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Abstract

Feature subset-selection has emerged as a useful technique for creating
diversity in ensembles – particularly in classification ensembles. In this paper
we argue that this diversity needs to be monitored in the creation of the
ensemble. We propose an entropy measure of the outputs of the ensemble
members as a useful measure of the ensemble diversity. Further, we show that
using the associated conditional entropy as a loss function (error measure)
works well and the entropy in the ensemble predicts well the reduction in error
due to the ensemble. These measures are evaluated on a medical prediction
problem and are shown to predict the performance of the ensemble well. We
also show that the entropy measure of diversity has the added advantage that it
seems to model the change in diversity with the size of the ensemble.

1. Introduction

Feature subset selection is an important issue in Machine Learning (Aha & Bankert,
1994; Bonzano, Cunningham & Smyth, 1997; Wettschereck, Aha, & Mohri, 1997). It is a
difficult problem due to the potentially huge search space involved and because hill-
climbing search techniques do not work so well because of an abundance of local
maxima in the search space. Feature subset selection is important for the following
reasons:

� Build better predictors: better quality predictors/classifiers can be build by
removing irrelevant features – this is particularly true for lazy learning
systems.

� Economy of representation: allow problems/phenomena to be represented
as succinctly as possible.

� Knowledge discovery: discover what features are and are not influential in
weak theory domains.

A different motivation for feature subset selection has emerged in recent years as
illustrated in the research of Ho (1998a & 1998b) and Guerra-Salcedo and Whitley
(1999a, 1999b). In their work feature subset selection is used as a mechanism for
introducing diversity in ensembles of classifiers. Typically they work with datasets from
weak theory domains where features have been oversupplied and there are irrelevant and
redundant features in the representation.
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In this paper we look at this approach to ensemble creation and propose entropy and cross
entropy as measures of diversity and error that should be used in determining the
constitution of the ensemble.

The paper starts with a review in section 2 of some existing research on ensembles of
classifiers based on different feature subsets. We argue that diversity in the ensemble
must be considered explicitly in putting together the ensemble. In section 3 we review the
approach to diversity in regression ensembles where variance is the standard measure of
diversity. We propose entropy as the appropriate measure in classification ensembles. In
section 4 we present our algorithm for producing good quality feature subsets and in
section 5 we show how the entropy measure of diversity provides a valuable insight into
the operation of ensembles of classifiers in a medical application and helps determine the
makeup of a very good ensemble.

2. Existing Research

Ho (1998b) introduces the idea of ensembles of Nearest Neighbour classifiers where the
variety in the ensemble is generated by selecting different feature subsets for each
ensemble. Since she generates these feature subsets randomly she refers to these different
subsets as random subspaces. She points to the ability of ensembles of decision trees
based on different feature subsets to improve on the accuracy of individual decision trees
(Ho, 1998a). She advocates doing this also for k-Nearest Neighbour (k-NN) classifiers
because of the simplicity and accuracy of the k-NN approach. She shows that an
ensemble of k-NN classifiers based on random subsets improves on the accuracies of
individual classifiers on a hand-written character recognition problem.

 Guerra-Salcedo and Whitley (1999a, 1999b) have improved on Ho’s approach by putting
some effort into improving the quality of the ensemble members. They use a genetic
algorithm (GA) based search process to produce the ensemble members and they show
that this almost always improves on ensembles based on the random subspace process.
The feature masks (subsets) that define each ensemble member are the product of GA
search and should have higher accuracy than masks produced at random. The only
situations where the random masks performed better that the masks produced by genetic
search were on datasets with small numbers of features (19 features) (Guerra-Salcedo and
Whitley 1999b).

Guerra-Salcedo and Whitley do not suggest any reasons why the random subspace
method should out perform the genetic search method on data sets with small numbers of
features. We suggest that this is explained by the analysis of diversity and accuracy
presented in the next section. When genetic search is used to produce good feature
subsets in small feature spaces the risk is that there will not be great diversity in the
subsets produced. It is likely that the improvement in the quality of the individual
classifiers is offset by the loss of diversity in the ensemble as a whole. This is not such a
problem with datasets with large numbers of features (>35) because loss of diversity is
less likely in such a huge search space. This diversity/quality issue will be discussed in
detail in the next section. In concluding this paper we will argue that any work on
ensembles should explicitly measure diversity and quality to ensure that the overall
quality of the results of the ensemble is maximised.
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3. Diversity

Krogh and Vedelsby (1995) have shown the following very important relationship
between error and ambiguity (diversity) in regression ensembles

AEE −= (1)

where E is the overall error of the ensemble over the input distribution, E  is the average
generalisation error or the ensemble components and A  is the ensemble ambiguity
averaged over the input distribution. E  is a standard quadratic error estimation and A  is
an aggregation of individual ambiguities )(xa , the ambiguity of a single ensemble
member on a single input x:
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Thus the ambiguity is effectively the variance in the predictions coming from the
ensemble members. This ambiguity can be tuned, for instance by overfitting neural
networks, in order to maximise generalisation performance (Carney & Cunningham,
1998)

Because of the differences between ensembles of classifiers and regression ensembles it
will not be straightforward to establish such a neat equality for classifiers. In particular
the winner-takes-all nature of ensembles of classifiers radically changes the assessment
of error. Once the ensemble produces the correct majority we don’t care beyond that.

