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Abstract

During the last years there have been a lot of 

proposals in the literature for systems that attempt to 

manage the process of trust establishment. However, 

the engineering details related to the exchange and 

negotiation of authorization credentials have not 

received similar attention. Existing solutions like 

SSL/TLS and IPsec have limitations that minimize their 

applicability. In this paper we propose a new protocol, 

the Authorization eXchange Protocol (AXP), that 

provides a modular and extensible solution to this 

problem. It is situated between the application and the 

network layers acting as an authorization middleware 

component and handles the process of transmitting 

and receiving service access requests and replies, 

along with the credentials that are required to support 

them. In order to allow its use in securing delay 

sensitive applications, AXP has been designed to work 

over unreliable datagram transport protocols. We also 

present a case study and evaluate the performance of 

our proposal. 

1. Introduction 

The problem of establishing and managing trust 

relationships has been extensively investigated in the 

literature. Authorization management systems like 

SPKI/SDSI [6, 8], KeyNote [4] and the attribute 

certificate (AC) extensions for X.509 [9] utilize public 

key cryptography in order to facilitate the 

establishment of security relationships and decide 

whether a principal is allowed to perform a specific 

action on a protected resource. Although these systems 

can be used to reach access control decisions, they 

provide no mechanism for exchanging the required 

authorization structures. Instead they rely on lower 

level protocols for this functionality. The two protocols 

that have been traditionally proposed for this purpose 

are SSL/TLS [7] and IPsec [11]. However, both of 

these protocols have limitations that minimize their 

applicability in exchanging authorization credentials. 

The Authorization eXchange Protocol (AXP) that 

we propose in this paper provides the functionality of 

negotiating and exchanging the authorization 

structures that are necessary to support access control 

in distributed networking environments. AXP has been 

designed in a modular way in order to support the 

credential formats used by different security 

management systems. Currently AXP supports X.509 

identity and attribute certificates, KeyNote assertions, 

SDSI naming certificates, SPKI authorization 

certificates and the attribute and naming certificates of 

our own system, ÆTHER [3]. In order to allow its use 

in securing delay sensitive application layer protocols, 

like the Real Time Protocol (RTP) [19] and the Media 

Gateway Control Protocol (MGCP) [2], AXP works 

over unreliable datagram protocols. In fact our 

prototype implementation is part of the ad hoc 

networking stack developed by the Networks and 

Telecommunications Research Group (NTRG) at the 

University of Dublin [15] that uses UDP [16] at the 

transport level. 

The rest of this paper is structured as follows: In 

section 2 we briefly present the related work in this 

area and the remaining open problems. In section 3 we 

give an overview of the design requirements of AXP. 

In section 4 we describe our proposed protocol and its 

components. Section 5 discusses an application 

example of AXP and we conclude in section 6. 

2. Related work 

In this section we briefly present previous work on 

the problem of negotiating and exchanging security 

management data. We also explain the reasons they 

fail to provide a satisfactory solution. 

The Secure Sockets Layer (SSL), the latest version 

of which is also known as Transport Layer Security 

(TLS), is by far the most widely deployed security 
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protocol [17]. TLS utilizes the X.509 identity-based 

security infrastructure in order to authenticate the peers 

that want to establish a secure channel. This is 

accomplished through the use of public key digital 

signatures and the corresponding X.509 public key 

certificates (PKCs). An X.509 PKC simply binds a 

(usually DNS) name with a public key, offering little 

help in supporting complex access control decisions. In 

order to allow the specification of authorization 

information, the X.509 attribute certificate profile has 

been recently proposed [9]. However, TLS provides no 

mechanism for exchanging and negotiating such 

authorization credentials or the associated access 

control policies. Furthermore, TLS is developed to 

protect TCP-based applications. Many delay sensitive 

applications, like Internet telephony for example, avoid 

the stream-based TCP due to its performance 

limitations and use UDP. Therefore, since TLS cannot 

be employed, one alternative is to develop a custom 

security solution. This usually requires a lot of effort 

and the end product cannot be reused with ease in 

other applications. The other alternative is to rely on 

IPsec.

IP-level Security (IPsec) consists of three different 

protocols that provide security services for any 

application that uses the Internet Protocol (IP) [11]. 

The Authentication Header (AH) and the 

Encapsulating Security Payload (ESP) are added to an 

IP datagram and provide authentication, integrity and 

confidentiality of the transmitted data. The Internet 

Key Exchange (IKE) protocol is used to negotiate the 

security association (SA) between two endpoints that 

need to communicate. A SA consists of the 

cryptographic keys and the negotiated algorithms 

supported by the peers needed to exchange data 

securely. Although IPsec supports X.509 PKCs and 

KeyNote assertions [5], it provides no extensible 

framework for adding support for additional security 

management systems. Furthermore, IPsec is 

implemented in the operating system kernel making it 

particularly inconvenient to deploy. Finally, IPsec has 

been criticized for being exceptionally complex and 

this fact hinders in depth security evaluations [17]. 

