
0 7 4 0 - 7 4 5 9 / 0 6 / $ 2 0 . 0 0 © 2 0 0 6 I E E E N o v e m b e r / D e c e m b e r 2 0 0 6 I E E E S O F T W A R E 5 3

focus

topics) and subsequently into undergraduate
curricula.

Aspect-oriented software development (see
the sidebar) is one such emerging software en-
gineering discipline that’s transitioning from
specialized industrial courses to postgraduate-
level teaching in universities.1 AOSD tech-
niques’ industrial maturity is evident in re-
search2 and in increasing interest in JBoss AOP
(aspect-oriented programming, http://labs.
jboss.com/portal/jbossaop), AspectJ (www.
eclipse.org/aspectj), and Spring AOP (www.
springframework.org/docs/reference/aop.html)

for developing enterprise applications. With
AOSD’s increasing maturity comes the need to
train developers to think beyond a system’s tra-
ditional object-based decomposition. Instead,
we must adopt a 3D approach—that is, in addi-
tion to object structure and behavior, we must
also think in terms of aspects that cut across ob-
ject boundaries. As a result, any AOSD course
must train students in applying this 3D ap-
proach throughout system analysis, develop-
ment, and evolution.

In this article, we propose a model postgrad-
uate curriculum for AOSD that does exactly

A Model Curriculum for
Aspect-Oriented Software
Development

A
s new software engineering techniques emerge, there’s a cog-
nitive shift in how developers approach a problem’s analysis
and how they design and implement its software-based solu-
tion. Future software engineers must be appropriately and ef-

fectively trained in new techniques’ fundamentals and applications.
With techniques becoming more mature, such training moves beyond
specialized industrial courses into postgraduate curricula (as advanced

curriculum development

Johan Brichau, University of Lille

Ruzanna Chitchyan, Alessandro Garcia, and Awais Rashid, Lancaster University

Siobhán Clarke, Trinity College Dublin

Ellie D’Hondt, Vrije Universiteit Brussel

Michael Haupt, Darmstadt University of Technology

Wouter Joosen, Katholieke Universiteit Leuven

Shmuel Katz, Technion–Israel Institute of Technology

Jacques Noyé, École des Mines de Nantes

Mario Südholt, INRIA

A model curriculum
for aspect-oriented
software
development
provides
guidelines about
fundamentals,
a common
framework, and
a step toward
developing a body
of knowledge.

that. We derived the curriculum from our prac-
tical experiences in running postgraduate
courses at nine European institutions. These in-
stitutions are part of the European Network of
Excellence on AOSD (AOSD-Europe). (Deliver-

ables and reports that describe many of our re-
sults and structures are available at www.aosd-
europe.net). Our curriculum describes the fun-
damentals of any AOSD curriculum; its goal is
to abstract away from national and geographi-
cal boundaries to harmonize AOSD education
across institutions.

Such a curriculum has several advantages.
First, it provides clear guidelines about the fun-
damental concepts that should be the focus of
AOSD postgraduate education, providing an in-
valuable resource for anyone designing an
AOSD course. Second, it provides a common
framework for comparing courses and topic
coverage across various institutions. Third, it’s a
step toward developing a body of knowledge on
AOSD to complement existing related knowl-
edge bases, such as the Software Engineering
Body of Knowledge (www.swebok.org).

Model postgraduate AOSD
curriculum

We propose an AOSD-Europe curriculum
with a modular structure inspired by the soft-
ware engineering life cycle. This doesn’t imply
that we envisage a linear waterfall-style devel-
opment cycle. Instead, the curriculum offers
module boundaries so that an institution can
instantiate individual modules even if it isn’t
considering a full AOSD course. This, in turn,
facilitates curriculum instantiations in varying
organizational and educational contexts.

The curriculum consists of six modules. It
explicitly forgoes a rigid timetable and instead
provides a structured body of knowledge tai-
lorable to particular instantiation contexts.
Thus, it’s possible to choose specific topics of
interest and the teaching mode—from classic
lecturing to self-study—on the basis of specific
local needs.

Because this is the first complete AOSD
curriculum, we can’t compare our approach to
others. From our experience, a hybrid peda-
gogical-andragogical approach to teaching
AOSD is most apt. In a nutshell, although
some initial old-style lecturing is useful, self-
learning initiatives are also essential because
(industry) students can focus on specific topics
that better relate to their day-to-day develop-
ment problems.

Module 1: Introduction to AOSD
This module provides a broad overview of

aspect orientation. It introduces students to

5 4 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

The separation of concerns principle1,2 suggests that it’s best to treat
each concern (that is, an interest that pertains to a system’s development or
its stakeholders) separately from other concerns. The improvements the prin-
ciple brings forward are rooted in the human cognitive characteristic to bet-
ter understand and reason about one thing at a time, as well as to lead to
simplified project management and parallel development.

