
Towards Flexible Authorization Management

Patroklos G. Argyroudis
Networks and Telecommunications Research Group

Department of Computer Science

University of Dublin, Trinity College

argp@cs.tcd.ie

Donal O’Mahony
Centre for Telecommunications Value Chain Research

Department of Computer Science

University of Dublin, Trinity College

omahony@cs.tcd.ie

Abstract

During the last years there have been a lot of

proposals in the literature for systems that attempt to

manage the process of trust establishment. However,

the engineering details related to the exchange and

negotiation of authorization credentials have not

received similar attention. Existing solutions like

SSL/TLS and IPsec have limitations that minimize their

applicability. In this paper we propose a new protocol,

the Authorization eXchange Protocol (AXP), that

provides a modular and extensible solution to this

problem. It is situated between the application and the

network layers acting as an authorization middleware

component and handles the process of transmitting

and receiving service access requests and replies,

along with the credentials that are required to support

them. In order to allow its use in securing delay

sensitive applications, AXP has been designed to work

over unreliable datagram transport protocols. We also

present a case study and evaluate the performance of

our proposal.

1. Introduction

The problem of establishing and managing trust

relationships has been extensively investigated in the

literature. Authorization management systems like

SPKI/SDSI [6, 8], KeyNote [4] and the attribute

certificate (AC) extensions for X.509 [9] utilize public

key cryptography in order to facilitate the

establishment of security relationships and decide

whether a principal is allowed to perform a specific

action on a protected resource. Although these systems

can be used to reach access control decisions, they

provide no mechanism for exchanging the required

authorization structures. Instead they rely on lower

level protocols for this functionality. The two protocols

that have been traditionally proposed for this purpose

are SSL/TLS [7] and IPsec [11]. However, both of

these protocols have limitations that minimize their

applicability in exchanging authorization credentials.

The Authorization eXchange Protocol (AXP) that

we propose in this paper provides the functionality of

negotiating and exchanging the authorization

structures that are necessary to support access control

in distributed networking environments. AXP has been

designed in a modular way in order to support the

credential formats used by different security

management systems. Currently AXP supports X.509

identity and attribute certificates, KeyNote assertions,

SDSI naming certificates, SPKI authorization

certificates and the attribute and naming certificates of

our own system, ÆTHER [3]. In order to allow its use

in securing delay sensitive application layer protocols,

like the Real Time Protocol (RTP) [19] and the Media

Gateway Control Protocol (MGCP) [2], AXP works

over unreliable datagram protocols. In fact our

prototype implementation is part of the ad hoc

networking stack developed by the Networks and

Telecommunications Research Group (NTRG) at the

University of Dublin [15] that uses UDP [16] at the

transport level.

The rest of this paper is structured as follows: In

section 2 we briefly present the related work in this

area and the remaining open problems. In section 3 we

give an overview of the design requirements of AXP.

In section 4 we describe our proposed protocol and its

components. Section 5 discusses an application

example of AXP and we conclude in section 6.

2. Related work

In this section we briefly present previous work on

the problem of negotiating and exchanging security

management data. We also explain the reasons they

fail to provide a satisfactory solution.

The Secure Sockets Layer (SSL), the latest version

of which is also known as Transport Layer Security

(TLS), is by far the most widely deployed security

Proceedings of the 10th IEEE Symposium on Computers and Communications (ISCC 2005)

1530-1346/05 $20.00 © 2005 IEEE

protocol [17]. TLS utilizes the X.509 identity-based

security infrastructure in order to authenticate the peers

that want to establish a secure channel. This is

accomplished through the use of public key digital

signatures and the corresponding X.509 public key

certificates (PKCs). An X.509 PKC simply binds a

(usually DNS) name with a public key, offering little

help in supporting complex access control decisions. In

order to allow the specification of authorization

information, the X.509 attribute certificate profile has

been recently proposed [9]. However, TLS provides no

mechanism for exchanging and negotiating such

authorization credentials or the associated access

control policies. Furthermore, TLS is developed to

protect TCP-based applications. Many delay sensitive

applications, like Internet telephony for example, avoid

the stream-based TCP due to its performance

limitations and use UDP. Therefore, since TLS cannot

be employed, one alternative is to develop a custom

security solution. This usually requires a lot of effort

and the end product cannot be reused with ease in

other applications. The other alternative is to rely on

IPsec.

