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Abstract

In these pages we make a first attempt to compute efficiency of symbolic and numerical analysis procedures

that solve systems of multivariate polynomial equations. In particular, we compare Kronecker’s solution

(from the symbolic approach) with approximate zero theory (introduced by M. Shub & S. Smale as a

foundation of numerical analysis). To this purpose we show upper and lower bounds of the bit length

of approximate zeros. We also introduce efficient procedures that transform local Kronecker’s solution
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1 Introduction and statement of main results

Let K be a number field containing the field of Gaussian rationals Q[i] ⊆ K. In these pages we are
mainly interested in the computation of K−rational points of zero–dimensional algebraic varieties
given by systems of multivariate polynomial equations. Namely, let f1, . . . , fs ∈ Z[X1, . . . , Xn] be
a sequence of multivariate polynomials with integer coefficients. Let V (f1, . . . , fs) ⊆ Cn be the
complex algebraic variety of their common zeros, i.e.

V (f1, . . . , fs) := {x ∈ Cn : fi(x) = 0, 1 ≤ i ≤ s}.
For sake of simplicity, let us assume that V (f1, . . . , fs) is a finite set (i.e. a zero–dimensional
algebraic variety). The set of K−rational points in V (f1, . . . , fs) is the set of common zeros of the
system f1, . . . , fs whose coordinates lie in Kn, namely

VK(f1, . . . , fs) := {x ∈ Kn : f1(x) = · · · = fs(x) = 0}.
The goal of these pages will be to discuss several aspects of procedures performing the following
task : Assume that the field K is fixed. Given the sequence f1, . . . , fs, compute all K−rational
points in VK(f1, . . . , fs) (or eventually all K−rational points in VK(f1, . . . , fs) of bounded height).
Note that the assumption on the field K is not very restrictive : For every zero ζ ∈ V (f1, . . . , fs),
there exists a minimal number field K(ζ) containing all the coordinates of ζ. The degree of the
field extension K(ζ) over Q can also be denoted by deg(ζ). In the sequel, the degree [K : Q] may
be replaced by deg(ζ), and the results will equally hold.
For our study, we consider a precomputation task which prepares the input F := (f1, . . . , fs),
before we study the desired K−rational points. Procedures performing this precomputation task
are usually called multivariate polynomial system solvers applied to the input F . The output of
such polynomial system solvers is called the solution of the system F . Observe that all usual
notions of solution of F will yield a description of the variety V (f1, . . . , fs) (cf. also [CGH+99]).
Here, we consider two (conceptually different) notions which define what a solution of the system
F should be : coming from different fields, the notions are related to a symbolic/geometric and
a numerical analysis/diophantine approximation context : Kronecker’s geometric solution and
Newton’s approximate zero solution.
Thus, our study includes a comparative study of both approaches with regard to the basic problem
described above. It must be said that our study is not intended to be either complete or definitive.
It just tries to point out some similarities and differences between both approaches to solving that
yield some statements and some open questions of interest. In this sense, we have tried to write
down as many comments as possible to clarify (as much as we can) the relations between both
approaches to solving.
Moreover, we have tried to put both approaches under the same hypotheses. This means that
our input system of multivariate polynomials F := (f1, . . . , fs) is well–suited for the application
of either Kronecker’s or Newton’s approach to solving. Therefore we will assume the following
hypotheses :

i) The number of equations equals the number of variables (i.e. s = n above)

ii) The variety V (f1, . . . , fn) is zero–dimensional and contains exactly D points, i.e. the degree
of V (f1, . . . , fn) (in the sense of [Hei83]) is exactly D.

iii) The K−rational points in VK(f1, . . . , fn) are smooth with respect to the system F :=
(f1, . . . , fn), i.e. for every ζ ∈ VK(f1, . . . , fn), the Jacobian matrix

DF (ζ) :=
(
∂fi
∂Xj

(ζ)
)

1≤i,j≤n

is a non–singular matrix (i.e. DF (ζ) ∈ GL(n,K)).

3



iv) The sequence f1, . . . , fn ∈ Z[X1, . . . , fn] is a reduced regular sequence, i.e. for every i,
1 ≤ i ≤ n− 1, the ideals (f1, . . . , fi) are radical ideals of codimension i in Q[X1, . . . , Xn].

v) The degrees of the input polynomials satisfy deg(fi) ≤ 2, for 1 ≤ i ≤ n.

