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Abstract

Inductive learning systems have been successfully 
applied in a number of medical domains. It is 
generally accepted that the highest accuracy results 
that an inductive learning system can achieve depend 
on the quality of data and on the appropriate selection 
of a learning algorithm for the data.

In this paper we analyze the effect of class noise on 
supervised learning in medical domains. We review the 
related work on learning from noisy data and propose 
to use feature extraction as a pre-processing step to 
diminish the effect of class noise on the learning 
process. Our experiments with 8 medical datasets show 
that feature extraction indeed helps to deal with class 
noise. It clearly results in higher classification 
accuracy of learnt models without the separate explicit 
elimination of noisy instances.

1. Introduction

Current electronic data repositories, especially in 
medical domains, contain huge amount of data 
including also currently unknown and potentially 
interesting patterns and relations that can be found 
using knowledge discovery and data mining (DM) 
methods [2]. Inductive learning algorithms can be used 
to form a generalization from a set of labeled 
(previously classified) instances so that the predictions 
can be performed for the previously unobserved 
instances. Inductive learning systems have been 
successfully applied in a number of medical domains, 
for example in localization of a primary tumor, 
prognostics of recurrence of breast cancer, diagnosis of 
thyroid diseases, and rheumatology [9].

However, it is generally accepted that the highest 
accuracy results that an inductive learning system can 

achieve depend on the quality of data and on the 
appropriate selection of a learning algorithm for the 
data. The quality of a dataset usually depends on a 
number of factors. In this paper we will emphasize the 
problem of class noise present in training data. Some 
DM researchers believe that more attention should be 
paid to the study of attribute noise in datasets as they 
think that at the time of insertion of new data (for 
example patient’s data) a medical worker pays more 
attention to the diagnosis and to the correctness of its 
insertion. However, this is true only from the 
organizational perspective of data-entry process, and 
may be very different from other perspectives that we 
will address in this paper. 

The goal of our study is three-fold: (1) to show the 
impact of class noise on supervised learning (SL) in 
medical domains, (2) to review the recent work on 
handling class noise, (3) and to investigate whether 
feature extraction (FE) can help to diminish the effect 
of class noise on SL. 

FE is the process that discovers a new feature space 
having fewer dimensions through a functional mapping, 
keeping as much useful information about the data as 
possible [10]. Our hypothesis in this paper is that FE 
will help to produce more compact models during the 
SL process thus helping to avoid overfitting the noise 
included in the class attribute. 

The rest of the paper is organized as follows. In 
Section 2 we consider class noise and its sources in 
medical domains. In Section 3 we review the related 
work on handling class noise for SL. In Section 4 FE 
techniques used in our experimental study are
presented. In Section 5 we present the results of our 
experiments with 8 medical datasets. Finally, in Section 
6 we briefly conclude with a summary and present 
some directions for further research.



2. Noise in data

2.1. Basic concepts

Data may contain various types of errors, either 
random or systematic. Random errors are often referred 
to as noise. However some authors are regarding as 
noise both mislabeled examples and outliers which are 
correctly classified but are relatively rare instances 
(also called exceptions).

According to [23], the quality of a dataset in SL is 
usually characterized by two information parts of 
instances, namely attributes and class labels. The 
quality of the attributes indicates how well they 
characterize instances for classification purposes, and 
the quality of class labels indicates the correctness of 
class labels’ assignments. Noise is often similarly 
divided into two major categories that are class noise 
(misclassifications or mislabeling) and attribute noise 
(errors introduced to attribute values). Zhu and Wu 
[23] propose to distinguish the following examples of 
attribute errors: erroneous attribute values, missing or 
so-called ‘don‘t know’ values, and incomplete or so-
called ‘don’t care’ values. 

The two major types of class noise are contradictory 
instances (instances with the same values of the 
attributes but different class labels, forming so-called 
irreducible or Bayes error) and wrongly classified 
(labeled) instances that are misclassifications 
(mislabelings). These errors may naturally occur in 
medical diagnostics when different classes have very 
similar or even overlapping symptoms. 

In this paper our focus is on the study of the second 
type of class noise, namely the study of the 
performance of SL under the presence of certain 
amount of mislabeled instances in the data. We prefer 
the term ‘mislabeled’ instead of ‘misclassified’ because 
it is more general and can refer to several sources of 
class noise which we discuss in the following section.