IP-level Security (IPsec) consists of three different

protocols that provide security services for any

application that uses the Internet Protocol (IP) [11].

The Authentication Header (AH) and the

Encapsulating Security Payload (ESP) are added to an

IP datagram and provide authentication, integrity and

confidentiality of the transmitted data. The Internet

Key Exchange (IKE) protocol is used to negotiate the

security association (SA) between two endpoints that

need to communicate. A SA consists of the

cryptographic keys and the negotiated algorithms

supported by the peers needed to exchange data

securely. Although IPsec supports X.509 PKCs and

KeyNote assertions [5], it provides no extensible

framework for adding support for additional security

management systems. Furthermore, IPsec is

implemented in the operating system kernel making it

particularly inconvenient to deploy. Finally, IPsec has

been criticized for being exceptionally complex and

this fact hinders in depth security evaluations [17].

3. Requirements

During the initial investigation of the problem

domain we have identified several specific

requirements that must be addressed by AXP. We have

divided these requirements into five general goals:

Authorization mechanism independency, efficiency,

modularity and extensibility, flexibility, and security.

In this section we analyze these goals into specific

design requirements.

Authorization mechanism independency. The

protocol must provide the functionality of

exchanging and negotiating authorization

structures (like certificates, access control

policies, access requests and replies) of many

different security management systems by

introducing an abstraction layer.

Efficiency. AXP must not introduce

significant performance penalties. In order to

allow its use in securing delay sensitive

applications, it must operate on top of

unreliable datagram transport protocols, such

as UDP. This requirement implies the need of

a simple and lightweight session management

mechanism that handles retransmission of

unaccounted-for messages. An alternative that

we have investigated in order to satisfy the

efficiency requirement of AXP was a hybrid

TCP/UDP solution. Key and session

negotiation can take place over a TCP channel

and bulk data transfer over a UDP channel.

The security requirements of the separate

datagram channel can be satisfied with the

parameters negotiated over the TCP

connection. However, after careful analysis

we have rejected this hybrid approach since

the synchronization of the two channels

proved to be particularly complicated.

Modularity and extensibility. AXP must be

designed in a modular way that will facilitate

the straightforward introduction of additions

and functionality extensions. For example, the

addition of support for new security

management formats should be done with

ease and without breaking protocol semantics

or compatibility.

Flexibility. The design of the protocol must

allow higher level layers to specify

application-related requirements. These can

include for example the distribution method

of access request supporting credentials (push

or pull1) and whether identification of the

1 In the push method the requesting party provides the

supporting authorization structures to the verifier. In

the pull method the verifier requests these from the

issuer or a repository.

Proceedings of the 10th IEEE Symposium on Computers and Communications (ISCC 2005)

1530-1346/05 $20.00 © 2005 IEEE

entity will occur by providing naming

certificates.

Security. AXP must satisfy the traditional

security requirements of confidentiality and

integrity for the exchanged data. Also, it must

be as resistant as possible to denial-of-service

attacks (availability).

4. Design overview

In this section we present an overview of the design

of AXP that has been engineered according to the

previously identified requirements. The AXP layer is

consisting of four different components that handle the

provided functionality and are referred to as handlers

(Figure 1).

AXP layer

Authorization handler

KeyNote

module

Lower layers (transport, routing, physical, etc.)

Higher layers (application)

ÆTHER

module

X.509

module

SPKI/SDSI

module

Encapsulation handler

Request

handler

Session

handlerIdentity management module

Figure 1. Architecture components of AXP

Authorization handler. This is the component

of AXP responsible for handling the different

modules that interface with the supported

security management systems. There are

modules for handling X.509 attribute

certificates, SPKI authorizations, KeyNote

assertions and ÆTHER attribute certificates.