The obvious estimate of accuracy (or error) for a classifier is the proportion of a test set it
classifies correctly.

)()(ˆ xcxci i
Pe == (3)

where )(ˆ xci  is the category classifier i predicts for x and )(xc  is the correct category.

Then a possible measure of agreement (inversely related to ambiguity) is that used by Ho:
using a test set of n fixed samples and assuming equal weights, the estimate of classifier
agreement jis ,ˆ  can be written as:
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i.e. the measure of agreement is the proportion of test cases on which two classifiers
agree. (Ho, 1998). Ho emphasises the importance of disagreement in ensemble members
but does not directly evaluate its impact on the overall ensemble performance.
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We will show in the evaluation section of this paper that a better measure of agreement
(or ambiguity) for ensembles of classifiers is entropy. Tibshirani (1996) also suggests that
entropy is a good measure of dispersion in bootstrap estimation in classification. So for a
test set containing M cases in a classification problem where there are K categories a
measure of ambiguity is:
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where x
kP  is the frequency of the kth class for sample x – the more dispersion or

randomness in the predictions the more ambiguity. Associated with this entropy-based
measure of diversity is a Conditional Entropy-based measure of error (loss function).
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where )(ˆ xc is predicted category for sample x and c(x) is the correct category. We will
show in section 5 that if this measure is used as the loss (error) function the entropy
measure of ambiguity in the ensemble better predicts the reduction in error due to the
ensemble.

4. Producing Ensembles of Feature Masks

4.1. Random Masks

For a classification task with p possible input features there are p2  possible subsets of
this feature set and each subset can be represented as a feature mask of 1s and 0s. Masks
of this type representing different feature subsets can easily be produced using a random
number generator. These masks should score high on diversity because there has been no
attempt to learn good quality feature sets. However, because of this, they cannot be
expected to have very good scores for E , the average error. Ho (1998b) has shown that
ensembles of masks of this type can produce very good results – presumably because the
lack of quality in the ensemble members is compensated for by the diversity.

4.2. Better Quality Masks

At the other end of the quality spectrum, Guerra-Salcedo & Whitley (1999a, 1999b) have
used genetic algorithms (GA) to find high quality feature subsets. Since the GA search is,
in Aha & Bankert terms, a wrapper process it is very computationally intensive because
evaluating each state in the search space involves testing a classifier on a test set (Aha &
Bankert, 1994). If this estimate of fitness is to be accurate then significant amounts of
data must be used to build the classifier and test it. For this reason we use a simpler hill-
climbing search technique that produces good quality masks but in reasonable time. The
idea is to focus on managing diversity rather than ensemble member quality to provide
overall ensemble quality. The algorithm for this is shown in Table 1.

Typically this algorithm will terminate after four cycles through the mask. At that stage
there is no adjacent mask (i.e. a mask different in just one feature) that is better. Thus the
masks produced are local maxima in the search space.
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Table 1. Producing good quality feature masks using hill-climbing search.

We define ),,( LTTAcc sr as the accuracy of a classifier on test sT  having been trained with

rT  and using mask L. The accuracy is the proportion of sT  that is correctly classified.

1. Initialise mask L randomly as described in section 4.1.
2. Flag ← False
3. For each Ll ∈

Produce L′ from L by flipping l
If ),,( LTTAcc sr ′ > ),,( LTTAcc sr

L ← L′
Flag ← True

4. Repeat from 2 while Flag = True.

5. Evaluation

In this section we will assess this relationship between ambiguity and accuracy on some
unpublished In-Vitro Fertilisation (IVF) data. The data consists of 1355 records
describing IVF cycles of which 290 cycles have positive outcomes and 1065 have
negative outcomes. In the representation of the data used here each data sample has 53
numeric input features. For the purpose of our evaluation 50 random masks were
produced in the manner described in section 4.1. Then 50 better quality masks were
produced in the manner described in section 4.2. To guide this search process 580 data
samples were used including the 290 with positive outcomes – 330 are used in rT and 250

in sT .

This search process for producing the masks is very computationally expensive with the
cost increasing with the square of the size of the data set used to guide the search.
However if we skimp on the amount of data used, the masks will be biased towards the
subset of data that does actually get used. Indeed it was clear during the course of the
evaluation that the masks did overfit the training data, raising the question of overfitting
in feature selection – a neglected research issue.

