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Abstract. Density forecasting in regression is gaining popularity as real world
applications demand an estimate of the level of uncertainty in predictions. In
this paper we describe the two goals of density forecastharpnessandcal-
ibration. We review the evaluation methods available to a density forecaster to
assess each of these goals and we introduce a new evaluation methati that
lows modelers to compare and evaluate their models across both of these g
simultaneously and identify the optimal model.

1 Introduction

Daily, we use and accept probability estimates for commediption tasks; the weath-
erman tells you there is a 70% chance of rain, or medical é&xgay a patient has a
40% chance of being alive five years after a cancer operaiat).if it doesn't rain, or
if the patient doesn't die, were those predictions wrong?

Evaluation of predictions is an important step in any fostica process. For point
estimates this is a straightforward process that typicallglves determining the Euclid-
ean distance between the predicted and observed pointse Eha vast literature on
evaluation metrics for point forecasting models, for aeevof the most popular meth-
ods see [1]. However, there are conspicuously less papailalale that describe meth-
ods for evaluating density forecasting models. In fact, most turn to the meteorolog-
ical and financial literature to find any papers that focustendvaluation of density
forecasts with any degree of rigour. This is in spite of dgrfeirecast evaluation being
a considerably more complex problem than point estimafidebold et al. [2] suggest
that there might be three reasons for this neglect.

1. Restrictive assumptionsuntil recently, due to the computational complexity of
making density forecasts, very restrictive assumptionsewequired in terms of
the number of parameters that could be estimated and théudigins that had to
be assumed.

2. Lack of demandin the past there was seemingly less demand for densitgdsts,
this is particularly true in the financial domain on which Batd et al. focus. How-
ever, the recent growth in the area of risk management hasédche attention of
people on this problem.

! For convenience and simplicity in this document the term “density forecgistiill refer to
“probability density forecasting for regression” unless stated otherwise



3. Difficulty of the problem it is possible to adapt methods that are used in the point
forecasting and interval forecasting literature to evidudensity forecasts, how-
ever, these adaptations lead to incomplete evaluations.

The defining difference between density forecast and pomethst evaluation is the
fact that the performance of a density forecasting modehcdatbe summarised mean-
ingfully by one metric. This can be attributed to the rich&iormation produced by a
density forecasting model. The popular Mean Squared ErmdrRoot Mean Squared
Error scores are sufficient evaluation metrics for most wassessing the quality of
point forecasting models. On the other hand, density fatétg models must both
produce estimates that give a high density at the obsernvatid produce probabil-
ity estimates that are correct. The first requirement, a bigtsity at the observation,
relates to the predicted density having minimum varianaauathe observation, this
is commonly termed the sharpness of an estimate. The seequoutlement, to produce
probability estimates that are correct, refers to the eiggivalidity of the predicted
probabilities and is commonly calledlibration.

As mentioned above we aim to address the regression prodiestimating the
parameters for a model given a set of training ddta, ;) } ,, where the*" example
is described by the patten) € P and the associated resporise R. Point forecast-
ing attempts to estimaté¢;|x;), the conditional mean of the target variable given an
input patterd. Density forecasting models attempt to estimate;|z;), the conditional
probability density that the target is drawn from, a consatdéy more complex task.

The aim of this paper is to provide a review of evaluation téghes for density
forecasting in regression and present a new way of combithiegwo main evalua-
tion approaches used in the literature. The paper is orgaras follows. In Section 2
we introduce the various terminology and high level conedgthind the two main ap-
proaches to evaluate density forecasting models (shas@mescalibration). Section 3
outlines methods for assessing sharpness and Sectionefveegpproaches of assess-
ing calibration. In Section 5 we introduce our new methodarhbining and comparing
these two evaluation approaches in a meaningful mannexlysim Section 6 we briefly
conclude the paper.

2 Calibration, Sharpness, Refinement, Empirical Validity

The literature in point forecasting makes the suggestianttte “closer” a forecast is to
the observation the better. Similarly, this intuition tséers to probability forecasting,
for example, a forecast of 90% for an event that occurs willep better, after the
fact, than a forecast of 80% for the same event [3]. This ptgp# density forecasts
is known as sharpness or refinement [4]. Put simply, shaspagssesses how spread
out or how “sharp” a forecaster’s predictions are. In theabjrsense this refers to the
concentration of the probability estimates near the valuasd 1. A sharp forecaster
will have a high concentration of its probability estimatasund these two extreme
values. In the continuous domain, sharpness relates tantbers of density assigned

2 At points in this document we refer to sequenced or time series data, indhsss the reader
can assume that; = t;_1



to the actual observation. High density at the observatexressitates a low variance
around the observation.