Contemporary software development paradigms already use this princi-
ple. For instance, in object orientation, applications are modeled and imple-
mented by decomposition of both the problem and solution space into ob-
jects, where each object embodies a single concern (such as a person or
book). Encapsulation, polymorphism, inheritance, and delegation provide
additional support. However, some concerns still remain scattered through-
out many different objects because they don’t naturally fit within object
boundaries. Such concerns (such as security, mobility, distribution, and re-
source management) crosscut the other concerns. Aspect-oriented software
development techniques facilitate systematic identification, modularization,
representation, and composition of such crosscutting concerns. This “aspec-
tization” improves system modularity, creating systems that are easier to de-
velop, adapt, maintain, and evolve.3 An aspect consists of elements called
advice, which collectively specify the aspect behavior. The other crucial ele-
ment is join points, which are places in other modules where a given aspect
can potentially apply its advice. Typical join points are method execution,
object instantiation, or attribute setting. Most aspect-oriented techniques fa-
cilitate join point selection via declarative query-like mechanisms. We call
such a selection predicate a pointcut expression.

So, AOSD techniques offer abstraction, modularity, and composition
support to reason about crosscutting concerns throughout the software life
cycle—that is, from requirements engineering to architecture and detailed
design to implementation, testing, and evolution. Their benefits include im-
proved ability to reason about the problem domain and the corresponding
solution; reduction in application code size, development costs, and mainte-
nance time; improved code reuse; and many others. We can see AOSD’s
increasing popularity and industrial application in the involvement of major
corporations such as Siemens, IBM, Xerox, and Boeing and in MIT’s inclu-
sion of AOSD on its 10 most promising technologies list.4 For more indus-
trial applications, see www.jboss.org, www.eclipse.org/aspectj, and www.
springframework.org.

References
1. D.L. Parnas, “On the Criteria to Be Used in Decomposing Systems into Modules,” Comm.

ACM, vol. 15, no. 12, 1972, pp. 1053–1058.
2. E.W. Dijkstra, A Discipline of Programming, Prentice Hall, 1976.
3. A. Colyer and A. Clement, “Large-Scale AOSD for Middleware,” Proc. 3rd Int’l Conf. As-

pect-Oriented Software Development, ACM Press, 2004, pp. 56–65.
4. C. Tristram, “The Technology Review Ten: Untangling Code,” MIT Technology Rev., Jan.

2001; www.ccs.neu.edu/research/demeter/aop/publicity/TR10_kiczales.html.

Aspect-Oriented Software Development

the aspect-oriented paradigm’s origins and
foundations, providing a solid basis and a
common terminology to be used in subsequent
modules. The fundamental concepts include
all major elements of the paradigm: separation
of concerns, crosscutting concerns, modular-
ization, aspects, join points, pointcuts, advice,
and aspectual composition.1

Module 1’s only prerequisite is knowledge
of software engineering in some existing, well-
known paradigm.

Module 2: Aspect-oriented analysis
and design

This module covers a broad spectrum of
software development activities, from initial
requirements definition to architecture deriva-
tion and detailed design production. Each of
these life-cycle stages can be realized using
various aspect-oriented approaches.1,3–6 This
module underlines the problems of tangling
and scattering caused by crosscutting concerns
in nonaspect-oriented analysis and design ap-
proaches. It also presents aspect-oriented ap-
proaches for aspect identification, modular-
ization, and composition, using several case
studies for illustration. An in-depth experience
with a particular analysis and design tech-
nique and its related tools is a final important
goal of the module. Students achieve hands-on
experience of aspect-oriented analysis and de-
sign through exercises.

The prerequisites are Module 1 and famil-
iarity with some requirements engineering, ar-
chitecture, and design approaches. Knowledge
of object-oriented (OO) analysis and design
techniques (including UML) is desirable.

Module 3: Aspect-oriented programming
Several AOP languages exist today, and most

are extensions of existing languages.1,7,8 This
module focuses on hands-on experience, giving
special care to programming practices in AOP.
The module covers various aspect languages,
highlighting their differences and commonalities
to teach students to abstract from concrete lan-
guages and understand aspect orientation’s es-
sential mechanisms. It also touches on imple-
menting aspect language execution models to
help students better understand the impact of
aspects on program execution (for example, in
terms of performance).

The prerequisites are Module 1 and experi-
ence in or knowledge about software imple-

mentation by means of contemporary lan-
guages, preferably in the OO paradigm.

