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Abstract. Microscopic analysis forms an integral part of many scientific
studies. It is a task which requires great expertise and care. However, it
can often be an extremely repetitive and laborious task. In some cases
many hundreds of slides may need to analysed, a process that will require
each slide to be meticulously examined. Machine vision tools could be
used to help assist in just such repetitive and tedious tasks. However,
many machine vision solutions involve a lengthy data acquisition phase
and in many cases result in systems that are highly specialised and not
easily adaptable. In this paper, we describe a framework that applies
flexible machine vision techniques to microscope analysis and utilises
active learning to help overcome the data acquisition and adaptability
problems. In particular we investigate the potential of various aspects of
our proposed framework on a particular real world microscopic task, the
recognition of parasite eggs.

1 Introduction

The microscope is an irreplaceable tool for analysis in many disciplines of sci-
ence. It is used in a wide variety of vastly differing tasks each of which require
specific expertise. Although this work requires skill and expertise it can often be
repetitive and laborious work. Machine-vision techniques could be used to help
assist in some of these tasks and this has been done for some specific tasks [1]
[2] [3]. However, such solutions can suffer from the same lengthy and difficult
data acquisition and model building phases that hamper machine vision solu-
tions generally. The solutions offered in such cases are often highly specific and
not easily adaptable or updated. To overcome these problems we propose a novel
framework which utilises an adaptable recognition technique along with active
learning to reduce the data acquisition process and leverage expert knowledge
in a direct but efficient manner. The framework should serve as an interactive
assistant to its user and continually update itself based on its performance and
on new information received.

The particular problem we have addressed is the classification of parasite
eggs. We had previously considered histopathology images, however, the large
variation in appearance that many similar conditions could have, made this



Fig. 1. An example of section of a slide

a. Ascuris b. Trichuris c. Ringworm

Fig. 2. Examples of parasite eggs

an unfeasible machine vision task. Parasite eggs, however, have a well defined
structure which makes them amenable to recognition tasks. We collected a large
set of images from a set of samples which had been taken from human subjects. In
Figure 1 a small section of one image of a microscope slide can be seen. Typically
a parasitologist may have to sift through many hundreds of slides searching for
such objects as those seen in Figure 2. This can be an extremely tedious task
but one which none the less must be carried out methodically

We chose this task as a testing ground for many aspects of our proposed
framework as it highlights the many challenges facing the application of machine-
vision and active learning in such domains as well as the potential rewards.
Clearly if a recognition system could be devised it would be very useful.

However, the data acquisition task is a formidable one with many different
parasite eggs to identify and each having many variations in appearance. There is
also a large presence of irrelevant objects in slide images which are of no interest
and must be ignored. This makes the automation of this process through active
learning desirable as it can be used to harness expert opinion in an efficient way
given the large volumes of unlabelled, irrelevant and nosy data. Since mistaken
classifications in such a task would be highly damaging the probabilistic and
adaptive approach taken by active learning means that speculative classifications



could be referred for expert opinion and the system updated. Ideally we would
also like our system to be easily updated with new classes of objects such as new
parasite egg varieties in this example.

In the next section we will outline the structure of our proposed framework
before describing particular aspects we have implemented in greater detail. In
Sections 2.1 and 2.2 we describe the recognition and active learning algorithms
we have used. We then evaluate performance of these key aspects of the frame-
work in Section 3. Finally we end with some conclusions from our work.

2 Framework

The framework we have developed has a number of distinct phases to its opera-
tion. We will now explain each of these in turn:

1. Image Acquisition: Firstly the microscopic images are captured in digital
format.

2. Preprocessing: The microscope images as seen in Figure 3 contain large
empty regions. Ideally before we start processing these images we would like
to eliminate large uninteresting areas and pick the objects of interest. One
simple way in which we can eliminate the background and pick out individ-
ual objects is by using a series of standard morphological image processing
techniques. This process is displayed in Figure 3. The operations are carried
out on the image in Figure 3.a and the results can be seen in Figure 3.b.
The background has been eliminated and collections of pixels proposed to
be related are colour-matched. By eliminating groups of pixels too small to
be of interest we then crop the remaining objects from the image as depicted
in Figure 3. This leaves use with a set of templates to process.

