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Abstract.  In Wrapper based feature selection, the more states that are 
visited during the search phase of the algorithm the greater the 
likelihood of finding a feature subset that has a high internal accuracy 
while generalizing poorly. When this occurs, we say that the algorithm 
has overfitted to the training data. We outline a set of experiments to 
show this and we introduce a modified genetic algorithm to address this 
overfitting problem by stopping the search before overfitting occurs. 
This new algorithm called GAWES (Genetic Algorithm With Early 
Stopping) reduces the level of overfitting and yields feature subsets that 
have a better generalization accuracy. 

1 Introduction 

The benefits of wrapper-based techniques for feature selection are well established [1, 
15]. However, it has recently been recognized that wrapper-based techniques have the 
potential to overfit the training data [2]. That is, feature subsets that perform well on 
the training data may not perform as well on data not used in the training process. 
Furthermore, the extent of the overfitting is related to the depth of the search. 
Reunanen [2] shows that, whereas Sequential Forward Floating Selection (SFFS) 
beats Sequential Forward Selection on the data used in the training process, the 
reverse is true on hold-out data. He argues that this is because SFFS is a more 
intensive search process i.e. it explores more states.  

In this paper we present further evidence of this and explore the use of the number 
of states explored in the search as an indicator of the depth of the search and thus as a 
predictor of overfitting. Clearly this metric does not tell the whole story since for 
example a lengthy random search will not overfit at all.  

We also explore a solution to this overfitting problem. Techniques from Machine 
Learning research for tackling overfitting include: 
− Post-Pruning: Overfitting can be eliminated by pruning as is done in the 

construction of Decision Trees [6]. 
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− Jitter: Adding noise to the training data can make it more difficult for the learning 
algorithm to fit the training data and thus overfitting is avoided [12]. 

− Early Stopping: Overfitting is avoided in the training of supervised Neural 
Networks by stopping the training when performance on a validation set starts to 
deteriorate [7, 14]. 

Of these three options, the one that we explore here is Early Stopping. We present a 
stochastic search process that has a cross-validation stage to determine when 
overfitting occurs. Then the final search uses all the data to guide the search and stops 
at this point determined by the cross-validation.  We show that this method works 
well in reducing the overfitting associated with feature selection – this will be shown 
later in Section 4. In Section 2 of the paper we briefly discuss different approaches to 
Feature Selection, focusing on various wrapper based search strategies. Section 3 
provides more detail on the GAWES algorithm and early stopping in stochastic 
search. Section 4 outlines the results of the experimental study. Future avenues for 
research are discussed in Section 5 and the paper concludes in Section 6. 

2  Wrapper-Based Feature Subset Selection 

Feature selection is defined as the selection of a subset of features to describe a 
phenomenon from a larger set that may contain irrelevant or redundant features. 
Improving classifier performance and accuracy are usually the motivating factors 
behind this, as the accuracy is degraded by the presence of these irrelevant features. 
The curse of dimensionality is the term given to the phenomenon when there are too 
many features in the model and not enough instances to completely describe the target 
concept. Feature selection attempts to identify and eliminate unnecessary features, 
thereby reducing the dimensionality of the data, and hopefully resulting in an increase 
in accuracy. 

The two common approaches to feature selection are the use of filters and the 
wrapper method. Filtering techniques attempt to identify features that are related to or 
predictive of the outcome of interest: they operate independently of the learning 
algorithm. An example is Information Gain, which was originally introduced to 
Machine Learning research by Quinlan as a criterion for building concise decision 
trees [6] but it is now widely used for feature selection in general. The wrapper 
approach differs in that it evaluates subsets based upon the accuracy estimates 
provided by a classifier built with that feature subset. Thus wrappers are much more 
computationally expensive that filters but can produce better results because they take 
the bias of the classifier into account and evaluate features in context. A detailed 
presentation of the wrapper approach can be found in [1]. 

2.1 Search Algorithms 

The wrapper method can be viewed as a search optimization process and therefore 
can incur a high computational cost. From n features, the number of possible feature 
subsets is 2n, so it is impractical to search the whole state space except in situations 



 

with a small number of features. The search strategies available can be classed into 
three categories; randomized, sequential and exhaustive, depending on the order in 
which they evaluate the subsets. In this research we only experiment with randomized 
and sequential techniques as an exhaustive search is infeasible in most domains. The 
algorithms we use are forward selection, backward elimination, hill climbing and a 
genetic algorithm as these tend to be quite popular and are easily implemented 
strategies. 