Module 4: Formal foundations of AOSD
This module extends or reevaluates formal

notions, such as semantics, specification, and
verification, in an aspect-oriented context.9,10 It
surveys several semantic approaches, concen-
trating on one or two of them. It also covers
specification of aspects, so that analysis of their
desired properties becomes possible. The mod-
ule presents formal methods for verifying and
refining aspect systems, extending classical
model checking11 to aspects,12 and relating
static analysis to classes of temporal properties.9

The module uses these formal approaches to

■ define and compare declaring and weav-
ing aspects,

■ specify the properties an aspect adds and
determine whether these are true when the
aspect is woven to a system, and

■ show that composing an aspect doesn’t
disturb the system’s desirable properties.

The module also surveys existing work on
defining and analyzing interactions among
multiple aspects.

The prerequisites include Module 1 and no-
tions of computer science’s formal foundations,
especially logic and automata theory. Some in-
stantiations might also require Module 3.

Module 5: Aspect-oriented applications
Module 5 illustrates the practical use of var-

ious aspect-oriented technologies, such as pro-
gramming languages, aspect-oriented analysis
and design, and more generally, any software
engineering methodology that embraces as-
pects.13–15 It presents case studies of applica-
tions that benefit from AOSD, covering system-
level elements (such as middleware) and
end-to-end user applications (such as e-banking
or e-government applications). The module’s
main subject isn’t technologies that create sys-
tem-level elements and end-to-end user applica-
tions; Modules 2 and 3 will have covered these.

The prerequisites are Module 1 and, de-
pending on the instantiation, Module 2 and/or
Module 3.

Module 6: AOSD and other paradigms
Aspects are always used in a context.

Therefore, to develop applications using as-

N o v e m b e r / D e c e m b e r 2 0 0 6 I E E E S O F T W A R E 5 5

The curriculum
forgoes a rigid
timetable and

instead
provides a

structured body
of knowledge
tailorable to
particular

instantiation
contexts.

pect-oriented techniques, it’s important to re-
late AOSD to the development paradigms,
methodologies, and programming languages
that you used to implement the underlying
base application.16–18 AOSD’s context is al-
most always class-based object orientation.
However, as AOSD spreads to other contexts,
this relationship will diversify and become
more important. Also, other advanced devel-
opment paradigms have been developed that
can be related to AOSD, either because they’re
complementary or because they target the
same problems as AOSD (albeit differently).
This module provides insights into the rela-
tionship between AOSD and these other ad-
vanced development paradigms (for example,
development methodologies other than the

OO paradigm), different general-purpose pro-
gramming languages for the base code, and
component-oriented software engineering.

The prerequisites are Module 1 and at least
one other module.

Curriculum instantiations
A complete instantiation of the AOSD cur-

riculum must incorporate Modules 1 through 6
in some way. We provide several examples in
this section, ranging from a summer school
context to university curricula at the master’s
degree level. For each, we describe the course
context and discuss specific key design chal-
lenges. Table 1 shows the course units taught
for each instantiation, how they map onto the
various modules, and the percentage of class-

5 6 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Table 1
Curriculum instantiations and their relations to the model curriculum*

Curriculum module

Instantiation Module 1 Module 2 Module 3 Module 4 Module 5 Module 6

AOSD-Europe No formal Aspect-Oriented Principles of AOP Formal Aspect-Oriented No formal course—
Summer School course—students Design Early Languages (28%) Methods and Middleware and a the summer school

did preparatory Aspects (28%) Semantics for Case Study on treats AOSD in the
reading8 on their Aspects (23%) Security Services context of OOP (2%)
own (0%) (19%)

Lancaster University Introduction to Early Aspects: Aspect-Oriented Relating AOP Application Contrast AOSD with
AOSD Concepts Aspect-Oriented Programming with Aspectual in Persistent, viewpoint- and use-
(10%) Requirements AspectJ; AOP Models Requirements Distributed case-based analysis;

Engineering and Beyond AspectJ; to Proof Environments Comparatively
Architecture Design and Design Patterns Obligations (20%) assess OO
(30%) Implementations (1%) and aspect-oriented

and Assessment of realization of design
AOP (30%) patterns (9%)

EMOOSE (the AOSD Advanced Software Advanced Software- Advanced Distributed Object- Object-Oriented
European Master in Engineering Engineering Software Oriented Systems; Programming
Object-, Component-, Techniques; and Techniques; Engineering and Advanced Languages and Their
and Aspect- Advanced Object- Advanced Object- Techniques Object-Oriented Implementation;
Oriented Software Oriented Software Oriented Software Software Distributed Object-
Engineering)* Architecture Architecture; and Architecture Oriented Systems;

Object-Oriented Advanced Object-
Programming Oriented Software
Languages and Architecture; and
Their Implementation Advanced Software

Engineering
Techniques

Trinity College Introduction to Aspect-Oriented Aspect-Oriented No course (0%) No explicit Object-Oriented
Dublin AOSD Concepts Analysis and Programming with course—students Programming; Extreme

(10%) Design (25%) AspectJ; Introduction work in large Programming; Model-
to AOP Paradigms groups to produce Driven Architecture
Other than AspectJ a distributed (0%, or in group
(60%) application (5%) project)

*Percentages represent classrooms hours spent on each module. We don’t mention percentages for each module in table 1 because they’re hard to assess; the proportion of AOSD-related courses to the total
number of courses in EMOOSE ranges from 33 percent to 60 percent, depending on the individual projects’ topics.

room hours spent on each module in the pro-
gram, where available.