Probability forecasts are unique insofar as they not ondyigle a prediction of the
location/class of the observation but they also give a measithe uncertainty in that
prediction. Sharpness rewards models in terms of the lmwatass accuracy but gives
no real indication of the correctness of probability estisaCalibration, also known
as reliability in meteorology or empirical validity in sistics [5], refers to the ability of
a model to make good probabilistic predictions. A model id $a be well calibrated
if for those events the model assigns a probability of P%)dhg-run proportion that
actually occur turns out to be P%. Intuitively, this is a daisie characteristic of any
probabilistic forecast; in fact, it could be argued thath@dility forecasts that are not
well calibrated are of no more use than point forecasts Isecthe probabilistic aspect
of the prediction is incorrect.

The two objectives outlined above are the requirementsrigrgmod probabilistic
forecaster. Both sharpness and calibration evaluatioms)@acessary to ascertain the
quality of a probabilistic forecaster. Calibration evdioa must be accompanied by
an estimate of sharpness in order to ascertain the usefudmespredictiveness of the
forecaster.

3 Assessing Sharpness

In this section we identify three methods of evaluation efsharpness criterion.

3.1 Negative Log-likelihood

The Negative Log-likelihood (NLL), also known as the Ignoeca Score (Good, 1952)
or Negative Log Predictive Density, is a method of assessiagsharpness of a pre-
dicted density function. It is specified as follows:

NLL; = —log(p(ti|z;)) (1)

The NLL can be easily and cheaply calculated and is by far et popular error func-
tion in the density forecasting literature for this reasbine NLL or a variation on the
NLL is almost exclusively used as the optimisation erroiction of density forecasting
models. This is because of the relationship between NLL and Maxinhikelihood
Estimation (MLE). MLE theory can be easily adapted to opsiendensity functions
rather than point values. Figure 1 plots the relationshipveen the NLL value for
a sample prediction density against all possible outcomeke interval [0, 10]. The
NLL is a negatively oriented score, meaning the more dertbityactual observation
has been awarded by the prediction the smaller the NLL value.

The major weakness of the NLL is that it evaluates densifyneses based solely on
the probability density at the observation and does not tlaealibration of the fore-
cast into consideration. These problems manifest themseahverroneous probability
estimates. For examples of these see [6] or [7].

% The exceptions to this are, for example, the indirect density forecasiihgitries such as
ensemble methods.
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Fig. 1. The left plot depicts a sample predicted density. The right plot showslthefdt a target
at each point on the x axis for the given sample density. The relationstipgebn density and
contribution to error can be clearly seen.

A further weakness of NLL is its sensitivity to outliers. Ehs due to the fact that
a change of: in the NLL relates to a change efp(z) in the observation values. This
effect can be seen in Figure 1. Weigend & Shi suggest usingnaigd mean to get
around this issue [8] . This ameliorates the situation besdwt solve the problem.

3.2 Continuous Rank Probability Score

The Continuous Ranked Probability Score (CRPS) [9] is digation method for prob-

abilistic forecasts of continuous variables. It is equévélto the Brier Score [10] inte-
grated over all possible values and is a generalisationeoRiégmnked Probability Score
[11] that is used to evaluate probabilistic predictionsravelinal variables. The CRPS
is sensitive to distance i.e. it is capable of penalisingligt®ns that are far away from
the actual observation. In essence, the CRPS measuredférerdie between the pre-
dicted and the occurred cumulative distributions, seer€i@uIn order for the score to
be sensitive to distance, the squared errors are computiedespect to the cumulative
probabilities of the forecast and observation. The CRP&lmutated as follows:

oo

CRPS; = / (p(u|x;) — H(u, t;))du 2

— 00

Where, H, is the Heaviside function,
H(l,m)=1{l > m} (3)

Again, like the NLL, the mean CRPS is calculated over all pptiohs to determine the
average error.

Hersbach [9] shows that the CRPS reduces to the Mean Abdbte for deter-
ministic forecasts. Therefore, this evaluation techniiguee means of comparing deter-
ministic and probabilistic forecasting models and is alasyeto interpret as an error
measure. This interpretability is further aided by the thet it is in the same units as
the target variable.
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Fig. 2. The left plot in this figure is the predicted probability density function for soegression
task. The target value is at 2. The right plot shows the cumulative distitsufor the target and
prediction. The area between the target and predicted cumulativecdias ly the arrows) is the
value returned by the CRPS score. The sensitivity of the CRPS to distaticeas relative to
the predicted densities error. Sharpness (small spread) is rewidittedorecast is accurate. A
perfect CRPS score is 0.