2.2 The Problem of Overfitting 

A classifier is said to overfit to a dataset if it models the training data too closely and 
gives poor predictions on new data. This occurs when there is insufficient data to train 
the classifier and the data does not fully cover the concept being learned. Such models 
are said to have a high variance, meaning that small changes in this data will have a 
significant influence on the resulting model [8]. This is a problem for many real world 
situations where the data available may be quite noisy. Overfitting in feature selection 
appears to be exacerbated by the intensity of the search since the more feature subsets 
that are visited the more likely the search is to find a subset that overfits [2-4]. In [1, 
4] this problem is described, although little is said on how it can be addressed. 
However, we believe that limiting the extent of search will help combat overfitting. 
Kohavi et al [10] describe the feature weighting algorithm DIET, in which the set of 
possible feature weights can be restricted. Their experiments show that when DIET is 
restricted to two non-zero weights the resultant models perform better than when the 
algorithm allows for a larger set of feature weights, in situations when the training 
data is limited. This restriction on the possible set of values in turn restricts the extent 
to which the algorithm can search. However, in feature selection we only have two 
possible weights, a feature can only have a value of ‘1’ or ‘0’ i.e. be turned ‘on’ or 
‘off’, so we cannot restrict this aspect any further. Perhaps counter-intuitively, 
restricting the number of nodes visited by the feature selection algorithm should help 
further. 

Figure 1 shows accuracies obtained during a feature selection search using a 
genetic algorithm for the hand dataset (see Table 1). We could expect the search to 
suffer from overfitting at any point after generation 17 in the search. In this example, 
we see a typical demonstration of overfitting where we see a peak in the 
generalization performance early on with a gradual deterioration in performance after 
that.  
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Fig. 1 A comparison of the Internal and Test Set accuracy on the ‘hand’ dataset. A trend line is 
shown for the Test Set accuracy (dashed line). 

Our experiments begin with an initial investigation into the correlation between the 
depth of search and the associated level of overfitting. We compare the algorithms 
mentioned in Section 2.1 using a 10-fold Cross Validation Accuracy on a 3-Nearest 
Neighbor classifier. 

The graphs in Figure 2 supports the hypothesis that the more nodes that are 
evaluated in the subspace search the more likely it is to find a subset that overfits and 
performs poorly on the test set. Hill Climbing is the least intensive search in each 
example and as a result has the poorest internal and test set accuracy in most cases. 
This shows this algorithm’s tendency to under-fit the training data, probably getting 
stuck in a local maximum. The FS and BE searches perform quite similarly over all 
datasets, and it is interesting to note that they examine a similar number of nodes in 
most cases. The research into the comparative performances of these strategies have 
been inconclusive [15,16]. Our results are not much different. BE tends to be a little 
more intensive but on the datasets we show here, this does not result in it overfitting 
to a greater extent. One could expect that any difference in these strategies is 
dependent on the dataset used. In five of the seven datasets the GA explores the most 
states and is outperformed by both FS and BE in all of these cases. While one may 
have expected this more intensive strategy to yield higher generalization accuracies, 
the graphs show that this is clearly not the case. Moreover, on the two datasets that 
the GA evaluates fewer nodes, it performance is more competitive with the FS and 
BE algorithms. 

 
 
 
 
 
 



 

Table 1. Datasets used: 

Name Instances Features Source 
Hand 63 13 (+ 1 Class) http://www.cs.tcd.ie/research_groups/mlg 
Breast 273 9   (+ 1 Class) UCI Repository 
Sonar 208 60 (+ 1 Class) UCI Repository 
Ionosphere 351 35 (+ 1 Class) UCI Repository 
Diabetes 768 8   (+ 1 Class) UCI Repository 
Zoo 101 16 (+ 1 Class) UCI Repository 
Glass 214 9   (+ 1 Class) UCI Repository 
 

 
Fig. 2 The graphs above show the results for the preliminary experiments. FS - Forward 
Selection; BE – Backward Elimination; HC – Hill Climbing; GA – Genetic Algorithm. The 
left-hand side ‘y’ axis represents the classification accuracy. The right-hand side ‘y’ axis 
represents the number of states visited in the subspace search.  

3 Early Stopping in Stochastic Search 

The idea of implementing early stopping in our search is an appealing one. The 
method is widely understood, and easy to implement. In neural networks the training 
process is stopped once the generalization accuracy starts to drop. This generalization 
performance is obtained by withholding a sample of the data (the validation set). A 
major drawback of withholding data from the training process for use in early 
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stopping is that overfitting arises in situations where the data available provides 
inadequate coverage of the phenomenon. In such situations, we can ill afford to 
withhold data from the training process.  

The strategy we adopt here (see Figure 4) is to start with a cross validation process 
to determine when overfitting occurs [9]. Then all the training data is used to guide 
the search, with the search stopping at the point determined in the cross-validation. In 
order to determine if this actually does address overfitting, our evaluation involves 
wrapping this process in an outer cross validation that gives a good assessment of the 
overall generalization accuracy. The overall evaluation process is shown in Figure 3. 
 