The curriculum’s implementation in the ex-
amples depends largely on two factors. First,
the program context impacts timing and re-
source issues. For example, a postgraduate
program can spread its curriculum over an ac-
ademic year, whereas a summer school is
much more concentrated. Second, instantia-
tions must consider their audience—that is,
whether they’re dealing with students, indus-
try-trained attendees, or both. The time the
program attributes to each module as well as
the application type can differ.

There’s no one right way to implement the
curriculum; each instantiation has specific
needs. The examples we present here show
how you can use the curriculum in varying
contexts, providing practical examples for lec-
turers or departments interested in including
AOSD material in their courses.

The AOSD-Europe Summer School
The summer school on AOSD (www.aosd-

europe.net/summerschool) is a complete, con-
crete instantiation of the curriculum. Its goal is
to provide intensive week-long training on var-
ious AOSD facets through lectures by experts
from each AOSD subdomain in the curriculum.
Typically, each course unit consists of founda-
tional material demonstrated with examples
and a group exercise and advanced topics from
the lecturer’s research field. Courses include
hands-on group sessions where appropriate.

We held the first summer school in July
2006; we’re now processing attendee feedback
from a questionnaire. Our main target audi-
ence was PhD students.

The program encourages student interac-
tion via a workshop, implemented in the pro-
gram through a series of research sessions. In
these, we invite all summer school attendees to
present their ongoing work. Summer school
lecturers provide feedback. This demonstrates
perfectly how the curriculum is nonexclusive
to additional activities that can reinforce the
concepts taught. Also, there’s a focus on
AOSD’s key application contexts, particularly
on middleware and system software that sup-
ports aspect orientation and on frameworks
that model a key application development con-
cern (such as security). This choice is moti-
vated by the fact that both subdomains form a
broad area of PhD research topics.

Intensive course on aspects at Lancaster
University

A second concrete instantiation of the cur-
riculum is a stand-alone week-long intensive
course for MSc students at Lancaster Univer-
sity. The course has been running for two
years, with an adapted version the second year
(this version is now largely stable). The course
lasts one week to support the needs of part-
time students from industry, which make up
about 50 percent of the attendees. Although
we utilize traditional lectures, much time is de-
voted to exercises in various forms. Con-
cretely, we have individual exercises for Mod-
ules 1 and 3 (both utilize AspectJ); group
exercises for Modules 2, 3, 4, and 6 (some of
these utilize AspectJ while others are based on
aspect-oriented analysis and design techniques
from relevant literature); and a roundtable ses-
sion on AOP’s pros and cons for Module 5.
When the week ends, we expect students to
spend two weeks completing an individual
project that covers topics from all modules.
Although we have no statistical data, student
feedback has been unanimously positive.

This course’s main difficulties are in con-
veying AOSD basics in a way that helps stu-
dents apply them to realistic industry situa-
tions in just one week. First, we must teach
AOSD’s fundamental concepts in a short time
span and root them in practical examples and
hands-on exercises in a concrete programming
language framework. We chose AspectJ be-
cause it’s mature, has good tool support, and
uses most of the conceptual terminology, and
our later lectures relate to it. So, we use the
practical programming-supported approach
from early on to ground the fundamental con-
cepts in both aspect orientation and AspectJ.

Second, a week-long course requires a quick
transition from traditional separation of con-
cerns to aspect orientation—that is, there’s no
time for programming concepts to sink in. To
address this challenge, we use hands-on tutori-
als as well as interactive aspect refactoring of
Java programs. As such, we can gauge whether
students have grasped the fundamentals and
can reinforce knowledge where needed.

A third issue is the lack of reading time dur-
ing the week. To address this, we announce the
reading material well in advance of the course,
and students partly discuss it in group reading
slots and subsequent presentation slots.

Fourth, with an intensive one-week course,

N o v e m b e r / D e c e m b e r 2 0 0 6 I E E E S O F T W A R E 5 7

There’s no one
right way to

implement the
curriculum;

each
instantiation
has specific

needs.

we risk students losing interest because of a
lack of diverse learning activities. We tackle
this issue by providing interactive sessions,
such as the reading and roundtable sessions
we mentioned earlier, which are the most pop-
ular feature of the course.