A major disadvantage of the CRPS score is that it is not ofedderm. It is possi-
ble to derive a closed form version of the CRPS for normatithistions [12]; however,
if your probabilistic model produces non-Gaussian sohgjsuch as mixture models,
then determining numerical estimations of the integralef@ry input pattern is a com-
putationally intensive task.

3.3 Wilson Score

The Wilson Score [13] is a means of assessing the qualityretésts of continuous
variables in terms of an acceptable range. For exampleigbiets of temperature may
only need to be accurate betweet°C of the actual observation. This score evaluates
predictions in terms of this range. Like the CRPS, the conoéthe Wilson Score is
derived from the Brier Score and Rank Probability Score.Wilson Score determines
the percentage of the forecasted probability that liesiwithe tolerable range of the
observation/target. The equation for the Wilson Score is;

t+ At
WS, = / p(ulx;)du 4)
t— At

where, At represents the threshold, or tolerated distance from

Figure 3 depicts the area contributing to the Wilson scoreafsample prediction.
This is a positively oriented score in the interval [0,1]. érfect score receives a 1. The
numerical score that it produces can be understood as alplibhbdt is sensitive to
distance and to the spread of the forecasts.

A weakness of this score is that the modality of the predidisttibution affects
the Wilson Score. The error score must be adapted to acomuthief different predicted
modes. Wilson et al. describes how the score can be adaptéstdnynining the modal-
ity of the target a priori [13]. However, this is not a trivilsk and may not even be
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Fig. 3. Shows the area of the distribution that is considered by the Wilson Sedre In this
example a tolerance, or window size-bi units is used.

achievable in certain scenarios. Another difficulty wittstbcore, like the CRPS, is that
it requires the calculation of an integral.

4 Evaluating Calibration

The Probability Integral Transform (PIT) as recommendedhyvid [14] is the most

common method of evaluation of calibration. Within the Pl&thod of evaluation there
exists a large number of approaches that can be used torgit@goresults. Below we

describe the PIT score and review the different methods tefpretation. Although

other methods of assessing calibration exist they are giynpresented in terms of the
particular decision problem and are not general methodsctirabe applied in every
case. This is an alternative and valid approach to forezatd&ion but we do not have
space to address it in this short text, for more informaties [45].

4.1 Probability Integral Transform

The PIT score is a popular method of evaluation across ath$oof density fore-
casting, for example, Schervish uses it for evaluation asification problems [3],
Christoffessen adapts it for prediction intervals [16]d &imere is an equivalent method
of evaluation for ensembles of point forecasters [17]. P¥&roomes the problem of
loss function inconsistencies across problem domains byl@ending on a specific
user loss function. Instead, the PIT assumes that the pi@digser is attempting to
estimate the true data generating process. As the true eagaaing process is at least
as good as, if not better than, any other possible modet ineakly dominates all other
models. Intuition also suggests that it is reasonable torassas the correct density is
always preferred to an incorrect density. In the case ofrtieedata generating process,
we know that the set of cumulative densities at the reatisativill be uniforni. By
making the assumption that we are striving to find the trua danherating process we

4 In the case of time series or sequential data the cumulative densities stwiloe indepen-
dently and identically distributed. An excellent introduction to the PIT for setjal and time
series data is provided in [2].



can assess the set of predicted cumulative densities ab#svations for uniformity.
The PIT is defined by:

t;
= [ pluledu ©)
For a series of lengtid/ the probability of those events occurring in their predicte
densities should result in a random sample as would appésg the true generating
densities. Rosenblatt shows that this random sample will(el) and i.i.d. for the true
generating density and any correctly specified densitycisting model [18].

Diebold et al. [2] suggest plotting a histogram of the PITues and comparing this
to a perfect U(0,1) distribution as a method of discernirggdagree of calibration of a
model. Crnkovic et al. [19] suggest using the Kuiper stiatfsr measuring uniformity.
However, this is not a robust test for uniformity and regsiigevery large number of
data points before it is consistent in its estimates. Beitzd®0] suggests a Likelihood
Ratio test for evaluating PIT values and developed a rigoftamework for evaluation
of different aspects of the density forecast, even wheruatian data is sparse. Specifi-
cally, he proposes that the PIT values be transformed intoraaily distributed series,
N(0,1), via the inverse normal cumulative density functitansform because tests for
normality are more powerful than tests for uniformity. Ugithis transformed series
he suggests that a one-degree-of-freedom test of indepeadgainst a first-order au-
toregressive structure and a three-degree-of-freedonote®ro mean, unit variance
and independence. This approach is probably the most wedlajged and principled
method of evaluation of PIT values to date; however, it is #i&® most time consuming
and computationally intensive. Wallis [21] suggests usingadaptation of Pearson’s
chi-squared goodness-of-fit test for density forecastiaduation. His suggested adap-
tation provides a means of extracting information from theRlues that can diagnose
more precisely where the predictions fall down e.g. locatgrale or skewness. Some-
where between the suggestions of Crnkovic et al. [19], anttd¥édtz and Wallis [20,
21], lies the research carried out by Noceti et al. [22]. kitipaper, the Kolmogorov-
Smirnov, Kuiper, Crarér-von Mises, Watson and the Anderson-Darling goodnesi-of
tests were compared. After analysis they concluded thaitigerson-Darling test was
the most robust metric for this task.