Step 0.  Divide complete data set F into 10 folds, F1 … F10 
Define FTi   F \ Fi  {training set corresponding to holdout set Fi } 

Step 1.  For each fold i 
Step 1.1. Using GAWES on FTi find feature mask Mi  {see Fig 4.} 
Step 1.2. Calculate accuracy ATi of mask Mi on training data FTi using cross-validation. 
Step 1.3. Calculate accuracy AGi of mask Mi on holdout data Fi using FTi as training 

Step 2.  AT  Average(ATi) {Accuracy on training data} 
 AG  Average(AGi) {Accuracy on unseen data} 

 

Fig. 3 Outer cross-validation, determining the accuracy on training data AT and the 
generalization accuracy AG. 

Step 0. Divide the data set FTi into 10 folds, E1 … E10 
Define ETj   E \ Ej  {training set corresponding to validation set Ej } 

Step 1.  For each fold j 
Step 1.1. Using GA and ETj find best feature mask Mj[g] for each generation g 
Step 1.2. AETj[g]  accuracy of mask Mj[g] on training data ETj {i.e. fitness} 
Step 1.3. AEGj[g]  accuracy of mask Mj[g] on validation data Ej using ETj as training 

set 
Step 2.  AET[g]  Average(AETj[g]) {Accuracy on training data at each gen.} 

AEG[g]  Average(AEGj[g]) {Accuracy on validation data at each gen.} 
Step 3.  sg  generation with highest AEG[g] {the stopping point} 
Step 4.  Using GA and FTi find best feature mask Mi[sg] for generation sg 
Step 5.  Return Mi[sg]  

 
 

Fig. 4 Inner cross validation, determining the generation for early stopping. 
 

From this evaluation we can estimate when overfitting will occur once the 
generalization performance starts to fall off. Once we have this estimate we can then 
rerun the algorithm with new parameters that will stop the search before overfitting 
starts. 

Deciding when to stop is not such a straightforward task. In [14] a number of 
different criteria for early stopping are discussed and it is suggested that allowing the 
condition to be biased towards the latter stages of the search will yield small 
improvements in generalization accuracy. This said however, if we delay too much 
we run the risk of overfitting once again. 



 

3.1 The GAWES Approach Using a Genetic Algorithm 

The GAWES algorithm was developed using the FIONN workbench [13]. The 
algorithm is based upon the standard GA and the fitness of each individual is 
calculated from a 10-fold Cross Validation measure. Once the fitness has been 
calculated, the evolutionary strategy is based upon the Roulette Wheel technique, 
where the probability of an individual being selected for the new generation is related 
to its fitness. We use a two point crossover operation and the probability of a mutation 
occurring is 0.05 [5, 11]. 

After a series of preliminary experiments we decided to fix the population size for 
the GA to 20, with the number of generations set to 100. We arrived at this after 
taking into consideration the length of time it took to execute the algorithm, the 
performance of the end mask along with the rate at which the population converged. 
The purpose of the experiments was to determine the gen_limit for each dataset – the 
generation after which the genetic algorithm should be stopped. 

 

 
 
 
Fig. 5 The graphs above show the results of running GAWES on 9 datasets. The x axis 
represents the generation count, while the y axis is the accuracy.  
 

The results obtained are shown in Figure 5. The graphs represent 90% of the total 
data available, where 81% was used in the internal accuracy measure and 9% was 
used for the test set accuracy. The remaining 10% of data was withheld for the 
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evaluation of the GAWES algorithm. All graphs are averaged over 100 runs of the 
genetic algorithm, where each run is performed on a different sample of the data. 
From these run we were able to generate a trend line of the test set accuracy, based 
upon of measure of a nine-point moving average. Using a smoothed average we have 
a more reliable indication of the best point for early stopping. The stopping point was 
chosen as the point at which this test set trend line is at the maximum value. 

The graphs in Fig 5 show classical overfitting to different extents in five of the 
seven datasets; that is, there is an increase in test set accuracy followed by a gradual 
deterioration. In the breast dataset we see that the hold-out test set accuracy starts to 
deteriorate from the first generation and never seems to recover. From this behavior 
we assume that feature selection in these datasets will not lead to an increase in 
accuracy. The test set accuracy of ionosphere degrades in a similar manner but starts 
to improve in fitness after the 8th generation and peaks at around the 22nd before 
overfitting.  

4 Evaluation 

Having obtained an estimated gen_limit from Figure 5 we can re-run our GA to 
evaluate the GAWES performance. As with other early stopping techniques, GAWES 
is only successful if the generalization of the end point is higher than the result that 
would otherwise be obtained. Another characteristic of these techniques is that the 
internal accuracy will be lower because the potential to overfit has been constrained. 
Figure 6 and Table 2 show the results. 