2.2. Sources of class noise

It can be easily demonstrated that there is more than 
one reason why mislabeling is possible and that class 
noise is often present in real-world data. In particular, 
beside data-entry errors, subjectivity and the 
inadequacy of information used to label each instance 
constitute the major factors that may have impact on 
the amount of mislabeled instances in a dataset [1]. 

Domains in which medical experts may disagree are 
natural ones for subjective labeling errors [18]. In 
particular, if in some practical classification problem 
the absolute ground truth is unknown then experts must 
subjectively provide labels and mislabeled instances 

naturally appear [13]. Other types of instance 
mislabeling refer to the situations when an observation 
needs to be ranked according to a disease severity or 
when the information used to label an instance is 
different from the information to which the learning 
algorithm will have access (for example, when an 
expert relies on visual input rather than the numeric 
values of the attributes). Also, in medical domains the 
results of some tests (attribute values) may often be 
unknown (impossible to obtain or difficult to obtain, 
for example because of cost or time considerations), 
and such incompleteness of information may lead to 
class noise as well. Another source of misclassifica-
tions in data are the errors of devices used for 
automatic classification. 

Two types of studies that aim either (1) at improving 
the quality of training data by identifying and 
eliminating mislabeled instances prior to applying a 
certain SL technique (and thereby decreasing the 
classification error) or (2) at developing such SL 
techniques that would be tolerant to class noise have 
been undertaken in the DM community [23]. 

3. Handling class noise

Noise handling techniques can be roughly divided 
into two categories: (1) so-called noise-tolerant 
techniques that try to avoid overfitting the possibly 
noisy training set during SL, and (2) filtering 
techniques that detect and eliminate noisy instances 
before SL [1, 4, 5, 6]. 

The noise-tolerant techniques handle noise 
implicitly, and the noise-handling mechanism is often 
embedded into either (1) search heuristics and stopping 
criteria used in model construction [11], or (2) post-
processing such as decision tree post-pruning [15], or 
(3) model selection mechanism based for example on 
minimum description length (MDL) principle [17] or 
some compression measure which integrates measure 
of model complexity with an accuracy estimate [12]. 

The filtering techniques handle noise explicitly, and 
the noise-handling mechanism is often implemented as 
a filter that is applied before SL and it usually results in 
a reduced training set (when the noisy instances are not 
corrected but deleted).

Filtering algorithms can be broadly divided into 
single-algorithm filters and ensemble filters [1]. With 
single-algorithm filters one approach is to use the same 
learning algorithm to construct both the filter and the 
final classifier. This idea adapts the approach to 
remove outliers in regression analysis, where the same 
model is used to test for outliers and for fitting the final 
model to the cleaned data [21]. John [7] experimented 
with removing the training instances that are pruned by 



C4.5 [16]. The tree was iteratively rebuilt from the 
reduced (filtered) set of training instances until no 
further pruning could be done. Brodley [1] used 
cross­validation over the training data instead of 
multiple iterations to find mislabeled instances. 
Another way to implement filtering is to construct a 
filter using one algorithm and to construct the final 
classifier using a different algorithm. This approach is 
based on the assumption that an algorithm may act as a 
better filter for another algorithm [1]. 

Ensemble filters detect mislabeled instances by 
constructing a set of base­level detectors (classifiers) 
and then use their classification errors to identify 
mislabeled instances [1]. Brodley [1] analysed the use 
of a majority vote filter (tags an instance as mislabeled 
if more than half of all base classifiers misclassify it), 
and a consensus filter (requires that all base classifiers 
must fail to classify an instance before tagging it as a 
misclassified one) for different benchmark datasets.

Gamberger et al. [4, 5] presented a series of noise 
detection experiments with coronary artery disease 
diagnosis (in [5]) and with 8 medical domains from the 
UCI repository (in [4]). They used a combined 
classification­saturation filter, and a consensus 
saturation filter. A   saturation filter is based on the 
saturation property of the training set which assumes 
that the training set contains enough instances to learn a 
correct model. Earlier, it was shown how a simple 
compression measure can help to eliminate noise in a 
medical problem of rheumatic diseases diagnosis [6].

