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Abstract

It is acknowledged that overfitting can oc-
cur in feature selection using the wrapper
method when there is a limited amount of
training data available. It has also been
shown that the severity of overfitting is re-
lated to the intensity of the search algo-
rithm used during this process. In this pa-
per we show that two stochastic search tech-
niques (Simulated Annealing and Genetic Al-
gorithms) that can be used for wrapper-based
feature selection are susceptible to overfit-
ting in this way. However, because of their
stochastic nature, these algorithms can be
stopped early to prevent overfitting. We
present a framework that implements early-
stopping for both of these stochastic search
techniques and we show that this is success-
ful in reducing the effects of overfitting and
in increasing generalisation accuracy in most
cases.

1. Introduction

The benefits of wrapper-based techniques for feature
selection are well established (Kohavi & Sommerfield,
1995). However, it has recently been recognised that
wrapper-based techniques have the potential to overfit
the training data (Reunanen, 2003). That is, feature
subsets that perform well on the training data may
not perform as well on data not used in the train-
ing process. Furthermore, the extent of the overfit-
ting is related to the depth of the search. Reunanen
(2003) shows that, whereas Sequential Forward Float-
ing Selection (SFFS) beats Sequential Forward Selec-
tion (SFS) on the data used in the training process,

the reverse is true on hold-out data. He argues that
this is because SFFS is a more intensive search process
i.e. it explores more states.

In this paper we show that this tendency to overfit
can be quite acute in stochastic search algorithms such
as Genetic Algorithms (GA) and Simulated Annealing
(SA) as these algorithms are able to intensively explore
the search space. We show that early-stopping is an
effective strategy for preventing overfitting in feature
selection using SA or GA. It is worth noting that the
applicability of early-stopping depends on the stochas-
tic nature of the search. This idea would not be readily
applicable in more directed search strategies such as
the SFFS and SFS strategies evaluated by Reunanen
(2003) or the standard Backward Elimination strategy
that is popular in wrapper-based feature selection.

In (Loughrey & Cunningham, 2004) we approach this
problem using a modified genetic algorithm (GA) that
stops the search early in order to avoid overfitting,
and we find that the results we get are favourable.
In this paper we show that SA is amenable to a neat
form of early-stopping. Optimisation using SA is anal-
ogous to the cooling of metals and we show how the
SA can be quenched so that the search freezes before
overfitting can occur. In section 3.2 we show how SA
can be speeded up to avoid overfitting and in section
3.3 we show how to calibrate this process using cross-
validation.

The paper is organised as follows. We begin in section
2 with a discussion of the wrapper-based approach to
feature selection and an illustration of the potential
overfitting problem. The early-stopping solution to
overfitting is described in section 3. The approach is
evaluated on SA and GA in section 4 and the paper
concludes with some suggestions for future work in sec-
tion 5.



2. Feature Selection

Feature selection is defined as the selection of a sub-
set of features to describe a phenomenon from a larger
set that may contain irrelevant or redundant features.
Feature selection attempts to identify and eliminate
unnecessary features, thereby reducing the dimension-
ality of the data and reducing the model variance
(van der Putten & van Someren, 2004). Improving
classifier performance and accuracy are usually the
motivating factors. The accuracy of Nearest Neigh-
bour classifiers (k-NN) is particularly degraded by the
presence of these irrelevant features. The evaluations
presented in this paper are on k-NN classifiers.

The two alternative approaches to feature selection are
the use of filters and the wrapper-based method. Fil-
tering techniques attempt to identify features that are
related to or predictive of the outcome of interest and
they operate independently of the learning algorithm.
An example is Information Gain, which was originally
introduced to Machine Learning research by Quinlan
as a criterion for building concise decision trees (Quin-
lan, 1993) but it is now widely used for feature selec-
tion in general.

The wrapper approach differs in that it evaluates sub-
sets based upon the accuracy estimates provided by a
classifier built with that feature subset. Thus wrappers
are much more computationally expensive than filters
but can produce better results because they take the
bias of the classifier into account and evaluate features
in context. The wrapper search then uses some heuris-
tic such as Backward Elimination or Forward Selection
to traverse the feature subset space in search of an op-
timal subset. The big issue with the wrapper approach
is the computational cost since the search is directed
by an assessment of the accuracy attributable to the
feature mask (feature subset). This assessment needs
to be as accurate as possible so it is common to use
cross-validation as is described in section 3.3.