3. Image Recognition and Identification: Clearly a large amount of un-
labelled data will still remain which we would like to build our recognition
system on. We have access to a domain expert whom we can query examples
with. However, we would like to reduce the workload on the domain expert
as much as possible and build an accurate recognition system quickly. To do
this we use active learning which we outline in greater detail in Section 2.2.

a. before processing b. objects identified c. salient objects cropped

Fig. 3. Examples of parasite eggs



We have briefly outlined our framework. We will now go into greater detail
on two key facets; the recognition and active learning algorithms.

2.1 Image Recognition: EigenImages

In choosing an image recognition technique there were a number of requirements
stemming from the role of the recognition system within our framework that
needed to be fulfilled. These requirements can be summarised as follows:

– Generalise: the framework is designed to be adaptable and applicable to
a broad range of problems. Many machine vision solutions make assump-
tions about specific characteristics of the objects to be recognised which are
incorporated into the recognition algorithm. We wished to avoid including
problem specific assumptions as much as possible as these limited the flex-
ibility of our approach and weren’t in fitting with the spirit of active and
continuous learning.

– Powerful and Quick: Any recognition system to be used in a active learn-
ing context needs to be reasonably quick and easily updated based on new
information received.

– Probabilistic: Given a large set of unlabelled data many active learning
algorithms use probabilistic measures of the likely class on an unknown ob-
ject to help inform which objects to consult a domain expert about. This
characteristic can also be used to ensure that doubtful classification are not
made.

– Perform Identification and Recognition: Before recognition we first
need to locate the objects of interest which may be scattered across large
images. As we saw in Section 2 the pre-processing stage involves detecting
salient objects but doesn’t differentiate between parasites and other objects.
If the recognition technique we are using can be used in pick out the objects
of interest in a more direct way this would help remove many irrelevant
objects at an early stage.

We considered a broad range of possible recognition techniques including
adaptive-subspace self-organising maps (ASSOMs) and techniques used in image
retrieval system such as RETIN [4] [5] [6]. However, we found Eigenimage-based
recognition techniques best meet the criteria we had set for our recognition sys-
tem. In the next Section we will very briefly describe the basis of this approach.

Eigenimages The Eigenimages approach originally grew out of research by
Turk and Pentland into automated face recognition and detection in images
[7]. Much of the previous work in face recognition up until that time had been
based on assumptions about what features are important to facial recognition
such as eyes, noses and lips. These assumptions meant that such approaches
were sometimes fragile and difficult to adapt to problems which were only subtly
different. It had also been shown that such features and their relationships didn’t
account for every aspect of the performance of adult human recognition [8].



Turk and Pentland applied an information theory approach to extracting out
what the salient and the information features were. They wished to encode a set
of facial images as efficiently as possible independent of any features. In doing
this they were able to determine a set of features that accurately defined the
variations and differences of the faces in their image set. The process used to
create such an encoding is Principle Component Analysis (PCA) [9]. A covari-
ance matrix of the set of images is calculated treating each image as a vector
in a high dimensional space (defined by the number of pixels). The eigenvec-
tors and corresponding eigenvalues are then calculated from this matrix. These
eigenvectors can then be thought of as a set of features each of which describes a
variation which exits in the image data. In practice only a small set of the eigen-
vectors are informative and eigenvectors with small eigenvalues can be ignored.
Each image can be described as a linear combination of the eigenvectors and
each image is projected into this greatly reduced dimension space. In the case of
facial recognition this space is referred to as the face-space and each eigenvector
as an eigenface. In our case the space is a parasite-space and each eigenvector
as a eigen-parasite. Each known image is projected into parasite-space and is
defined as a linear combination of eigen-parasites. Classification can be achieved
by projecting the unknown image into the parasite-space and finding the known
image that matches its projection most closely. Eigenimage-based recognition
continues to be an active area of research with many extensions involving dif-
ferent learning models to this basic approach being developed. [10]. Bearing in
mind the requirements we set out in Section 2.1 we decided to use a weighted
nearest neighbour algorithm.