An interested reader can find further information 
about the behavior of various filtering approaches in 
[1,4]. We will just summarize that several researchers 
have acknowledged filtering approaches to be useful. 
They can help in noise elimination that results in the 
higher classification accuracy of a classifier built on a 
filtered dataset. Therefore, many researchers argue that 
the explicit elimination of noise during the 
preprocessing step is favorable since noisy examples in 
this case do not impact the SL process. Such 
argumentation seems to be rather obvious at least in 
theory. However, the same researchers have recognized 
some practical difficulties with filtering approaches. 

One concern is that it is often hard to distinguish 
noise from exceptions (outliers) without the help of an 
expert, especially if the noise is systematic [19]. 
Another concern is that a filtering technique can use an 
expected level of noise as an input parameter, and this 
value is rarely known for a particular dataset. Only in 
some cases domain knowledge may help to estimate the 
level of noise in data. Besides, since the scarcity of 
training data is not an unusual problem in medical 
diagnosis, it is desirable to minimize the probability of 

discarding an instance that is an exception rather than 
an error.

In this paper we propose to use FE techniques to 
eliminate the effect of class noise on SL. This approach 
fits better to the second category of noise-tolerant 
techniques as it helps to avoid overfitting implicitly 
within learning techniques. However, this approach has 
also some similarity with the filtering approach as it 
clearly has a separate phase of dimensionality reduction 
which is undertaken before the SL process.

4. Feature Extraction Techniques Used

Principal Component Analysis (PCA) is one of the 
most commonly used FE techniques. It is based on 
extracting the axes on which data shows the highest 
variability [8]. Although PCA “spreads out” the data in 
the new basis (new extracted axes), and can be of great 
help in unsupervised learning, there is no guarantee that 
the new axes are consistent with the discriminatory 
features in a classification problem.

Another approach is to account for class information 
during the FE process. One technique is to use some 
class separability criterion (for example, from Fisher’s 
linear discriminant analysis), based on a family of 
functions of scatter matrices: the within-class 
covariance, the between-class covariance, and the total 
covariance matrices [3]. The parametric and 
nonparametric eigenvector-based approaches use the 
simultaneous diagonalization algorithm to optimize the 
relation between the within- and between-class 
covariance matrices (thus taking into account class 
information) [3]. The difference between the 
approaches is in calculation of the between-class 
covariance matrix. The parametric approach accounts 
for one mean per class and one total mean, and 
therefore may extract at most number_of_classes-1
features. The nonparametric method tries to increase 
the number of degrees of freedom in the between-class 
covariance matrix, measuring the between-class 
covariances on a local basis. Previous experiments with 
parametric and nonparametric FE approaches showed 
that nonparametric FE was often more robust to 
different dataset characteristics [20] and often resulted 
in higher classification accuracy of such basic SL 
techniques as Naïve Bayes, C4.5 and kNN comparing 
to parametric FE [14].

5. Datasets and experiment design

To evaluate the impact of class noise, we conducted 
experiments on 8 medical datasets (Table 1), with 
different levels of random class noise imputed (from 0 



to 20% with a 2% step). Further information on these 
datasets and the datasets themselves are available at 
http://www.informatics.bangor.ac.uk/~kuncheva/activit
ies/real_data.htm.

Table 1. Medical datasets used in the study

dataset instances features classes
contractions 98 27 2
laryngeal1 213 16 2
laryngeal2 692 16 2
laryngeal3 353 16 3
rds 85 17 2
weaning 302 17 2
voice3 238 10 3
voice9 428 10 9

We applied kNN, Naïve Bayes (NB) and C4.5 
decision tree learning algorithms (with and without FE 
techniques discussed in the previous section) to learn 
from these noisy datasets and to evaluate the impact of 

class noise on accuracy.
For each data set with each level of imputed class 

noise 30 test runs of Monte-Carlo cross validation were 
made for each classification technique with and without 
FE approaches. In each run, the data set is first split 
into the training set and the test set by stratified random 
sampling to keep class distributions approximately the 
same. Each time 30 percent instances of the dataset are 
first randomly held out to the test set. The remaining 70 
percent instances form the training set, which is then 
corrupted with imputed random class noise. The test 
environment was implemented within the WEKA 
machine learning software in Java [22].

5.1. Impact of class noise on SL

The corresponding accuracy results are presented in 
Figure 1. The horizontal axis indicates the class noise 
level and the vertical axis represents the
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Figure 1. Accuracies for 8 datasets for kNN, NB and C4.5 classifiers with imputed class noise in training data



classification accuracy of different classifiers trained 
on a noisy training set and evaluated on a original test 
set (that is without imputing any class noise).