2.1. Overfitting in Wrapper-Based Feature
Selection

In the original publications on wrapper-based feature
selection Kohavi and John (1997) mentioned the prob-
lem of overfitting but illustrated that it was not a prob-
lem on the datasets they examined. As with all ma-
chine learning algorithms this is true if the data avail-
able adequately covers the phenomenon. The prob-
lem is that sample size is often limited in many real
world applications, especially in medical and financial
applications, in these situations overfitting in wrapper-
based feature selection is a real problem.

Overfitting in feature selection appears to be exacer-
bated by the intensity of the search since the more
feature subsets that are examined the more likely the
search is to find a subset that overfits. In (Kohavi &
Sommerfield, 1995) (Reunanen, 2003) this problem is
described, although little is said on how it can be ad-
dressed. However, we believe that limiting the extent
of search will help combat overfitting. Kohavi et al.
(1997) describe the feature weighting algorithm DIET,
in which the set of possible feature weights can be re-
stricted. Their experiments show that when DIET is
restricted to two non-zero weights the resultant mod-
els perform better than when the algorithm allows for
a larger set of feature weights, in situations when the
training data is limited. This restriction on the possi-
ble set of values in turn restricts the extent to which
the algorithm can search, and therefore constrains the
representational power of the model.

There are many examples documented where con-
straining the representational power of an algorithm
can lead to an increase in performance; the addition
of noise to the case base during training restricts the
models representational power on the underlying data
(Koistinen & Holmström, 1991), while limiting the
number of hidden units in a neural network will have
a similar effect. However, in feature selection we only
have two possible weights, a feature can only have a
value of ‘1’ or ‘0’ i.e. be turned ‘on’ or ‘off’, so we
cannot restrict this aspect any further. In a stochas-
tic search we can constrain the intensity of the search
through early-stopping.

In Figure 1 we illustrate the idea that the more states
visited in the search the more likely the search is to
overfit to the training data. The right hand axis shows
the number of nodes visited during the search, while
the left hand axis shows the accuracies obtained. The
best generalisation accuracy is achieved by the Back-
ward Elimination (be) search while the GA search
overfits more and more as the number of generations
increases from 100 to 200 to 400. Forward Selec-
tion (fs) is also economic in the number of nodes it
searches but still manages to overfit the data. The
relatively poor performance of Forward Selection com-
pared to Backward Elimination has been documented
previously (Aha & Bankert, 1994).

2.2. Overfitting and the Bias-Variance
Decomposition of Error

The bias-variance decomposition (Kohavi & Wolpert,
1996) makes available the components of the error
measure and this enables us to see if the errors we are
getting are due to model variance or due to model bias.
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Figure 1. The Figure shows the effect of the depth/inten-
sity of the wrapper search on the ’spectf’ data set, where
the generalization accuracy is reduced as more nodes are
evaluated.

Errors due to overfitting should show up as model
variance error. Thus measures to combat overfitting
should reduce the variance component of error if effec-
tive. A high bias suggests that the learning method is
not correct for the domain, and represents the short-
comings of the learning method in modelling the data
and is generally not related to a lack of data or over-
fitting.

Successful feature selection should result in a reduction
in model variance, but we expect that this measure
will increase once again when we overfit during the
wrapper search.

3. Early-Stopping in Stochastic Search

The motivation behind early-stopping is fairly
straightforward - stop the search at the point that
overfitting starts to happen. This is achieved by us-
ing a cross-validation analysis on the training data to
determine when early-stopping starts to occur. Then
a model is built with all the training data and the
search is stopped at the appropriate point. While the
idea is straightforward, it is awkward to evaluate the
effectiveness of the process. This requires two nested
levels of cross-validation (see section 3), an outer level
to assess generalisation accuracy and an inner level to
determine the early-stopping point.

As was emphasised in the Introduction, this early-
stopping strategy is only meaningful for wrapper-
based feature selection where the search strategy is
stochastic. It would not be sensible to stop a For-
ward Selection or Backward Elimination strategy as
it would simply exclude some features from considera-

tion. However it does make sense to stop a GA or SA
earlier on in the search process.