It must be said that constrains i) and iv) are not relevant for Kronecker’s approach to solving.
Applying the iterative version of Bertini’s Theorem (as described in [Mor97, Häg98, HMPS00] or
[GS99]) we can easily reduce the over–determined input system to a system satisfying properties
i) and iv). Anyway, we prefer to keep these hypotheses to simplify exposition, notations, and –
hopefully – reading.
The rest of the introduction presents the new results, classified into three main categories :

i) Newton’s approach to solving.

Here, we show how to extend the approximate zero theory introduced by S. Smale in [Sma81]
(cf. also [Sma85, Sma86a, Sma86b]), and deeply developed in collaboration with M. Shub
in the series of papers [SS85, SS86, SS93a, SS93b, SS93c, SS94a, SS94b], to a diophantine
approximation context.

ii) Kronecker’s approach to solving.

This recalls Kronecker’s approach to solving and shows the main statements which relate
both approaches by means of an algorithm based on the L3 (or LLL) reduction procedure
(as introduced in [LLL82b] and used in [KLL84, Len84]).

iii) Application: Computation of splitting field and Lagrange resolvent.

Finally we exhibit an algorithm that combines both approaches to compute efficiently the
splitting field of a univariate polynomial equation and also the corresponding Lagrange re-
solvent.

1.1 Newton’s approach to solving

Let MK be a proper class of absolute values on the number field K in the sense of [Lan83]. For
every ν ∈ MK we have an absolute value | · |ν : K −→ R. The class MK is chosen such that it
satisfies Weil’s product formula with respect to well-defined multiplicities. We denote by S ⊆MK

the set of sub–indices ν ∈MK such that the absolute value | · |ν is archimedean and, consequently,
by MK \S the class of sub–indices ν ∈MK such that | · |ν is non–archimedean. For every ν ∈MK ,
we shall denote by Kν the completion of K with respect to the absolute value | · |ν . We also denote
by | · |ν : Kν −→ R the corresponding extension of | · |ν to the completion Kν .
Let ζ ∈ VK(f1, . . . , fn) be a smooth K−rational point of the zero–dimensional complex algebraic
variety V (f1, . . . , fn). We are interested in approximating ζ using iterations of the Newton oper-
ator. Therefore, we introduce the Newton operator of system F as the following list of rational
mappings :

NF (X1, . . . , Xn) :=

⎛⎝X1
...
Xn

⎞⎠ −Df(X1, . . . , Xn)−1

⎛⎜⎝ f1(X1, . . . , Xn)
...

fn(X1, . . . , Xn)

⎞⎟⎠ .

An approximate zero z in Kn for the system F with associate zero ζ ∈ VK(f1, . . . , fn) with respect
to the absolute value | · |ν is a point such that the sequence of iterates of the Newton operator is
well–defined and converges quadratically to ζ. Roughly speaking, an approximate zero z ∈ Kn

with associate zero ζ ∈ Kn is a point which lies in the basin of attraction of the actual zero ζ with
respect to the Newton operator NF . Formally, we define approximate zeros as follows :
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Definition 1 Let F := (f1, . . . , fn) be a system of multivariate polynomials with integer coef-
ficients : fi ∈ Z[X1, . . . , Xn] for 1 ≤ i ≤ n. Let ν ∈ MK define an absolute value | · |ν :
K −→ R. Let ζ ∈ VK(f1, . . . , fn) be a smooth K−rational point (i.e. DF (ζ) ∈ GL(n,K)). Let
z := (z1, . . . , zn) ∈ Kn be an affine point. We say that z is an approximate zero of the system F
with associate zero ζ ∈ Kn with respect to the absolute value | · |ν , if the following properties hold :

• DF (z) ∈ GL(n,K) is a non–singular matrix.

• The following sequence is well–defined :

z1 := NF (z) ∈ Kn, and zk := NF (zk−1) for k ≥ 2.

• For every k ∈ N, k ≥ 1, the following inequality holds :

‖zk − ζ‖ν ≤ 1
22k−1 ‖z − ζ‖ν ,

where ‖ · ‖ν : Kν −→ R is the corresponding norm associated to the absolute value | · |ν (cf.
Subsection 2.1.4 below for more details).