Moreover, the authorization handler has a

special module for identity management since

we treat identity information as a special kind

of an authority attribute. This module can be

enabled or disabled according to the session

parameters negotiated by the session handler

component and supports X.509 identity

certificates and the naming certificates of

SDSI and ÆTHER.

Request handler. AXP also handles the

transmission of access requests and decisions

along with the supporting credentials and the

relevant access control policies using a

query/response model. The exact operation of

the request handler is depended on the

parameters negotiated during session

establishment. Therefore, if the agreed

method for credential distribution is push, the

access request is accompanied with

credentials for supporting it. If it is pull, the

verifier retrieves them from a repository.

Furthermore, this component maintains a

cache of recently exchanged authorization

information in order to optimize the trust

establishment procedure. Cache maintenance

depends on the decisions of the authorization

handler and the session management

performed by the session handler.

Session handler. This component handles

session establishment and maintenance, as

well as the generation of key material used by

the encapsulation handler for protecting the

transmitted data. Based on requirements

specified by the user (or the application

programmer) the session handler negotiates

the following parameters during session

establishment:

Utilized symmetric cipher and the

associated key length for guaranteeing

confidentiality. AXP supports 3DES

and AES.

A message authentication code

(MAC) algorithm both communicating

parties support.

Whether the established session is

going to be anonymous or identifiable.

Based on this parameter the identity

management module of the

authorization handler is either disabled

or enabled.

The security management system that

is going to be used for verifying and

validating the credentials supporting

an access request.

Proceedings of the 10th IEEE Symposium on Computers and Communications (ISCC 2005)

1530-1346/05 $20.00 © 2005 IEEE

The method of credentials distribution.

As we mentioned earlier this can be

either push or pull.

Whether protection against denial-of-

service attacks is enabled or not. If it is

enabled the initiator of an AXP

session is required to replay a stateless

cookie sent by the responder in order

to verify that it can receive datagrams

at its claimed network address. This is

implemented using the cookie

exchange mechanism proposed by the

Photuris protocol [10].

The session handler component is also

responsible for managing reliability and

replay protection. Reliability is implemented

by using a retransmission mechanism that

maintains a timer and keeps retransmitting a

datagram until the expected reply is received.

To detect replayed datagrams AXP uses the

replay window mechanism specified as part of

IPsec [11].

Encapsulation handler. This component

handles the encapsulation of AXP messages

into a common encoding format. The

encapsulated messages are authenticated

using a MAC and encrypted using the

symmetric cipher and the key material

negotiated during session establishment by

the session handler.

5. Case study

In this section we present an application example of

AXP in order to demonstrate some related operation

details. We assume that the session between the

initiator and the responder has been established

successfully and the parameter negotiation phase

completed with both of them agreeing on the push

method for credentials distribution, an identifiable

session, the AES algorithm (with a 256 bits key length)

for symmetric encryption, SHA-256 as the utilized

MAC, no protection against denial-of-service attacks

and the ÆTHER system for trust establishment. Based

on these, a typical service access request session using

AXP is illustrated in Figure 2.

Figure 2. An example AXP service access request

session

The initiator, host A, sends an access request to host

B, the service provider. The notation we use is similar

to [14]. The initial request message contains a packet

identifier (AXP-REQ), a session identifier (SessionID),

a protocol step identifier (StepID), the service request

and an identifier (IDA) of host A, i.e. its IP address.

Furthermore, the public key of host A (KA), a digitally

signed tuple containing the public keys of the two

hosts, a generated symmetric key (SAB) and a

timestamp (T) are also included. The entire message

(except the packet identifier) is encrypted with the

public key of host B (KB). Our key agreement protocol

is based on [1]. Host B replies with the access control

list (ACL) for the requested service (assuming that

such a service is indeed provided), the same SessionID

and an incremented StepID. The message is encrypted

using SAB, the negotiated session key. Furthermore,

message authentication is performed by computing a

MAC using c1 (the ciphertext of the message) and SAB.