At this point it is important to contextualise the problenaamgby referring back
to our initial postulation that density forecasts shouldbth sharp and calibrated. Al-
though, the PIT score identifies a well calibrated modek itat sufficient to identify
whether a density forecasting model is useful or not. In ny dees the PIT score
evaluate sharpness and so it should be used in conjunctibnavgharpness score to
identify models that are both well calibrated and sharp dimipof fact, determining the
distribution of the observations in the training set anahgs$his distribution as a predic-
tion for every input will result in a uniform set of PIT valueser the training set. This
density is known as the unconditional distribution in finamc the climatology in me-
teorology. This trivial model will be well calibrated but have very poor sharpness.
In the context of time series data it is possible to arguelifiatetermining whether the
PIT values are independent, or not, one can identify if a isd@mply predicting the
unconditional distribution. However, Hamill [23] showsathn certain circumstances a
biased model will return a uniform set of PIT values. He sigéhat a uniform series



is a necessary but not sufficient criterion for determinimaf 8 model is calibrated. He
shows that it is possible that an incorrect density modelctbave a uniform set of PIT
values. Again, in this case, the sharpness score will lgghthe fact that the model is
incorrectly specified.

4.2 Interpreting PIT Histograms Visually
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Fig. 4. The top row of plots shows the true or target generating distribution (N(@yid the
predicted distributions. From left to right the predicted distributions ar@,1y(N(0, 0.5), N(0,2)
and N(1,1). The bottom row of plots represents the resulting PIT histofmaeach prediction
distribution determined by evaluation on 10,000 points generated fromrtjeg thstribution.

To further understand the PIT approach to determining iiitin this section de-
scribes the effect of bias and variahamn the PIT histogram. To do this we simplify
the problem; all data points in our test series are randonpkenfrom an N(0,1) dis-
tribution. The true conditional density at every point tserefore, an N(0,1) density.
Knowing the true density means we can artificially simulateskand variance in the
predicted densities by making all predicted densitigs, Mj. Bias is simulated by vary-
ing they of the density and variance is simulated by varyingdted the density. Figure
4 shows the distributions and resulting PIT histograms &whe: ando pair. The first
PIT histogram is the only correctly specified histogram bsezhe predicted density is
N(0,1), the same as the distribution used to generate tlze Bets and variance affect
the PIT histogram in different ways. Too narrow a variancenf®a “U” shaped PIT
histogram signifying over-confident predictions. Too wideariance creates a hump in
the middle of the PIT, this can be thought of as under-conéideBias causes a sloping
effect and in the extreme case it creates a “J” or “L" shapddhtogram depending
on the direction of the bias.

5 In this experiment, bias refers to the incorrect specification of the nf¢ha predicted density.



5 A Complete Evaluation Framework

In the preceding sections the argument for two metrics pstes and calibration, when
evaluating density forecasting models was developed andirdber of methods for as-
sessing these were described. This is the generally accepthodology for density
forecasting evaluation by the literature and is seen agaiifito fully evaluate the qual-
ity of a density forecasting model [12]. Given this fact, wegose a further diagnostic
tool for evaluation and comparison of predictive perforg®if density forecasting
models. We describe a simple method of comparison that eamlgland definitively
identify the best models in terms of their sharpness andreaion objectives.
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Fig. 5. Sample density forecasting evaluation plot. In this example the sharpmesslébration
scores are negatively oriented i.e. the smaller the beiter. represents the unconditional distri-
bution of target values,b andc are sample models. Models dominated by both andc. a and

¢ do not dominate each other and so are optimal solutions. The regior ahdwo the right of a
model’s point in objective space represents the region that that modehdtes (dotted lines).