Then ensembles of size 5, 10, 20, 30, 40 and 50 were produced for the random masks and
the better quality masks. These ensembles were tested using leave-one-out testing on the
complete data set of 1355 samples. This means that the masks are being tested, in part,
with the data used to produce them. This was done because of the small number of
positive samples available and is reasonable because the objective is to show the
ambiguity/accuracy relationship rather than produce a good estimate of generalisation
error. Where possible, multiple different versions of the smaller ensembles were
produced (i.e. 10 of size 5, 5 of size 10, 2 or size 20 and 2 of size 30). The results of this
set of experiments are shown in Figure 1.

It can be seen that the random masks have an accuracy slightly inferior to the other masks
averaging about 58.2% and 58.9% respectively (using a simple count of correct
classifications as a measure of accuracy). For the various ensemble sizes there is very
little difference in the diversity between the two scenarios. Thus the ensembles based on
the better quality masks produce the best results with the ensemble of size 50 producing
an accuracy in leave-one-out testing on the full data set of 64.5%. It is important to note
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that this cannot be claimed as an estimate of generalisation accuracy for the system since
the masks in use may overfit this data since some of the data was used in producing the
masks.

An interesting aspect of the data shown in Figure 1 is that the measure of ensemble
diversity used seems to capture the increase in diversity with ensemble size. As the
benefit of increasing the ensemble size tails off around 30-40 members so does the
increase in entropy. This would not be the case with the measure of diversity proposed by
Ho (see section 3) for instance.
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Figure 1. Measurements of accuracy and ambiguity of ensembles working on the IVF data.

This first experiment shows that if accuracy of ensemble members is increased without
reducing ambiguity it will increase overall accuracy. In the next experiment we will show
how the ambiguity of the ensemble predicts the reduction in error (increase in accuracy)
due to the ensemble. These results are shown in Figure 2. In each graph the Y-axis shows
the difference between the average error of the ensemble members and the ensemble
error. In Figure 2(a) the error is a simple count of correct classifications; in (b) the
conditional entropy is used as described in section 3. These graphs suggest that ambiguity
as measured by entropy better predicts error reductions when error is measured as
conditional entropy, i.e. the relationship in the graph on the right is clearer than that in the
graph on the left. This is borne out by the correlation coefficient in both cases; the
correlation coefficient for the relationship between change in correct count and entropy is
0.81 while that between change in error as measured by conditional entropy and
ensemble entropy is 0.91.
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Figure 2. Plots of the relationship between the reduction in error due to an ensemble and the ambiguity of
the ensemble. In (a) error is measured as a count of correct classifications; in (b) it is measured as

conditional entropy.

Indeed it might be argued that, even without this useful relationship with ensemble
ambiguity, conditional entropy is a particularly appropriate measure of error. Afterall, it
does capture the importance of good accuracy spread across all categories. With the data
presented here a good score based on count correct may conceal poor performance on the
minority class.

Finally we show how the information provided by the use of entropy as a measure of
diversity can inform the construction of a very good quality ensemble. The analysis
shows that, in this domain, seeking good quality masks appears not to compromise
ensemble diversity. We suggest that this is due to the large number of features in the
domain (53). So it should be possible to increase the quality of the ensemble members
without loss of diversity. 66 good quality masks were produced using the process
described in section 4.2 and their accuracy was tested using leave-one-out testing on the
full dataset of 1355 samples. Using this metric of quality the best 20 of these were chosen
to form an ensemble. The accuracy of this ensemble measured using leave-one-out testing
on the whole dataset was 66.9%, better than the average of 64.2% for the other two
ensembles of size 20 and better than the 64.5% figure for best ensemble of size 50.

6. Conclusion

The main message in this paper is that any work with classification ensembles should
explicitly measure diversity in the ensemble and use this measure to guide decisions on
the constitution of the ensemble as shown in the last section.

We show that in the same way that variance is a good measure of diversity for regression
problems entropy is a useful measure of diversity for classification ensembles. Then
associated with entropy as a measure of diversity is conditional entropy as an appropriate
error function.

As advocated by Ho and by Guerra-Salcedo and Whitley feature subsets are a useful
mechanism for introducing diversity in an ensemble of k-NN classifiers. If the feature
space under consideration is large (> 35) then there may be less risk of loss of diversity in
searching for good quality ensemble members. In the future we propose to evaluate this
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analysis on problems with smaller numbers of features where there may be a more clear-
cut trade-off between ambiguity and quality of ensemble components.

Finally the quality of this ensemble of classifiers based on components with different
feature subsets raises some questions about the issue of feature subset selection with
which we opened this paper. The ensemble of classifiers has a better classification
performance than any of its individual components. This brings into question the whole
feature subset selection idea because it suggests that there is not one global feature set
that provides a ‘best’ problem representation. Instead the ensemble exploits a variety of
representations that may be combining locally in different parts of the problem space.

The next step is to evaluate these metrics on different classification datasets - However,
leave-one-out testing on an ensemble of lazy learners is very computationally expensive.
It will be particularly interesting to see if the entropy measure of diversity does in fact
capture aspects of ensemble size and happens with this data set. For the future it will be
interesting to tackle the problem of overfitting in the feature selection process.
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