EMOOSE AOSD minor
EMOOSE (the European Master in Object-,

Component-, and Aspect-Oriented Software
Engineering) is a yearlong MSc program that
began in 1998. It initially focused on OO soft-
ware engineering, emphasizing up-to-date and
future technologies that facilitate software
modularization, reuse, and evolution. Al-
though AOSD was present in the program
from the start, it became more important
gradually.

A new program that includes an AOSD mi-
nor began in October 2006. It closely matches
EMOOSE’s earlier architecture, with first-semester
courses in Nantes followed by a semester-long
internship at a partner institution. We divided
the course into eight units; those not men-
tioned in table 1, which don’t relate to Mod-
ules 1 through 6, are Fundamentals of OO
Technology, Capita Selecta from Computer
Science, and a specialization training. Exams
and projects assess course knowledge. Apart
from Module 1, most modules do not appear
explicitly. The minor’s crosscutting nature en-
sures that students don’t learn AOSD as a
stand-alone concept.

Students have evaluated EMOOSE courses.
Their comments on the AOSD minor have
shown that they’re satisfied with the new cur-
riculum and they’re more interested in the
novel course units.

Integrating a comprehensive AOSD forma-
tion in an existing full-fledged yearlong MSc
requires a thorough exposition of relationships
between AOSD and related domains. Indeed,
these form a substantial part of the overall pro-
gram, which is unlike previous instantiations.
We designed EMOOSE course units to make
such relationships explicit. Furthermore, in
the integrated program, students should ad-
here to the typical EMOOSE style of strong proj-
ect-oriented team-based work, mirroring the
development of large-scale applications in in-
dustry. EMOOSE supports this development
with dedicated course units, such as the spe-
cialization training, and more generally, with a
course structure that consistently comple-

ments lectures with hands-on exercises involv-
ing several students.

Finally, the aim is to link theory and prac-
tice. That is, even course units that don’t focus
on theoretical issues present software con-
struction and validation techniques together
with at least minimal information on their
foundations.

Trinity College Dublin
Trinity College Dublin’s concrete instantia-

tion of the AOSD curriculum, which has been
ongoing for several years, was designed to be
incorporated into an MSc module on Software
Engineering for Concurrent and Distributed
Systems (NDS104). NDS104 is one of six
modules in the MSc in Computer Science
(Networks and Distributed Systems). We ex-
pect students to complete a research disserta-
tion after the teaching terms. NDS104’s phi-
losophy is based on combining research-led
teaching with learning through practical appli-
cation. In the second term, we dedicate four
weeks to AOSD topics, with a series of lec-
tures and research readings. We expect stu-
dents to further research and apply AOSD
practices in a large group project.

Although student evaluations are at full
module level, most feedback on AOSD-related
topics seems positive. Moreover, we have had
one or two AOP PhD students every year but
one.

Introducing AOSD within the concept of a
full software engineering module has worked
well, giving students time to study, research,
and appreciate the overall software engineer-
ing context. The main challenges relate to the
expectation that students apply the concepts
to a large project.

First, we had to find the right time to in-
troduce AOSD. Although many of our MSc
students have significant industrial experience
and realize AOSD benefits quickly, many
other students don’t have such experience.
However, group project work starts early in
the year as students are expected to start at the
development stage of requirements gathering
and analysis. More advanced students start to
think about and design the solution early and
have commented that they would like to learn
AOSD concepts early. We’re now experiment-
ing with this balance.

Second, we aim to have students use the
tools in a large project. To date, we have pri-

5 8 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Introducing
AOSD within

the concept of
a full software

module has
worked well,

giving students
time to study,
research, and
appreciate the
overall context.

marily used AspectJ with Eclipse in the proj-
ects. However, as a project’s code base gets
larger, students have found the additional build
time to be cumbersome and a disincentive to
adding new aspects. This academic year, we ex-
pect to have at least one project applying
model-driven architecture techniques and tools,
and we’re also interested in how AOP tools
perform in that context. We expect, however,
that this problem won’t be an issue in the near
future because the tools are constantly being
improved.

AOSD curriculum and SWEBOK

Because AOSD techniques complement ex-
isting, established software engineering prac-
tices, it’s important to understand the curricu-
lum’s contributions to SWEBOK. We can’t relate
our curriculum to bodies of knowledge at the
undergraduate level, such as SEEK (Software
Engineering Education Knowledge), because in-
stantiations vary from undergraduate courses
to advanced industrial courses. It’s reasonable
to expect that people with four or more years of
practice would attend a course on AOSD—this
was the case for 50 percent of the Lancaster in-
stantiation’s audience. So SWEBOK, a body of
knowledge that’s both a learning goal for fresh
graduates and a yardstick for established prac-
titioners, is the most suitable means of relaying
the contributions of AOSD concepts to general
software engineering training and education.
Because the curriculum incorporates techniques
ranging from aspect-oriented requirements
analysis to software systems’ implementation
and evolution, it inevitably contributes to all of
SWEBOK’s knowledge areas. Table 2 summarizes
these contributions.