2.2 Active Learning

Active learning is a term used to describe a learning method where the classifier
has control over the training data it uses [11]. This is different to the traditional
supervised learning approach where the classifier has no control over its learning
process and is given a fixed set of labelled training data. An active learner
makes use of an external teacher or domain expert who will label a presented
example if the active learner requests them to. Given a large set of unlabelled
examples the active learner tries to select and present to the expert the most
informative examples which will maximise its learning and performance. Active
Learning is particularly useful in domains were there is an abundant amount of
raw unlabelled data available but much of data is irrelevant, uninformative and
the costs of labelling that data are high. In the next Section we will outline the
particular active learning algorithm we used in our framework, uncertainty-based
selection.

Uncertainty-based Approach Uncertainty-based sampling is a active learn-
ing method for query selection which utilises a single classifier to make an in-
formed selection from a set of unlabelled examples [12]. The method uses the
uncertainty that the classifier has about the unlabelled examples in the pool in



order to choose queries. The idea of uncertainty stems from the confidence the
classifier has in predicting a label for a given unlabelled example. For this reason
a probabilistic classifier is needed. The example that the classifier is least un-
certain about is deemed to be the one it would gain greatest benefit from being
labelled and so is selected. The algorithm is quite simple and is outlined in the
figure below.

Given:
U : a large set of unlabelled data
S: a small set of initially labelled data
L: a probabilistic leaner
E: a domain expert
SE: selected example

Algorithm:
1- build the learner, L, on S

2- use L to compute the probability of each example in U

3- select the example with the lowest probability as SE

4- label SE using E and add to S

4- remove SE from U

6- repeat until stopping condition is met

The issue of what stopping condition to use is an open question in the ac-
tive learning community and most solutions are ad hoc and domain dependent.
Another issue is the selection of examples to seed the algorithm. In the case of
evaluations we carry out in the section we seed the active learner with three
examples chosen at random from the data set.

3 Evaluations

In order to evaluate our framework in this stage of its development we chose to
evaluate two keys facets, the image recognition accuracy and the effectiveness of
active learning in image data. We created a dataset of images of three different
parasite eggs; trichuris, ascuris and ringworm. The dataset contained 59 images
in total, distributed between each of the classes as shown in Table 1. The images
were cropped similarly to those shown in Figure 2 however many were out of
focus, badly aligned or occluded. In the next two sections we will outline the
experimental method and results of our evaluations using this data

3.1 Recognition

In order to evaluate the recognition potential of our recognition system we per-
formed 10 fold cross-validation. Initially, using the raw images, the results ap-



Table 1. Summary of distribution of classes in the parasite data

Parasite Type No. of Examples
trichuris 15
ascuris 22
ringworm 22

peared to be extremely poor at just 62%. This was a long way short of levels of
accuracy we have achieved on facial recognition tasks. Typically on such tasks
we achieved accuracies greater than 95% (as can be seen in Section 3.2). How-
ever, we had overlooked two important characteristics that differ between the
parasite data and face data.

Firstly, face data is typically well aligned. While lighting conditions and sub-
ject angles may differ the images usually do not deviate from a typical mug-shot
set-up. Images of people faces upside down or at a horizontal angle are not
encountered. This is not the case in the parasite data. The parasites are not
restricted in this same way and can be seen at many different orientations. This
makes the recognition task far harder as the same parasite egg will look quite
different to a recognition system if it is encountered at completely different ori-
entations. To combat this problem we simply rotated each image in the training
set to different angles and included these variations in the training set too. This
led to a drastic improvement in accuracy. As be seen in Table 2 we were able to
boost the accuracy up 15% to 77.84%.

Table 2. Summary of Accuracy results for different pre-processing techniques

Data Percentage Accuracy
unaltered 62.29
masked 73.75
rotated 77.84

masked and rotated 81.96

The second problem was slightly more subtle. As Turk and Pentland observe
“the background can significantly effect the recognition performance, since the
eigenface analysis ..does not distinguish the face from the rest of the image”. In
order to combat this we masked our images by applying a simple morphological
image preprocessing technique to help eliminate background detail. This also
greatly improved the accuracy achieved increasing it to 73.75%. Using these two
processing techniques together ultimately led to approximately a 20% increase
in accuracy to 81.96%.