3.1. Genetic Algorithms

Genetic Algorithms have been inspired by the biolog-
ical process of evolution and attempt to capture the
concept of the ‘survival of the fittest’. In the GA search
we maintain a fixed population of possible solutions
and these individuals evolve as the search progresses
in an attempt to find an optimal solution. Evolution-
ary strategies such as crossover and mutation are used
to maintain quality and diversity of the population.

A GA is an attractive search policy for wrapper-
based feature selection as crossover and mutation are
straightforward. Each solution in the population is
represented as a feature mask and crossover is achieved
by splicing two masks. Mutation simply involves flip-
ping bits on or off in the masks.

The results reported here use a basic GA algorithm
that uses Roulette Wheel selection based on the cross-
validation accuracy of the feature masks. In fact the
log of the accuracy is used to slow down the conver-
gence. We used a two-point crossover and a mutation
rate of 0.05. The population size for each of the data
sets was fixed to 40, and it was allowed to search for
120 generations.

After the inner cross-validation layer of the framework
we estimate at which generation overfitting was likely
to begin.
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Figure 2. Analysis of the GA and GA-ES search progres-
sion



The GA-ES is modified in that we stop the search at
an earlier generation, the generation at which overfit-
ting occurred, as shown in Figure 2. We have already
shown that this is a reasonably effective strategy for
combatting overfitting in GAs (Loughrey & Cunning-
ham, 2004).

3.2. Simulated Annealing

Kirkpatrick et al. (1983) have shown that the models
that describe the annealing of metals can be used to
guide stochastic search. Simulated Annealing is sim-
ilar to hill climbing search in that there is only one
solution at a time under consideration. This solution
is perturbed and the new solution is kept if it repre-
sents an improvement. The special feature of SA is
that the new solution may still be kept even if it is
poorer than the existing one. The probability of this
is:

P (Accept) ∝ e
∆L
T (1)

In feature selection, ∆L would refer to the difference
in accuracy between the old and new feature masks
and T would be an artificial variable describing the
‘temperature’ of the system. The effect of this policy
is that large deteriorations in accuracy are less likely
to be accepted and any deterioration is less likely to
be accepted as the temperature drops.

The core of an SA algorithm for feature subset se-
lection is described in Figure 3. Initially, the system
starts off at a high temperature and the search is al-
lowed to proceed in a fairly random manner. The
system cools in stages with the search staying at a
given temperature until a number of perturbations
have been explored or a number of successes have been
achieved. Thus the rate of progress of the SA is deter-
mined by the cooling rate (0.9 in this example) and
the factor K that determines how long is spent at
each temperature level. For instance if K is halved
the cooling will proceed twice as quickly. In terms of
the original inspiration for SA, this might be described
as quenching the system. So our early-stopping policy
for SA still allows the system to freeze, it just spends
less time at each temperature level.

Figure 4 describes the idea behind SA-ES. In the nor-
mal run, we identify the number of nodes that we eval-
uate in the iterations before overfitting starts to occur,
then in the modified algorithm we stretch these at-
tempts out so that they cover the entire cooling phase
of the modified search. This is achieved by reducing
K by the appropriate proportion. In the example in
Figure 4: K ← K × 20/65.

T = T ∗ 0.9 /∗ Reduce the temperature ∗/
NTries = 0; NSucc = 0
while(NTries < TryLim ∗ 10 ∗ K) and (NSucc < SuccLim ∗ K)

MDash = PerturbMask(M)
if AcceptNewMask?(MDash,M)

NSucc = Nsucc + 1
M = MDash

endif
NTries = NTries + 1

endwhile

Figure 3. The core of the SA algorithm
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Figure 4. Analysis of the SA and SA-ES search progression

3.3. Stochastic Search with Early-Stopping -
(SS-ES)

So the basic principle for both SA and GA’s is to mod-
ify the search algorithm so that it will reduce its in-
tensity/depth of search depending on when overfitting
was judged likely to occur.