W ith experience and lessons learned
from these concrete instantiations,
additional AOSD-Europe sites have

begun instantiating the curriculum modules in
their programs by inserting some basic mate-
rial into industrial training programs and un-
dergraduate courses and by designing courses
that crosscut the six modules. This is the case
at the Technion–Israel Institute of Technology
and also at sites in Belgium that are develop-
ing a lightweight school for industry adopters.

Furthermore, AOSD-Europe’s long-term exis-
tence provides a larger framework for these
activities. Within the network, structures are
now being conceived that give AOSD-course
graduates interesting future possibilities, such
as enrolling for an AOSD-Europe-accredited
PhD program or continuing to work with in-
dustrial partners.

References
1. R.E. Filman et al., eds., Aspect-Oriented Software De-

velopment, Addison-Wesley, 2004.
2. A. Colyer and A. Clement, “Large-Scale AOSD for

Middleware,” Proc. 3rd Int’l Conf. Aspect-Oriented
Software Development, ACM Press, 2004, pp. 56–65.

3. A. Rashid, A. Moreira, and J. Araújo, “Modularisation
and Composition of Aspectual Requirements,” Proc.
2nd Int’l Conf. Aspect-Oriented Software Development,
ACM Press, 2003, pp. 11–20.

4. S. Clarke and E. Baniassad, Aspect-Oriented Analysis and
Design: The Theme Approach, Addison-Wesley, 2005.

5. I. Jacobson and P.-W. Ng, Aspect-Oriented Software
Development with Use Cases, Addison-Wesley, 2004.

6. D. Stein, S. Hanenberg, and R. Unland, “Expressing
Different Conceptual Models of Join Point Selections in
Aspect-Oriented Design,” Proc. 5th Int’l Conf. Aspect-
Oriented Software Development, ACM Press, 2006, pp.
15–26.

7. G. Kiczales et al., “Aspect-Oriented Programming,”
Proc. 11th European Conf. Object-Oriented Program-
ming, LNCS 1241, Springer, 1997, pp. 220–242.

8. I. Aracic et al., “An Overview of CaesarJ,” Trans. As-
pect-Oriented Software Development, vol. 1, 2006, pp.
135–173.

9. S. Katz, “Aspect Categories and Classes of Temporal
Properties,” Trans. Aspect-Oriented Software Develop-
ment, vol. 1, 2006, pp. 106–134.

10. R. Douence, O. Motelet, and M. Südholt, “A Formal
Definition of Crosscuts,” Proc. 3rd Int’l Conf. Meta-
level Architectures and Separation of Crosscutting Con-
cerns, LNCS 2192, Springer, 2001, pp. 170–186.

11. E.M. Clarke Jr., O. Grumberg, and D.A. Peled, Model
Checking, MIT Press, 2000.

12. S. Krishnamurthi, K. Fisler, and M. Greenberg, “Verify-
ing Aspect Advice Modularly,” Proc. 12th ACM SIG-
SOFT Int’l Symp. Foundations of Software Eng., ACM
Press, 2004, pp. 137–146.

13. A. Rashid and R. Chitchyan, “Persistence as an As-
pect,” Proc. 2nd Int’l Conf. Aspect-Oriented Software
Development, ACM Press, 2003, pp. 120–129.

14. S. Soares, E. Laureano, and P. Borba, “Implementing
Distribution and Persistence Aspects with AspectJ,”
Proc. 17th ACM SIGPLAN Conf. Object-Oriented Pro-
gramming Systems, Languages, and Applications, ACM
Press, 2002, pp. 174–190.

15. J. Kienzle and R. Guerraoui, “AOP: Does it Make
Sense? The Case of Concurrency and Failures,” Proc.
16th European Conf. Object-Oriented Programming,
LNCS 2374, Springer, 2002, pp. 37–61.

16. M. D’Hondt and V. Jonckers, “Hybrid Aspects for
Weaving Object-Oriented Functionality and Rule-Based
Knowledge,” Proc. 3rd Int’l Conf. Aspect-Oriented
Software Development, ACM Press, 2004, pp.
132–140.

N o v e m b e r / D e c e m b e r 2 0 0 6 I E E E S O F T W A R E 5 9

Within the
network,

structures are
now being

conceived that
give AOSD-

course
graduates
interesting

future
possibilities.

