employs an ensemble averaged evoked or
event-related potential as its exogenous input. This is valid if
the time-locked responses remain identical throughout the ses-
sion. In practice, responses are never identical and trial-to-trial
variability may occur due to a variety of reasons such as sen-
sory adaptation or differing behavioral outcomes [19]. The en-
semble average used in conjunction with the ARX model repre-
sents a “typical” evoked or event related potential and thus only
approximates an individual trial’s actual evoked or event related
potential.

The experimental paradigm employed short epochs of 1.5 s
for analysis, terminating 120 ms before the onset of movement.
The duration of the epochs is sufficiently short to be considered
quasistationary and suitable for parametric modeling [10]. It is
likely that longer epochs, for example those used in [3], would
yield higher accuracies for the AR model by also extracting per-
tinent features of event-related desynchronization.

The results suggest that the ARX feature extraction approach
should prove useful for BCI systems based on evoked and event-
related potentials, e.g., [4] and [7]. It is expected that the model
orders in (4) for the b coefficients will be larger to correctly
model the more complex morphology of P300 and visual evoked
potential (VEP) waveforms. Finally, the parametric feature ex-
traction and classification stages are simple to implement, com-
putationally efficient, and thus suitable for implementation in
real-time application for BCI systems.

In this paper, an LDA was employed for the classification
task. This choice was prompted by the emphasis of the research
being on the extraction of pertinent features and not on the clas-
sifier itself. We plan to test more sophisticated classification ap-
proaches (such as those used in [17]) employed in conjunction
with the present ARX feature extraction technique with a view
to further improving our classification results.

In this study, we have studied the execution of actual move-
ments as opposed to imagined movements by employing data
acquired before the actual movement took place. It has been
shown [18] that the BP phenomenon is present to a comparable
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extent in imagined movements albeit with lower amplitudes. We
intend to study what effect, if any, imagined movements versus
actual movements may have on our results.

V. CONCLUSION

The approach of employing an AR model for feature extrac-
tion with the EEG is well known [10] with a number of suc-
cessful applications in BCI systems [8], [9]. The ARX model,
by combining information about the underlying event-related
BP, performs better than the simple AR model of equivalent
order and suggests the role of this approach in BCIs harnessing
event-related or evoked potentials.
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