Authentication and confidentiality is guaranteed for the

remaining of the messages in this example using the

same way2. Based on the received ACL, the initiator

builds a reply with a set of credentials that can support

its request. The service provider passes the set of

credentials and the ACL to its authorization handler

which invokes the previously agreed security

management module (ÆTHER). The result is a

boolean value that is transmitted to host A in step 4

(for the sake of the example we assume that the

inference engine of ÆTHER reached a positive

decision). At the end of step 4 we consider the AXP

handshake to be over. In the final step host B transmits

2 We use the encrypt-then-authenticate (ETA)

mechanism of Krawczyk [12].

Proceedings of the 10th IEEE Symposium on Computers and Communications (ISCC 2005)

1530-1346/05 $20.00 © 2005 IEEE

the access interface of the requested service. Please

note that the exact resource descriptions for a service’s

access interface are outside the scope of AXP.

Developed standards such as the Universal Remote

Console (URC) [13] can be used for this purpose.

In order to investigate the overhead introduced by

our protocol in both the handshake procedure and in

network throughput we employed the above scenario

and performed a simple file transfer of 1 MB between

two communicating peers. Our test machines were

i386 architecture machines running the Windows XP

operating system and were interconnected by 100

Mbps ethernet. Specifically, host A that requested the

file was an 1.8 GHz Pentium 4 and host B that

provided the file was a 2.0 GHz Pentium 4. The

experiment was performed with RSA keys of 1,024

bits size, with small public exponents (e was given the

value 65,537) making the public key operations

significantly faster than the private key operations.

Moreover, we assumed that host B directly trusted the

entity that certified the ÆTHER attribute certificate of

host A, thus requiring a single verification operation

(for more details regarding the ÆTHER trust

establishment engine please see [3]). In order to have

demonstrative results we have disabled the

authorization cache of the request handler.

Figure 3. File transfer timing measurements with

and without AXP enabled

The average time required for a full AXP

handshake was 194.76 milliseconds, as it is illustrated

in Figure 3. The whole transaction including the AXP

handshake and the encrypted file transfer required

1199.12 milliseconds. In order to have a clear

understanding of the overhead introduced by AXP in

network throughput we run the same file transfer

without any security mechanism. The average time

taken was 943.82 milliseconds. Although the observed

overhead is significant (the difference is in the order of

27%), the use of the authorization cache in the request

handler largely reduces the overhead of the handshake

after the first reference to approximately 18%. These

results do not prohibit the use of AXP in securing

delay sensitive applications.

6. Conclusion

In this paper we have presented a new flexible

protocol for negotiating and exchanging authorization

information in networking environments. AXP

supports several different security management

systems and provides an easily extensible framework

for adding new ones. Furthermore, it works over

unreliable datagram transport protocols making it ideal

for securing delay sensitive applications that have strict

performance requirements. Our performance

evaluation revealed that the overhead of AXP in

network throughput is in the order of 27% without the

caching of previous authorization decisions and in the

order of 18% when caching is enabled. Another

important advantage of AXP is that it is situated

beneath the application level and above the network

level, making its deployment transparent. The current

prototype implementation of AXP is based on the C

programming language and uses several open source

cryptographic toolkits (OpenSSL [21], KeyNote [20]

and SPKI/SDSI [18]) and is part of the ad hoc

networking stack developed by the Networks and

Telecommunications Research Group at the University

of Dublin [15].

7. Acknowledgments

The first author is supported by the Irish Research

Council for Science, Engineering and Technology

(IRCSET), as part of the Embark Initiative, under

contract number RS/2002/599-2. This material is

based, in part, upon works supported by Science

Foundation Ireland under grant number 03/CE3/I405.