The results are much as we expected. The number of states evaluated by the 
classifier is greatly reduced as indicated by the line in the graphs. It is also shown that 
our algorithm does not suffer from overfitting as much as the standard GA and in six 
of the seven datasets our GAWES algorithm beats the longer, more intensive search. 
We believe that in the case where GAWES failed (zoo), this failure was due to a small 
number of cases per class in the dataset. Dividing smaller datasets further, as is 
required in our algorithm leads to a high variance between successive training and test 
sets which makes is more difficult to get an accurate estimate of when overfitting 
occurs.  

These results are consistent with our suggestion that the harder you try in wrapper-
based feature subset selection, the worse it gets when the number of training cases is 
limited. By reducing the length of time that the GA is allowed to run, we limit the 
number of subsets it can evaluate, thus reducing the depth of the search. Our results 
provide clear evidence that early stopping can help to reduce the amount of 
overfitting. The improvements in some of the results could probably be increased 
further if work were done on other aspects of the GA. 



 

 
Fig. 6 The graphs above show the results for the GAWES algorithm. The line and the right side 
y axis represent the number of states visited during each search.  

Table 2. Summary of results for the GAWES algorithm. 

 
  GA GAWES 

 Internal Test Set Internal Test Set 
Hand 98.04 84.03 96.47 88.57 
Breast 78.42 70.39 78.26 73.64 
Sonar 90.70 83.7 90.12 84.12 

ionosphere 93.634 89.74 92.81 90.32 
diabetes 75.14 70.84 74.87 73.69 

Zoo 96.37 93 94.38 91.18 
Glass 77.51 71.42 77.36 72.87 
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5 Future Work 

At this stage we feel we have established the principle that early stopping can be 
effective in addressing overfitting in feature subset selection. The next stage of this 
research is to perform experiments on many more datasets to get a clear picture of the 
performance of the early stopping algorithm. Our experiments so far have been done 
with a one-size-fits-all GA and it seems clear that the parameters of the GA need to be 
tuned to the characteristics of the data. Some of the results shown here might have 
been improved if we had chosen other parameters for the GA, as our better results 
were on datasets that had fewer features. This was probably due to our choice of 
population size. The population size remained constant across the experiments so that 
the effect of early stopping could be examined under equal conditions. It would be 
interesting to look into this further, whether it means working with the GA more or 
indeed moving to another stochastic technique such as Simulated Annealing (SA). 
Simulated annealing has been inspired by statistical mechanics and is similar to the 
standard Hill Climbing search, but differs in that it is able to accept decreases in the 
fitness. The search is modeled on the cooling of metals and so the probability of 
accepting a decrease in fitness is based upon the current temperature of the system 
(an artificial variable). The temperature of the system is high at the beginning but 
slowly cools as the search progresses, therefore significant decreases in fitness are 
more likely to be accepted early in the search process when the temperature of the 
system is high, but are less likely as the search progresses and the temperature 
gradually cools [17]. This gives the search the ability to escape from local maxima 
that it would otherwise get trapped in early in the search. We feel implementing Early 
Stopping in the SA has promise as there are many ways in which one can restrict the 
length of the search e.g. by increasing the cooling rate. 

6  Conclusions 

Reunanen [2] shows that overfitting is a problem in wrapper based feature selection. 
Our preliminary experiments support this finding. We have proposed a mechanism for 
early stopping in stochastic search as a solution. Early stopping is a widely known and 
well understood method of avoiding overfitting in neural network training, and we are 
unaware of any other research that applies it to the feature selection.  

Genetic algorithms are often used in feature selection, although one major 
difficulty associated with them is parameter selection. The population size, generation 
limit, evolutionary technique, crossover and mutation values all have to be set, as 
these values are all dependent on the dataset being explored. It has been shown that 
the more the feature subspace is search the greater the chance there is of overfitting. 
By reducing the length of time that the GA is allowed to run, we limit the number of 
subsets it can evaluate, thus reducing the depth of the search. However, more work is 
needed to make the algorithm more competitive with existing feature-selection 
techniques. It is important to mention that overfitting does not always occur and 
finding datasets that demonstrated the effects of early stopping was difficult. We have 
an issue with the datasets available to us in that sometimes feature selection is not 



 

always necessary and as a result determining when to stop based upon a marginal 
increase in test set accuracy is not always reliable. Increasing the number of datasets 
is a major issue for future research. Moreover, the computational requirements of 
GAWES resulted in many searches taking days to execute which limited somewhat 
the number of results we could show.  
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