3. Requirements 

During the initial investigation of the problem 

domain we have identified several specific 

requirements that must be addressed by AXP. We have 

divided these requirements into five general goals: 

Authorization mechanism independency, efficiency, 

modularity and extensibility, flexibility, and security. 

In this section we analyze these goals into specific 

design requirements. 

Authorization mechanism independency. The 

protocol must provide the functionality of 

exchanging and negotiating authorization 

structures (like certificates, access control 

policies, access requests and replies) of many 

different security management systems by 

introducing an abstraction layer. 

Efficiency. AXP must not introduce 

significant performance penalties. In order to 

allow its use in securing delay sensitive 

applications, it must operate on top of 

unreliable datagram transport protocols, such 

as UDP. This requirement implies the need of 

a simple and lightweight session management 

mechanism that handles retransmission of 

unaccounted-for messages. An alternative that 

we have investigated in order to satisfy the 

efficiency requirement of AXP was a hybrid 

TCP/UDP solution. Key and session 

negotiation can take place over a TCP channel 

and bulk data transfer over a UDP channel. 

The security requirements of the separate 

datagram channel can be satisfied with the 

parameters negotiated over the TCP 

connection. However, after careful analysis 

we have rejected this hybrid approach since 

the synchronization of the two channels 

proved to be particularly complicated. 

Modularity and extensibility. AXP must be 

designed in a modular way that will facilitate 

the straightforward introduction of additions 

and functionality extensions. For example, the 

addition of support for new security 

management formats should be done with 

ease and without breaking protocol semantics 

or compatibility. 

Flexibility. The design of the protocol must 

allow higher level layers to specify 

application-related requirements. These can 

include for example the distribution method 

of access request supporting credentials (push

or pull1) and whether identification of the 

                                                          
1 In the push method the requesting party provides the 

supporting authorization structures to the verifier. In 

the pull method the verifier requests these from the 

issuer or a repository. 
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entity will occur by providing naming

certificates.

Security. AXP must satisfy the traditional

security requirements of confidentiality and

integrity for the exchanged data. Also, it must

be as resistant as possible to denial-of-service

attacks (availability).

4. Design overview

In this section we present an overview of the design

of AXP that has been engineered according to the 

previously identified requirements. The AXP layer is 

consisting of four different components that handle the

provided functionality and are referred to as handlers

(Figure 1). 

AXP layer

Authorization handler

KeyNote

module

Lower layers (transport, routing, physical, etc.)

Higher layers (application)

ÆTHER

module

X.509

module

SPKI/SDSI

module

Encapsulation handler

Request

handler

Session

handlerIdentity management module

Figure 1. Architecture components of AXP

Authorization handler. This is the component

of AXP responsible for handling the different

modules that interface with the supported 

security management systems. There are 

modules for handling X.509 attribute

certificates, SPKI authorizations, KeyNote

assertions and ÆTHER attribute certificates.

Moreover, the authorization handler has a 

special module for identity management since 

we treat identity information as a special kind

of an authority attribute. This module can be 

enabled or disabled according to the session 

parameters negotiated by the session handler

component and supports X.509 identity 

certificates and the naming certificates of 

SDSI and ÆTHER. 

Request handler. AXP also handles the 

transmission of access requests and decisions 

along with the supporting credentials and the

relevant access control policies using a

query/response model. The exact operation of

the request handler is depended on the

parameters negotiated during session

establishment. Therefore, if the agreed 

method for credential distribution is push, the 

access request is accompanied with

credentials for supporting it. If it is pull, the 

verifier retrieves them from a repository.

Furthermore, this component maintains a

cache of recently exchanged authorization 

information in order to optimize the trust

establishment procedure. Cache maintenance

depends on the decisions of the authorization

handler and the session management

performed by the session handler.

Session handler. This component handles

session establishment and maintenance, as 

well as the generation of key material used by

the encapsulation handler for protecting the

transmitted data. Based on requirements

specified by the user (or the application

programmer) the session handler negotiates

the following parameters during session

establishment:

Utilized symmetric cipher and the

associated key length for guaranteeing

confidentiality. AXP supports 3DES 

and AES. 

A message authentication code

(MAC) algorithm both communicating

parties support.

Whether the established session is

going to be anonymous or identifiable.

Based on this parameter the identity

management module of the

authorization handler is either disabled

or enabled. 

The security management system that

is going to be used for verifying and

validating the credentials supporting

an access request. 

Proceedings of the 10th IEEE Symposium on Computers and Communications (ISCC 2005)

1530-1346/05 $20.00 © 2005 IEEE



The method of credentials distribution.

As we mentioned earlier this can be

either push or pull.

Whether protection against denial-of-

service attacks is enabled or not. If it is

enabled the initiator of an AXP

session is required to replay a stateless

cookie sent by the responder in order

to verify that it can receive datagrams

at its claimed network address. This is

implemented using the cookie

exchange mechanism proposed by the

Photuris protocol [10].

The session handler component is also

responsible for managing reliability and

replay protection. Reliability is implemented

by using a retransmission mechanism that

maintains a timer and keeps retransmitting a

datagram until the expected reply is received.