6 0 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Table 2
Our curriculum’s relationship to SWEBOK

Curriculum module

SWEBOK Knowledge Areas Module 1 Module 2 Module 3 Module 4 Module 5 Module 6

Software requirements Notion of Elicitation, Deriving proof Concrete Relationship with
crosscutting specification, analysis, obligations from applications viewpoint-, use-
requirements and validation aspectual of aspect-oriented case, and goal-

of aspectual requirements requirements oriented
requirements engineering approaches

Software design Notion of Early insights into Precisely relating Concrete Relationship with
crosscutting architectural choices requirements- applications existing architecture
concerns in based on aspect- level aspect of aspect-oriented description languages
architecture oriented requirements trade-offs to architecture and and modeling
and design analysis; modeling architecture detailed design notations such

and analysis of and design as UML
aspects in architecture
and design

Software construction Notion of Mapping aspect- Implementation Precise semantics Concrete Relationship with
crosscutting oriented designs of crosscutting for aspects applications of existing paradigms
concerns in to implementation concerns using and aspect AOP techniques; such as OO pro-
programs AOP techniques composition AOSD in gramming, functional

middleware programming, and
contexts procedural

programming

Software testing Deriving test cases Unit testing Modular aspect Aspect testing Differences
and proof obligations support for verification in concrete between aspect
from aspectual aspects application testing and regular
requirements scenarios testing mechanisms

Software maintenance AOSD’s Managing the impact Managing the Verifying core Evolvability of Impact of AOSD
evolution of change to aspects impact of change properties aspect-oriented on a system’s
benefits in requirements, to aspects in code; during aspect applications evolution

architecture, and aspect-oriented maintenance and
design refactorings evolution

Software configuration Relationship of
and management AOSD with

software variability
management and
component
configuration

Software engineering Integration of AOSD
management into existing

management
practices

Software engineering Integration of Integration of Employing AOSD Integration of AOSD
process aspect-oriented AOP into existing in real-world into existing

analysis and design software software software
into existing processes engineering processes, such as
software processes processes agile development

Software engineering Tools and methods Tools and methods Tools and methods Applications of
tools and methods for aspect-oriented for aspect-oriented for software concrete aspect-

analysis and design programming verification and oriented tools and
code analysis methods

Software quality Qualitative trade-offs Improved Consistency Empirical evidence Comparative
identified from aspect- evolvability, management of improved improvement in
oriented analysis; reusability, during aspect software quality quality attributes
improved evolvability, adaptability, and composition with AOSD; offered by AOSD
reusability, adaptability, composability metrics for
and composability of of programs assessing aspect-
requirements, archi- oriented systems
tectures, and designs

17. C. Zhang and H.-A. Jacobsen, “Quantifying Aspects in
Middleware Platforms,” Proc. 2nd Int’l Conf. Aspect-
Oriented Software Development, ACM Press, 2003, pp.
130–139.

18. J. Grundy, “Multi-Perspective Specification, Design, and
Implementation of Software Components using As-

pects,” Int’l J. Software Eng. and Knowledge Eng., vol.
10, no. 6, 2000, pp. 713–734.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib

N o v e m b e r / D e c e m b e r 2 0 0 6 I E E E S O F T W A R E 6 1

About the Authors

Johan Brichau is a postdoctoral researcher at the Université des
Sciences et Technologies de Lille as part of the INRIA JACQUARD project at
the Laboratoire d’Informatique Fondamentale de Lille. He’s also a post-
doctoral researcher at the Vrije Universiteit Brussel’s Programming
Technology Lab. His research interests include aspect-oriented program-
mming language design, program querying and analysis using logic
metaprogramming, and generative programming. He received his PhD
in computer science from the Vrije Universiteit Brussel. Contact him at
Laboratoire d’Informatique Fondamentale de Lille, Université des Sci-

ences et Technologies de Lille, France, LIFL–USTL Lille, Annexe Bat. M3–bureau 234, 59655 Vil-
leneuve d’Asq Cedex, France; johan.brichau@lifl.fr.

Ruzanna Chitchyan is a researcher in Lancaster University’s
Computing Department. She is also a PhD student in computer science at
Lancaster University. Her research interests include aspect-oriented re-
quirements engineering and early architecture design, multidimensional
separation of concerns, and development of composition mechanisms in
the requirements and early architecture context. She received her post-
graduate diploma in computing from the Open University. Contact her at
the Computing Dept., Infolab21, South Dr., Lancaster Univ., Lancaster
LA1 4WA, UK; rouza@comp.lancs.ac.uk.

Siobhán Clarke is a senior lecturer in Trinity College Dublin’s
Computer Science Department. Her research interests are in service and
AOP models for mobile, context-aware systems. She received her PhD
in computer science from Dublin City University. She’s a member of the
IEEE. Contact her at the Dept. of Computer Science, Trinity College,
Dublin 2, Ireland; siobhan.clarke@cs.tcd.ie.