From a computational point of view, we want to compute approximate zeros of smooth K−rational
points and we want to write them over a finite alphabet. In particular for every smooth K−rational
zero ζ ∈ VK(f1, . . . , fn) and every absolute value ν ∈MK , we consider a subfield L of K, such that
the completion Lν of L with respect to the absolute value | · |ν contains the entries of ζ, namely
ζ ∈ Lnν . Thus, we look for approximate zeros z ∈ Ln with associate zero ζ ∈ Lnν . Let us observe
that if the absolute value | · |ν is archimedean, we may fix L to be L := Q[i]. Moreover, we are
interested in the heights of approximate zeros z ∈ Ln with actual zeros ζ ∈ Lnν . In the case where
L = Q[i], the height of a point z ∈ Q[i]n essentially equals its bit length (i.e. the number of tape
cells in a Turing machine required to write down the list of digits describing z). In the sequel, we
shall therefore identify the logarithmic height ht(z) and its bit length.
A first relevant task consists in stating conditions which are sufficient for verifying the property
of being an approximate zero. This is achieved by means of a local condition based on a quantity
(called γ), which is essentially yielded by the Lipschitz constant appearing in the inverse mapping
Theorem (cf. [Dem89], Ch. 1, for instance). These ideas were introduced by S. Smale in the early
eighties (cf. [Sma81]) and deeply developed in the series of papers written by M. Shub and S.
Smale [SS85] to [SS94b]) (more detailed references are given in Section 3.2 below).
With the same notations as above, let ν ∈MK be an absolute value on the field K. We define the
quantity γ :

γν(F, ζ) := sup
k≥2

∥∥∥∥ (DF (ζ))−1(D(k)F (ζ))
k!

∥∥∥∥
1

k−1

ν

,

where the norm is considered as the norm with respect to the absolute value | · |ν of the multilinear
operator

DF (ζ)−1D(k)F (ζ) : (Kn
ν )k −→ Kn

ν .

This quantity yields a locally sufficient condition for having an approximate zero. This statement is
known as the γ−Theorem and it holds equally true for archimedean and non–archimedean absolute
values.

Theorem 2 (γ−Theorem) With the same notations and assumptions as before, let F := (f1, . . . , fn)
be a sequence of multivariate polynomials with coefficients in K. Let ζ ∈ VK(f1, . . . , fn) be a smooth
K−rational zero (i.e. DF (ζ) ∈ GL(n,K) is a non–singular matrix). Let | · |ν : K −→ R+ be an
absolute value on K. For every z ∈ Kn satisfying the inequality :

‖ζ − z‖νγν(F, ζ) ≤ 3 −√
7

2
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holds : z is an approximate zero of the system F with associate zero ζ with respect to the absolute
value | · |ν .
The proof of this statement follows step by step the proof of the usual γ−Theorems (cf. the
compiled version in [BCSS98b]).
To establish upper and lower bounds for the bit length of approximate zeros, we have established
several technical statements. One of them is an extension of the well–known Eckardt & Young
Theorem [EY36] to the non–archimedean case :
Let ν ∈MK be an absolute value over K and Kν the completion of K with respect to the absolute
value | · |ν . Let us denote by Σν ⊆ Mn(Kν) the variety of singular n× n matrices with entries in
Kν . Similarly, let Σ be the subset of Σν of all singular n× n matrices with entries in K. Finally,
let

d(F )
ν : Mn(Kν) ×Mn(Kν) −→ R+

be the Frobenius (also called Hilbert–Weil) metric on Mn(Kν) with respect to the absolute value
| · |ν (cf. Subsection 3.1 below). Then, the following Theorem holds :

Theorem 3 (Eckardt & Young) Let ν ∈ MK be an absolute value. For every non–singular
n× n matrix A ∈ GL(n,K), the following equality holds :

d(F )
ν (A,Σ) = d(F )

ν (A,Σν) = inf{d(F )
ν (A,M) : M ∈ Σ} =

1
‖A−1‖ν .

For every multivariate polynomial f ∈ Z[X1, . . . , Xn] with integer coefficients, we define its log-
arithmic height ht(f) as the logarithm of the maximum of the absolute values of its coefficients.
This notion introduced, we have the following statement which shows lower bounds for the bit
length of approximate zeros.