To detect replayed datagrams AXP uses the

replay window mechanism specified as part of

IPsec [11]. 

Encapsulation handler. This component

handles the encapsulation of AXP messages

into a common encoding format. The 

encapsulated messages are authenticated 

using a MAC and encrypted using the

symmetric cipher and the key material

negotiated during session establishment by

the session handler.

5. Case study 

In this section we present an application example of 

AXP in order to demonstrate some related operation

details. We assume that the session between the

initiator and the responder has been established 

successfully and the parameter negotiation phase 

completed with both of them agreeing on the push

method for credentials distribution, an identifiable

session, the AES algorithm (with a 256 bits key length)

for symmetric encryption, SHA-256 as the utilized

MAC, no protection against denial-of-service attacks

and the ÆTHER system for trust establishment. Based

on these, a typical service access request session using 

AXP is illustrated in Figure 2.

Figure 2. An example AXP service access request 

session

The initiator, host A, sends an access request to host

B, the service provider. The notation we use is similar

to [14]. The initial request message contains a packet

identifier (AXP-REQ), a session identifier (SessionID),

a protocol step identifier (StepID), the service request 

and an identifier (IDA) of host A, i.e. its IP address. 

Furthermore, the public key of host A (KA), a digitally

signed tuple containing the public keys of the two

hosts, a generated symmetric key (SAB) and a

timestamp (T) are also included. The entire message

(except the packet identifier) is encrypted with the

public key of host B (KB). Our key agreement protocol

is based on [1]. Host B replies with the access control 

list (ACL) for the requested service (assuming that 

such a service is indeed provided), the same SessionID

and an incremented StepID. The message is encrypted 

using SAB, the negotiated session key. Furthermore,

message authentication is performed by computing a

MAC using c1 (the ciphertext of the message) and SAB.

Authentication and confidentiality is guaranteed for the

remaining of the messages in this example using the

same way2. Based on the received ACL, the initiator 

builds a reply with a set of credentials that can support

its request. The service provider passes the set of 

credentials and the ACL to its authorization handler

which invokes the previously agreed security

management module (ÆTHER). The result is a 

boolean value that is transmitted to host A in step 4 

(for the sake of the example we assume that the

inference engine of ÆTHER reached a positive 

decision). At the end of step 4 we consider the AXP

handshake to be over. In the final step host B transmits

2 We use the encrypt-then-authenticate (ETA) 

mechanism of Krawczyk [12]. 
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the access interface of the requested service. Please 

note that the exact resource descriptions for a service’s

access interface are outside the scope of AXP.

Developed standards such as the Universal Remote

Console (URC) [13] can be used for this purpose. 

In order to investigate the overhead introduced by

our protocol in both the handshake procedure and in

network throughput we employed the above scenario

and performed a simple file transfer of 1 MB between 

two communicating peers. Our test machines were

i386 architecture machines running the Windows XP 

operating system and were interconnected by 100

Mbps ethernet. Specifically, host A that requested the

file was an 1.8 GHz Pentium 4 and host B that

provided the file was a 2.0 GHz Pentium 4. The 

experiment was performed with RSA keys of 1,024 

bits size, with small public exponents (e was given the

value 65,537) making the public key operations

significantly faster than the private key operations.

Moreover, we assumed that host B directly trusted the

entity that certified the ÆTHER attribute certificate of

host A, thus requiring a single verification operation

(for more details regarding the ÆTHER trust

establishment engine please see [3]). In order to have 

demonstrative results we have disabled the

authorization cache of the request handler.

Figure 3. File transfer timing measurements with 

and without AXP enabled

The average time required for a full AXP

handshake was 194.76 milliseconds, as it is illustrated 

in Figure 3. The whole transaction including the AXP 

handshake and the encrypted file transfer required

1199.12 milliseconds. In order to have a clear 

understanding of the overhead introduced by AXP in

network throughput we run the same file transfer

without any security mechanism. The average time

taken was 943.82 milliseconds. Although the observed

overhead is significant (the difference is in the order of

27%), the use of the authorization cache in the request

handler largely reduces the overhead of the handshake 

after the first reference to approximately 18%. These

results do not prohibit the use of AXP in securing

delay sensitive applications.

6. Conclusion 

In this paper we have presented a new flexible

protocol for negotiating and exchanging authorization

information in networking environments. AXP 

supports several different security management

systems and provides an easily extensible framework

for adding new ones. Furthermore, it works over 

unreliable datagram transport protocols making it ideal

for securing delay sensitive applications that have strict 

performance requirements. Our performance

evaluation revealed that the overhead of AXP in 

network throughput is in the order of 27% without the

caching of previous authorization decisions and in the

order of 18% when caching is enabled. Another

important advantage of AXP is that it is situated

beneath the application level and above the network

level, making its deployment transparent. The current

prototype implementation of AXP is based on the C

programming language and uses several open source

cryptographic toolkits (OpenSSL [21], KeyNote [20]

and SPKI/SDSI [18]) and is part of the ad hoc 

networking stack developed by the Networks and 

Telecommunications Research Group at the University

of Dublin [15].
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