Ellie D’Hondt is a postdoctoral researcher in the Vrije Universiteit
Brussel Department of Mathematics, funded by the Flemish Fund for Sci-
entific Research. Her research interests include distributed quantum
computation and its formal foundations, particularly from the viewpoint
of entanglement as a computational primitive. She received her PhD in
science from Vrije Universiteit Brussel. She is active in the European Net-
work of Excellence on Aspect-Oriented Software Development. Contact
her at the Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium,
eldhondt@vub.ac.be.

Alessandro Garcia is a computer science lecturer in Lancaster
University’s Computing Department. His research interests include em-
pirical evaluation of AOSD, software architecture, exception handling,
and agent-oriented software engineering. He received his PhD in com-
puter science from the Pontifical Catholic University of Rio de Janeiro.
Contact him at the Computing Dept., South Drive—InfoLab 21, Office
C-54, Lancaster Univ., LA1 4WA, United Kingdom; garciaa@comp.lancs.
ac.uk.

Michael Haupt is a research assistant at the Hasso Plattner Insti-
tute for Software Systems Engineering. His research interests focus on
AOSD, virtual machines, and dynamic programming languages, includ-
ing developing virtual machine support for AOP languages. He received
his doctoral degree in computer science from the Darmstadt University
of Technology. He’s a member of the ACM. Contact him at Software Ar-
chitecture Group, Hasso Plattner Inst. for Software Systems Eng., Prof.-
Dr.-Helmert-Str. 2-3, D-14482 Potsdam, Germany; michael.haupt@
hpi.uni-potsdam.de.

Wouter Joosen is a professor in the Katholieke Universiteit Leu-
ven’s Computer Science Department. He’s also a member of the Dis-
triNet Research Group, which aims at the development of open, distrib-
uted object support platforms for advanced applications with a focus on
industrial applications. His research interests include developing aspect-
oriented middleware. He received his PhD in distributed and parallel
systems from the Katholieke Universiteit Leuven, Belgium. Contact him
at the DistriNet Research Group, Office A02.31, Celestijnenlaan 200A,
B-3001 Heverlee, Belgium; wouter.joosen@cs.kuleuven.be.

Shmuel Katz is a professor in the Technion–Israel Institute of
Technology’s Computer Science Department. He’s also the head of the
Formal Methods Lab of the European Network of Excellence on AOSD,
where he coordinates work on formal methods and semantics for as-
pects. His research interests include AOP and software development,
program verification, partial order reductions in verification, and trans-
lations among verification and modeling tools. He received his PhD in
program analysis from the Weizmann Institute of Science. Contact him
at the Computer Science Dept., The Technion, Haifa, 32000, Israel;

katz@cs.technion.ac.il.

Jacques Noyé is a lecturer at the École des Mines de Nantes,
where he also heads the Master of Science EMOOSE (European Master of
Science in Object-Oriented and Software Engineering Technologies) and
is a member of the Objects, Aspects, and Components group. His re-
search interests include architecture programming languages (particu-
larly component and aspect languages) and the adaptation and special-
ization of applications based on such languages, using techniques such
as reflection and partial evaluation. He received his PhD on variations
and extensions of the Prolog Warren Machine from the University of
Rennes I. He’s a member of the ACM. Contact him at École des Mines de Nantes, Département In-
formatique, 4, rue Alfred Kastler, BP 20722, F - 44307 Nantes Cedex 3, France; Jacques.Noye@
emn.fr.

Awais Rashid is a faculty member in Lancaster University’s Com-
puting Department, where he leads research in aspect-oriented soft-
ware engineering. His research interests include early aspects, novel
join point models, and aspects in distributed, persistent environments.
He received his PhD in computer science from Lancaster University. He
also coordinates the European Network of Excellence on AOSD. He’s the
author of Aspect-Oriented Database Systems (Springer, 2004) and a
founding coeditor in chief of Transactions on Aspect-Oriented Software
Development. Contact him at Computing Dept., Infolab21, South Drive,

Lancaster Univ., Lancaster LA1 4WA, UK; awais@comp.lancs.ac.uk.

Mario Südholt is a researcher at INRIA. He’s also a lecturer at the
École des Mines de Nantes and a member of the university’s Objects, As-
pects, and Components group. His research interests include event-based
AOP, aspects with explicit distribution, and software components with ex-
plicit protocols. He received his PhD in parallel programs from the Tech-
nische Universität Berlin. Contact him at École des Mines de Nantes, Dé-
partement Informatique, 4, rue Alfred Kastler, BP 20722, F–44307
Nantes Cedex 3, France; sudholt@emn.fr.