Theorem 4 (Lower Bounds) Let f1, . . . , fn ∈ Z[X1, . . . , Xn] be a sequence of multivariate poly-
nomials. Let us assume that the following properties hold :

i) max{deg(fi) : 1 ≤ i ≤ n} = 2 ,

ii) ht(fi) ≤ h for 1 ≤ i ≤ n.

Let ζ ∈ VK(f1, . . . , fn) be a smooth K−rational point of the system F := (f1, . . . , fn). Let | · |ν :
K −→ R+ be an absolute value defined on K, and let L ⊆ K be a number field such that ζ ∈ Lnν .
Then, for every z ∈ Ln, z 	= ζ satisfying :

||z − ζ||νγν(F, ζ) ≤ 3 −√
7

2
,

the following inequality holds :

ht(z) ≥ 1
3[L : Q]

(log γν(F, ζ) − [L : Q] (5 logn+ 2h) − 3) .

Using Theorem 3 above, the following inequality also holds :

ht(z) ≥ 1
3[L : Q]

(
log d(F )

ν (DF (ζ)−1,Σν) − [L : Q] (7 logn+ 3h) − 5
)
.

Moreover, in the case where L = Q[i] is the field of Gaussian rationals, the two previous lower
bounds may be rewritten as :

ht(z) ≥ 1
6

(log γν(F, ζ) − (10 logn+ 4h+ 3)) , and

ht(z) ≥ 1
6

(
log d(F )

ν (DF (ζ)−1,Σν) − (14 logn+ 6h+ 5)
)
.
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Let us observe that the “negative terms” in the previous lower bounds are linear in the input length
(i.e. the bit length of the input system F := (f1, . . . , fn)), whereas the “positive part” depends
semantically on the smooth K−rational solution ζ ∈ VK(f1, . . . , fn).
Last, but not least, we may also show a few lower bounds for the average height of approximate
zeros associated to a Q−definable irreducible component of the solution variety V (f1, . . . , fn). To
this end, we introduce some additional notations. Let f1, . . . , fn ∈ Z[X1, . . . , Xn] be a sequence of
multivariate polynomials satisfying hypotheses i) to v) above. Let ζ ∈ Kn be a smooth K−rational
zero of the system F := (f1, . . . , fn). Let V := V (f1, . . . , fn) ⊂ Cn be the algebraic variety given
as the common zeros of the polynomials f1, . . . , fn. Let Vζ ⊆ V be the Q−definable irreducible
component of V that contains ζ . Let us assume D := deg(Vζ) be the number of points in Vζ . Let
us observe that D = deg(ζ) ≤ [K : Q]. Let us assume

Vζ := {ζ1, . . . , ζD}.
Let ‖ · ‖ : Kn −→ R be the standard hermitian norm induced in Kn by the inclusion i : K ↪→ C.
A sequence of points z := (z1, . . . , zD) ∈ Q[i]nD is said to be an approximate zero of the system
F with associate variety Vζ that satisfies the γ−Theorem, if for every i, 1 ≤ i ≤ D, the following
holds :

‖zi − ζi‖ ≤ 3 −√
7

2γ(F, ζi)
,

where γ(F, ζi) is the quantity associated with the hermitian norm ‖ · ‖.
For every given approximate zero z := (z1, . . . , zD) ∈ Q[i]nD of the system F with associate variety
Vζ , the average height (also the average bit length) of z is defined in the following terms

htav(z) :=
1
D

D∑
i=1

ht(zi).

Finally, let us denote by ZK ⊂ K the ring of algebraic integers of the number field K. Then,
we have the following lower bound for the average bit length of approximate zeros with associate
variety Vζ :

Proposition 5 With the previous notations, let ζ ∈ VK(f1, . . . , fn) be a smooth K−rational with
entries in ZK , i.e. ζ ∈ ZnK . Let us also assume that for every archimedean absolute value | · |ν (i.
e. ν ∈ S), the following holds :

3‖ζ‖νγν(F, ζ) ≥ 3 −
√

7.

Then the average height of any approximate zero z ∈ Q[i]nD of the system F with associate variety
Vζ that satisfies the γ–Theorem, also satisfies the following inequality :

htav(z) ≥ 1
2

[
ht(ζ) − (

1
2

logn+ log 2)
]
.

In order to illustrate the meaning of this lower bound, we give here a few Corollaries which are
proved in Subsection 3.2.