As we can see from Figure 1, when the level of 
noise increases, all classifiers trained on a noisy 
training set suffer from decreasing classification 
accuracy. In most cases the accuracy decrease is linear 
with respect to the increase of noise level. The 
behavior of different classifiers varies from one dataset 
to another. In particular, for contractions, rds and 
weaning datasets NB has higher accuracies for 
uncorrupted data and its accuracy deteriorates less in 
comparison with kNN and C4.5. On the contrary, on 
laryngeal and voice datasets kNN and C4.5 show better 
results, being more tolerant to class noise than NB. 

5.2. Feature extraction and class noise

Further we compare how classification error increases 
for each classifier for situations when no FE was 
applied before SL (PLAIN) and when PCA, parametric 
FE (PAR) and nonparametric FE (NPAR) were applied 
before learning a classifier.

In Figure 2 we present the results of this comparison 
for each of the 8 datasets. The vertical axis shows the 
classification error increase due to the inclusion of 20% 
class noise in a dataset. 
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Figure 2. Error increase (%) due to class noise

In can be seen from the figure that with kNN the 
increase or error is 1-2% smaller (in comparison with 
PLAIN) when PCA is applied for contractions, when 

NPAR is applied for contractions and laryngeal1, and 
when PAR is applied for wearing, voice3 and voice9. 
On rds, the increase in error is larger with any FE 
technique in comparison with PLAIN. In general, we 
can see that FE helps kNN to tolerate the presence of 
class noise rather modestly in comparison with NB and 
C4.5, where maximum difference in error increase is 
beyond 20% and 10% percent respectively. In 
particular, it can be seen that with NB the increase of 
error is smaller (in comparison with PLAIN) by about 
3% for laryngeal1, 20% for laryngeal2, 8% for 
laryngeal3, 6% for voice3 when PAR is applied. 
However with the other datasets (contractions, rds,
wearing and voice9) FE is not helpful with respect to 
noise handling. And with C4.5 and NB the increase of 
error is smaller by about 10% for contractions, 4% for 
laryngeal1, 2% for laryngeal2, 8% for laryngeal3, 6% 
for rds, 6% for wearing, and 3% for voice3 when PAR 
is applied. Only with voice9 FE is not helpful with 
respect to noise handling.

Then, for each classifier, we compare the absolute 
values of classification accuracy and its decrease due to 
class noise. 

In Figure 3 we demonstrate one set of representative 
results of this comparison (for laryngeal1). 
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Figure 3. Typical behavior of SL with and without FE 
when class noise is imputed (laryngeal1)

It can be seen from the figure that with kNN FE 
approaches have almost no effect on diminishing the 



impact of class noise on classification; with NB the 
decrease of accuracy is less rapid (in comparison with 
PLAIN) when FE is applied (PAR shows the best result, 
then NPAR and then PCA); and with C4.5 the behavior 
is similar to NB, but PCA appears to be a better choice 
than NPAR.

6. Conclusions and future directions

The focus of this paper is on evaluating the impact 
of class noise on SL in medical domains and showing 
whether FE can diminish this impact. We demonstrated 
that, expectedly, class noise affects SL in many cases. 
The results of our experiments show that applying FE 
techniques before undertaking SL indeed enables 
decreasing the negative effect of the presence of 
mislabeled instances in the data. This is especially
notable with NB and C4.5, which are less tolerant to 
the presence of class noise in data in comparison with 
kNN.

The directions of our future work include the 
comparison of FE techniques with other dimensionality 
reduction and instance selection techniques, and 
comparison of FE with filter approaches for class noise 
elimination. 

Acknowledgments: This research is partially 
supported by the Academy of Finland and the Centre 
for International Mobility (CIMO), Finland and the 
Science Foundation Ireland under Grant No. S.F.I.-
02IN.1I111. We are thankful to anonymous reviewers 
for useful suggestions and to Dr. Ludmila I. Kuncheva 
for the collection of real medical datasets, which is 
available at: http://www.informatics.bangor.ac.uk/~ 
kuncheva/activities/real_data.htm.