Although 81.96% represents a reasonable performance it is still short of that
which would be needed for a real world working system. However, as we stated
before, we included many out of focus and occluded examples which were bound



to impact on accuracy performance. The problems posed by the inclusion of such
examples can be overcome and our accuracy figure represents a good baseline
that can easily be improved upon. As we shall see in the next section one such
way is the intelligent selection of training data.

3.2 Active Learning

We implemented the uncertainty-based selection algorithm as outlined in Section
2.2. In order to evaluate this scheme we needed to create a training set of data
to select images from and also a separate test set to evaluate the effect that each
image selection has on accuracy. We divided our data into 5 sections and carried
out an evaluation process similar to that of cross-validation. In each iteration 4
sections were used as the training set and the fifth as a test set. This is repeated
5 times until each section of data has served as a test set. As a baseline with
which to compare uncertainty-based selection we performed the same evaluation
with a selection strategy in which images are selected at random. The results for
the two selection schemes over the 5 evaluations were then averaged and can be
seen in Figure 4.
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Fig. 4. Uncertainty-based v’s. random selection for parasite data

The graph displays the accuracy after each case is labelled as a percentage
of the accuracy that could be achieved using all the data. Uncertainty-based se-
lection clearly outperforms random selection. In fact uncertainty-based selection
manages to achieve the same level of accuracy as that achieved on a full image set
with less then 10 images needing to be labelled. Interestingly, uncertainty-based
and random selection both achieved levels of accuracy higher than the base-
line with uncertainty-based selection achieving accuracy rates that are 120%
improvements on using the entire image set. This reflects the fact that the data
contains images that are poor and highlights the strengths of active learning in
eliminating such images.
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Fig. 5. Uncertainty-based v’s. random selection for AT&T data

We also wished to evaluate whether such a performance was typical on image
data or characteristic of the small image-set we had. We tested uncertainty-
based selection on a face recognition task. In particular we used the AT&T
face image set which has been kindly made available by AT&T Laboratories
Cambridge. This image set contains 400 images of 40 individuals. Our 10 fold
cross-validation accuracy for this image set is 97.25%. We performed the same
evaluation as before and the results can be seen in Figure 5. Again uncertainty-
based selection out performs random selection and baseline accuracy is achieved
with less than 150 images being labelled which is just 40% of the image-set. Here
too uncertainty based selection leads to improvements over the base accuracy
set by using all the image data. However, the improvements are very modest
reflecting the quality of the image data and the small margin for improvement.

3.3 Conclusions from evaluations

It is clear from our evaluations that uncertainty-based sampling can achieve
good and sometimes improved levels of accuracy with far fewer cases needing
to be labelled. This justifies the use of active learner within our framework. An
accurate classifier can be built with a greatly reduced work load being placed
upon the domain expert. However in a real world application the question of
when to stop the active learning process will have to be addressed. This is an
outstanding question in the active learning community however it is possible
that a domain specific solution could be devised.

We have also demonstrated that our chosen recognition system is accurate
and works well within an active learner framework. The recognition system is
also adaptable, we have used the same recognition system for face data and par-
asite images. Although, small adjustments needed to be made to the recognition
system to apply it to the parasite data these adjustments were not specific to
just the parasite data but apply to all such objects viewed through a microscope.



Eigenimage recognition methods have been used to detect objects such as
faces and hands in images. This is still something we have to evaluate on micro-
scope image data. The addition of this functionality would greatly improve our
segmentation process and the quality of our images.

4 Conclusion

The application of machine vision techniques to microscopic image data is a
potentially rewarding but difficult task. We have proposed a framework for im-
age recognition that utilises active learning to help overcome these difficulties.
Key aspects of our design have been implemented and evaluated in the chal-
lenging parasite recognition domain. Clearly there is still much work needed and
many problems to be addressed if a working application is be realised. We have,
however, demonstrated in principle that our framework has potential and in par-
ticular that active learning can help alleviate the image acquisition problem in
machine vision.

References

1. Carrión, P., Cernadas, E., Gálvez, J.F., Damián, M., de Sá-Otero, P.: Classification
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