Figure 5 shows the SS-ES Framework in which we eval-
uate the overfitting in the Wrapper-based subset se-
lection process - this follows the principles outlined
by Weiss and Kulikowski (1991). In each fold of the
outer cross-validation, the original data source is di-
vided into two in a 90:10 split. This 10% will be the
outer test set that will be used to evaluate the general-
isation accuracy of the resulting feature set. The 90%
goes into our inner cross-validation which attempts to
identify at which stage overfitting occurs in the wrap-
per search. The inner cross-validation divides the data
again into a 90:10 split. 90% of this data is used to
build a classifier and the 10% is used to estimate the
validation accuracy. This is repeated 10 times. There-
fore in the inner cross-validation we have 81% of the
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Figure 5. SS-ES Framework

original data to train the classifier in each fold and 9%
for estimating the validation accuracy of that classifier
(repeated over 10 folds).

4. Evaluation

As Kohavi and John (1997) point out, overfitting is of-
ten not a problem in wrapper-based feature subset se-
lection, thus it will not show up in many feature selec-
tion tasks. In the evaluation we present here we work
with six datasets from the UCI collection (Blake &
Merz, 1998) and two other datasets; the Colon dataset
described in (Alon et al., 1999) and the Bronchioli-
tis daset described in (Walsh et al., 2004). These are
data-sets that proved to exhibit overfitting in our pre-
liminary analysis.

The results on the GA-ES are shown in Table 1 and the
results on the SA-ES are shown in Table 2. The GA-ES
results are not very encouraging with the GA-ES win-
ning in 4, loosing in 3 and drawing in one. This is due
to difficulties with automatically identifying the early-
stopping point in the cross-validation process. This
could be improved by making this a manual (interac-
tive) process; however, the SA-ES strategy shows more

GA GA-ES
Train Test Train Test

wpbc 83.33 77.39 82.30 75.76
spectf 81.25 72.50 73.06 72.50
sonar 91.78 86.55 91.72 90.36

ionosphere 94.21 90.59 93.89 89.44
glass 80.23 74.19 80.32 76.71

diabetes 74.96 70.17 74.81 71.49
bronc 67.16 59.89 64.07 58.86
colon 93.67 80.08 92.36 84.21

Table 1. Comparison of results across eight data sets using
GA and GA-ES

SA SA-ES
Train Test Train Test

wpbc 81.50 73.29 81.10 73.82
spectf 83.75 65.00 80.00 73.75
sonar 92.52 85.07 93.27 88.43

ionosphere 94.43 92.86 94.14 92.00
glass 80.11 73.79 80.06 76.60

diabetes 74.44 69.01 73.71 72.40
bronc 80.32 56.62 77.38 59.04
colon 93.79 83.17 87.88 83.65

Table 2. Comparison of results across eight data sets using
SA and SA-ES

promise.

The SA-ES improves on the simple SA in 7 of the 8
datasets. This is probably due to the fact that the
SA-ES strategy is more robust than the GA-ES strat-
egy. The practice of quenching the cooling process
more rapidly so that the SA freezes before overfitting
is more robust than the GA-ES strategy which is sub-
ject to variability because the GA is being stopped
before convergence.

When perform multiple runs of the feature selection
process using the SA and SA-ES strategies and de-
compose the error on the resulting feature sets into
their bias-variance components we have a better un-
derstanding of what effect the early-stopping has. The
results of this are shown in Figure 6 and it is clear that
SA-ES generally reduces the variance component of er-
ror. This supports the hypothesis that SA-ES reduces
overfitting.

5. Conclusions and Future Work

In this paper we have proposed early-stopping as a pol-
icy for preventing overfitting in wrapper-based feature
subset selection that uses stochastic search. We have



Figure 6. A comparison of the Bias-Variance decomposi-
tion of error for the SA and SA-ES strategies

described implementations of this idea for Genetic Al-
gorithms and Simulated Annealing. Our evaluation
shows that the strategy is effective in general being
most successful with Simulated Annealing.

The main problem with this approach is the instability
of the stochastic search which can lead to the early-
stopping strategy returning poor feature subsets from
time to time. So far we have tried to fully automate the
early-stopping process, our next objective is to develop
an interactive workbench where the user will be shown
the overfitting graphs and will be allowed to evaluate
a range of early-stopping alternatives.
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