Corollary 6 With the same notations as in Proposition 5 above, let ζ ∈ ZnK ∩ VK(f1, . . . , fn)
be a smooth K−rational zero of the system F := (f1, . . . , fn) and let us assume that for every
archimedean absolute value | · |ν : K −→ R (i. e. for every ν ∈ S), the following holds :

γν(F, ζ) ≥ 3 −
√

7.

Then the average height of any approximate zero z ∈ Q[i]nD of the system F with associate variety
Vζ that satisfies the γ–Theorem, also satisfies the following inequality :

htav(z) ≥ 1
2

[
ht(ζ) − (

1
2

logn+ log 2)
]
.
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Moreover, the previous techniques show how to deform a given system of multivariate polynomials
by means of a single additional equation of low degree in such a way that the average bit length of
the new system is essentially greater than the height of the particular zero you want to approximate.

Corollary 7 Let F := (f1, . . . , fn) be a system of multivariate polynomials with integer coefficients
satisfying the conditions i) to v) given on page 3. Let ζ = (ζ1, . . . , ζn) ∈ ZnK ∩ VK(f1, . . . , fn) be a
smooth K−rational zero whose coordinates are algebraic integers. Let us now define the system of
polynomial equations in n+ 1 variables :

G := (g1, . . . , gn+1) ∈ (Z[X1, . . . , Xn+1])
n+1

,

given by the following rules :

• gi := fi ∈ Z[X1, . . . , Xn+1] for every i, 1 ≤ i ≤ n,

• gn+1 := (Xn+1 −Xn) (Xn+1 − (Xn + 1)) .

Let ζ′ ∈ VK(g1, . . . , gn+1) ∩ Zn+1
K be the affine point given by :

ζ′ := (ζ1, . . . , ζn, ζn) ∈ Zn+1
K .

Let Vζ′ ⊆ V (g1, . . . , gn+1) be the Q−definable irreducible component of V (g1, . . . , gn+1) containing
ζ′. Then, the average height of any approximate zero z ∈ Q[i](n+1)D of the system F with associate
variety Vζ′ that satisfies the γ–Theorem, also satisfies the following inequality :

htav(z) ≥ 1
2

[
ht(ζ) − (

1
2

log(n+ 1) + log 2)
]
.

In Subsection 3.2 below, we exhibit several examples where all of the previous lower bounds for
the bit length of approximate zeros apply. In fact, all our examples have been chosen such that the
bit length of the corresponding approximate zero is exponential in the input length (i.e. in the bit
length of the input system of multivariate polynomials with integer coefficients). Therefore, any
of these examples allows us to conclude the following Corollaries 8 to 10 :

Corollary 8 Computing approximate zeros in Q[i] for archimedean absolute values, using binary
encoding of the output requires exponential running time and exponential output length, and these
two lower bounds cannot be improved while maintaining this encoding. Namely, computing approx-
imate zeros with binary encoding is in the complexity class EXTIME \ P.

Corollary 9 Floating point encoding of approximate zeros requires an exponential number of digits
and this lower bound cannot be improved. Namely, floating point encoding is not suitable for
efficient computation of approximate zeros of systems of multivariate polynomial equations.

As continuous fraction encoding of numbers in Q[i] is close to the binary encoding, we easily
conclude the following :

Corollary 10 Computing approximate zeros in Q[i] for archimedean absolute values, using con-
tinuous fraction encoding of the output requires exponential running time and exponential output
length, and these two lower bounds cannot be improved while maintaining this encoding. Namely,
computing approximate zeros with continuous fraction encoding is in the complexity class EX-
TIME \ P.

These lower bounds suggest that a central point of interest should be to study the bit length of
approximate zeros satisfying the γ−Theorem. In order to shed some light in this direction, we
prove the following statements :
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Theorem 11 (Upper Bounds) Let f1, . . . , fn ∈ Z[X1, . . . , Xn] be polynomials with integer coef-
ficients. Let us assume that the following properties hold :

• max{deg(fi) : 1 ≤ i ≤ n} ≤ 2, and

• ht(fi) ≤ h for 1 ≤ i ≤ n.

Let ζ ∈ VK(f1, . . . , fn) be a smooth K−rational point. Let | · |ν : K −→ R+ be an absolute value
on K. Then, the following inequality holds :

log γν(F, ζ) ≤ 3[K : Q]n
(
n2 + 4 logn+ h+ ht(ζ) + 3

)
.