Vilfredo Pareto [24] was the first to discover that under ripldt conflicting ob-
jectives there is no single optimum, instead there is a septimum trade-off solu-
tions. These optimum solutions can be identified by theiridance or non-dominance
amongst the other competing solutions. Therefore, Pammtorgance can be defined as
the unique nontrivial partial order on the set of finite-dive®nal real vectors satisfying
a number of objectives [25]. This is precisely the orderimagt is required in evaluation
of the multiple objectives of density forecasting to find dpimal solutions. Formally,
Pareto dominance can be described as follows: Assume, wtitbss of generalityk
negatively oriented objectives and consider two sets ofahpdrameters, b. Then,a
is said to dominaté iff:

Vie {1,....k}: fi(a) < fi(b)
3j € {1, ...k} fi(a) < f;(b)

Where, f;(x) returns for decision vectar the i* objective function [26].
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The concept of Pareto optimal solutions is illustrated guFé 5. The unconditional
distribution is included to show the sharpness of modelstita to this base model.
Models that are dominated can be discarded. The forecastethen select the model
that best optimises their goals from the Pareto optimal set.

5.1 Sample Evaluation: Model Selection

A common application for evaluation techniques is modetc@n. Here, the goal is
to determine the best model set up to use for your final priedichodel. In this sim-
ple example we show how it is useful to plot a Pareto evalnatlot to determine the
optimal models. For this experiment we used a Mixture Dgriditwork (MDN) to
make our density forecasts[27]. MDNs are an adaptationeofthlti-layer perceptron
that can accurately estimate conditional probability dgrfanctions by outputting a
Gaussian Mixture Model (GMM). Like most neural networksrthare a number of
variables that must be decided upon by the modeler beforentitel can be trained.
The two most important variables to be selected with this tyfomodel are the number
of hidden units in the network architecture and the numbé&anissians to be included
in the GMM. In our experiment we use the Pareto optimalityt plescribed above to
determine the best model set up in terms of hidden units and<&m components for a
simple inverse problem. Target variablesare uniformly drawn from the interval [0,1]
and the input variables;, are generated by = ¢ 4 0.3 sin(27t) + € ande is uniform
noise drawn from the interval [-0.1, 0%1)We created a training and test set of 1,000
points, from the training set we created 20 bootstrap tngirsiets, this is so that we
get a more robust estimate of the average model error scoeafh architecture. 18
different model architectures were tested, outputs of IndB&Gaussian components
for the GMM were tested and for each output type we tested ark&tarchitectures
with 2,3,4,5,6 and 7 hidden units. All models were traindddrmination or for 1,000
iterations of the Scaled Conjugate Gradient algorithmcivbver came first. The aver-
age error for each model over the 20 runs on the test set wkndatad. We evaluate
all models using the negative log-likelihood score (seeti®e.1) as our measure
of sharpness and the Anderson-Darling goodness-of-fistatistic on the model PIT
values as our measure of calibration [28]. This calibraticore is calculated by deter-
mining A> = —m— - 3" | (2 —1)[log(z;) +log(1—2z,,;)], where;n, is the number
of z values, calculated by equation 5, and theselues are sorted in ascending order.
This resulting quality score for calibration is negativelyented. Figure 6 describes the
results from this experiment. After analysis of the Parétt fhe modeler should have
a good understanding of which model set up best suits thaisgblowever, if there is
still uncertainty regarding the best model they can cartyfauher tests such as those
described in [20].

Figure 6 can be augmented in a number of different ways, famgte; the position
of the unconditional distribution can be included to idgntine position of the baseline
model or in the model selection scenario at least, the abgfiinction score may be
noisy due to the specific data set being evaluated, by agplyitechnique such as

5 As described in [27] pp 14.
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Fig. 6. (a) plots the results of all the models tested. The models with just 1 Gaussigrooent
(1-GMM) clearly perform the worst and can be discarded. This is toXpeaed as the data
is trimodal. (b) is a close up of the other models, the numbers next to theeraasignify the
number of hidden units used in that model. There are clearly two cluster8-GMM models
having good calibration, and the 6-GMM models having good sharpRessly (c) is the Pareto
plot. The non-dominated (ND) Pareto optimal set is identified and the Phogtbis shown.
Dominated (D) models can be discarded. The critical value (dashedftinéghe A2 score is
included, below this line models are uniform at the 1% level.

that described in [29] it is possible to plot a Pareto optig&tlthat are mutually non-
dominating with some known probability.

6 Conclusions

In this paper we described the goals of density forecassmgharpness and calibration
and identified approaches for evaluating models on bothesfleriteria. We introduced
a new method of evaluation that allows the modeler to idgtiié best models from a
set based on these two criteria.
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