8. References

[1] M. Abadi, “Private Authentication”, In Proc. 2002

Workshop on Privacy Enhancing Technologies, LNCS

2482, pp 27-40, 2003.
[2] F. Andreasen, and B. Foster, “Media Gateway Control

Protocol (MGCP)”, Internet Engineering Task Force RFC

3435, 2003.

[3] P.G. Argyroudis, and D. O’Mahony, “ÆTHER: an

Authorization Management Architecture for Ubiquitous

Computing”, In Proc. 2004 European PKI Workshop, LNCS

3093, Springer-Verlag, pp 246-259, 2004.

Proceedings of the 10th IEEE Symposium on Computers and Communications (ISCC 2005)

1530-1346/05 $20.00 © 2005 IEEE

[4] M. Blaze, J. Feigenbaum, and A.D. Keromytis, “The

KeyNote Trust Management System Version 2”, Internet

Engineering Task Force RFC 2704, 1999.

[5] M. Blaze, J. Ioannidis, and A.D. Keromytis, “Compliance

Checking and IPsec Policy Management”, draft-blaze-

ipsp-trustmgt-00.txt, 2000.

[6] D. Clarke, J.-E. Elien, C. Ellison, M. Fredette, A.

Morcos, and R.L. Rivest, “Certificate Chain Discovery in

SPKI/SDSI”, Journal of Computer Security, vol. 4, no. 9, pp

285-322, 2001.

[7] T. Dierks, and C. Allen, “The TLS Protocol, Version

1.0”, Internet Engineering Task Force RFC 2246, 1999.

[8] C. Ellison, B. Frantz, B. Lampson, R.L. Rivest, B.

Thomas, and T. Ylonen, “SPKI Certificate Theory”, Internet

Engineering Task Force RFC 2693, 1999.

[9] S. Farrell, and R. Housley, “An Internet Attribute

Certificate Profile for Authorization”, Internet Engineering

Task Force RFC 3281, 2002.

[10] P. Karn, and W. Simpson, “Photuris: Session-key

Management Protocol”, Internet Engineering Task Force

RFC 2522, 1999.

[11] S. Kent, and R. Atkinson, “Security Architecture for the

Internet Protocol”, Internet Engineering Task Force RFC

2401, 1998.

[12] H. Krawczyk, “The Order of Encryption and

Authentication for Protecting Communications (or: How

Secure is SSL?)”, In Kilian, J., editor, Advances in

Cryptology – CRYPTO 2001, LNCS 2139, Springer-Verlag,

2001.

[13] B. LaPlant, S. Trewin, G. Zimmermann, and G.

Vanderheiden, “The Universal Remote Console: a Universal

Access Bus for Pervasive Computing”, IEEE Pervasive

Computing, vol. 3, no. 1, pp 76-80, 2004.

[14] A. Menezes, P.v. Oorschot, and S.A. Vanstone,

Handbook of Applied Cryptography, CRC Press, 1996.

[15] D. O’Mahony, and L. Doyle, Mobile Computing:

Implementing Pervasive Information and Communication

Technologies, chapter: An Adaptable Node Architecture for

Future Wireless Networks. Kluwer Publishing, 2001.

[16] J. Postel, “User Datagram Protocol”, Internet

Engineering Task Force RFC 768, 1980.

[17] E. Rescorla, SSL and TLS – Designing and Building

Secure Systems, Addison-Wesley, 2000.

[18] R.L. Rivest, and B. Lampson, “SDSI – a Simple

Distributed Security Infrastructure”, Available at

http://theory.lcs.mit.edu/cis/sdsi.html, 1996.

[19] H. Schulzrinne, S. Casner, R. Frederick, and V.

Jacobson, “RTP: a Transport Protocol for Real-time

Applications”, Internet Engineering Task Force RFC 3550,

2003.

[20] The KeyNote Trust Management System, see

http://www.cis.upenn.edu/~keynote/.

[21] The OpenSSL Project, see http://www.openssl.org/.

Proceedings of the 10th IEEE Symposium on Computers and Communications (ISCC 2005)

1530-1346/05 $20.00 © 2005 IEEE