7. References

[1] C.E. Brodley and M.A. Friedl, “Identifying Mislabeled 
Training Data”, Journal of Artificial Intelligence Research
11, 1999, pp. 131-167.
[2] Fayyad, U., G. Piatetsky-Shapiro, P. Smyth, and R. 
Uthurusamy, Advances in Knowledge Discovery and Data 
Mining, AAAI/ MIT Press, 1997.
[3] Fukunaga, K. Introduction to statistical pattern 
recognition. Academic Press, London, 1999.
[4] D. Gamberger, N. Lavrac, and S. Dzeroski, “Noise 
Detection and Elimination in Data Preprocessing: 
experiments in medical domains”, Applied Artificial 
Intelligence 14, 2000, pp. 205–223.
[5] D. Gamberger, N. Lavrac, and C. Groselj, “Experiments 
with Noise Filtering in a Medical Domain”, Proc. of 16th 
ICML Conference, San Francisco, CA, 1999, pp. 143–151.
[6] D. Gamberger, N. Lavrac, and S. Dzeroski, “Noise 

elimination in inductive concept learning: A case study in 
medical diagnosis”, In Proceedings of the 7th International 
Workshop on Algorithmic Learning Theory, Berlin, Springer, 
1996, pp. 199­212.
[7] G.H. John, “Robust decision trees: Removing outliers 
from data”, In Proc. of 1st Int. Conf. on Knowledge 
Discovery and Data Mining, Menlo Park: AAAI Press 1995, 
pp. 174­179.
[8] Jollife, I.T. Principal Component Analysis, Springer-
Verlag, New York. 1986.
[9] I. Kononenko, “Inductive and Bayesian learning in 
medical diagnosis”, Applied Artificial Intelligence 7(4), 
1993, pp. 317-337.
[10] Liu, H. Feature Extraction, Construction and 
Selection: A Data Mining Perspective, Kluwer, 1998.
[11] J. Mingers, “An empirical comparison of selection 
measures for decision-tree induction”, Machine Learning
3(4), 1989, pp. 319­ 342.
[12] S. H. Muggleton, A. Srinivasan, and M. Bain,
“Compression, significance and accuracy”, In Proc. of the 
9th Int. Conf. on Machine Learning, San Mateo, CA: 
Morgan Kaufmann, 1992, pp. 338 ­ 347. 
[13] F.M. Nouri and N.B. Lincoln, “Predicting driving 
performance after stroke”, British Medical Journal 307, 
1993, pp. 482-483.
[14] M. Pechenizkiy, “Impact of the Feature Extraction on 
the Performance of a Classifier: kNN, Naïve Bayes and 
C4.5”, In Proc. of 18th CSCSI Conference on Artificial 
Intelligence AI’05, LNAI 3501, Springer Verlag, 2005, pp. 
268-279.
[15] J.R.  Quinlan, “The Effect of Noise on Concept 
Learning”, In Michalski, R.S., Carboneel, J.G. and Mitchell, 
T.M. (eds.), Machine Learning, Morgan Kaufmann, 1986.
[16] Quinlan J.R., C4.5: Programs for Machine Learning,
San Mateo, CA: Morgan Kaufmann, 1993.
[17] J. Rissanen, “Modeling by shortest data description”, 
Automatica 14, 1978, pp.465­471.
[18] P. Smyth, “Bounds on the mean classification error rate 
of multiple experts”, Pattern Recognition Letters 17, 1996, 
pp. 1253-1327.
[19] A. Srinivasan, , S. Muggleton, and M. Bain, 
“Distinguishing exceptions from noise in non-monotonic 
Learning”, In Proc 2nd Int. Workshop on Inductive Logic 
Programming, Tokyo, Japan, 1992.
[20] A. Tsymbal, S. Puuronen, M. Pechenizkiy, M. 
Baumgarten, and D. Patterson, “Eigenvector-based feature 
extraction for classification”, In Proc. 15th Int. FLAIRS 
Conf. on Artificial Intelligence, AAAI Press, 2002, pp. 354-
358.
[21] Weisberg, S. Applied Linear Regression (2nd ed.),
New York: Wiley, 1985.
[22] Witten, I. and E. Frank, Data Mining: Practical 
Machine Learning Tools with Java Implementations, Morgan 
Kaufmann, San Francisco, 2000.
[23] X. Zhu, and X. Wu, “Class noise vs. attribute noise: a 
quantitative study of their impacts”, Artificial Intelligence 
Review 22 (3-4), 2004, pp. 177-210.