In particular, we show the following estimate for the bit length of approximate zeros in Q[i]n :

Corollary 12 (Upper bound on the bit length of approximate zeros) With the same as-
sumptions and notations as in Theorem 11 above, let ζ ∈ VK(f1, . . . , fn) be a smooth K−rational
zero, and let | · |ν be an absolute value on K. Let L ⊆ K be a number field such that ζ ∈ Lnν . Then
there exist approximate zeros z ∈ Ln of the system F := (f1, . . . , fn) with approximate zero ζ with
respect to the absolute value | · |ν , such that the logarithmic height ht(z) of z is at most linear in
the following quantities :

1
[L : Q]

log |ΔL| + [K : Q]n
(
n2 + h+ nht(ζ)

)
,

where |ΔL| is the absolute value of the discriminant of the field L.
Moreover, in the case where L = Q[i] (for instance, if | · |ν is archimedean), there exist approximate
zeros z ∈ Q[i]n for the system F with associate zero ζ with respect to | · |ν such that their bit lengths
are at most linear in the following quantity :

[K : Q]n
(
n2 + h+ nht(ζ)

)
, in other words :

ht(z) ≤ O
(
[K : Q]n

(
n2 + h+ nht(ζ)

))
.

Let us observe, that these two upper bounds above (i.e. Theorem 11 and Corollary 12) depend
mainly on the input length : the dimension of the ambient space n and the height of the input
polynomials h, and on two parameters which in turn depend on the actual zero to approximate :
the degree [K : Q] of a field containing the coordinates and the logarithmic height ht(ζ) of the
particular zero. These two quantities are bounded respectively by the geometric Bézout inequality
(cf. [Hei83] or [Ful84, Vog84]) and the arithmetic Bézout inequality (cf. [BGS93, Phi91, Phi94,
Phi95] or [KP94, KP96, Som98, Häg98, HMPS00], for instance). Moreover, combining these two
upper bounds (Theorem 11 and Corollary 12) with the previously shown lower bounds and several
examples described in Subsection 3.2, we may conclude that the upper bounds shown in Theorem 11
and Corollary 12 are optimal.
On the other hand, the γ−Theorem above has some aesthetic consequences which we may explain
in terms of the existence of a universal radius of convergence independent of the absolute value
under consideration. To this end, we recall the well–known Implicit Function Theorem for complete
Noetherian local rings in the following terms :

Theorem 13 (Non–archimedean Basin of Attraction) Let F := (f1, . . . , fn) ∈ Z[X1, . . . , Xn]n

be a system of multivariate polynomials satisfying the hypotheses of Theorem 11 above. Let ν ∈MK

define a non–archimedean absolute value | · |ν on K. Let us also assume that the restriction

| · |ν : Q −→ R+

9



defines a p−adic absolute value, where p ∈ N is a prime number. Let ζ ∈ Kn be a smooth
K−rational zero of the system which lies in the closed unit sphere of Kn, i.e.

ζ ∈ Bν(0, 1) := {x ∈ Kn : ‖x‖ν ≤ 1}.

Let us finally assume that | detDF (ζ)|ν = 1. Then, for every z ∈ Bν(0, 1) satisfying

‖z − ζ‖ν ≤ 1
p

holds : z is an approximate zero of the system F with associate zero ζ with respect to the absolute
value | · |ν .

This statement is nothing but the usual Hensel Lemma in local algebra (cf. [ZS58, Mor97], for
instance). However, this statement has a drawback : The radius of the basin of attraction centered
at ζ depends on the concrete absolute value | · |ν . The Theorem 11 above shows that there exists a
universal radius, which depends only on the system F and the smooth K−rational zero, but does
not depend on any particular absolute value.
To prove this claim, let us introduce quantity γ̃(F, ζ) as follows : With the same notations and
assumptions as above, we define the universal quantity

γ̃(F, ζ) :=

( ∏
ν∈MK

max{1, γν(F, ζ)}nν

) 1
[K:Q]

.

Let us observe that this quantity is well–defined and finite according to Theorem 11 above. More-
over, it does not depend on any particular absolute value under consideration. Thus, we may
conclude the following Theorem :

Corollary 14 (Universal γ−Theorem) With the same notations and assumptions as in Theo-
rem 4, for every z ∈ Q[i]n and every absolute value | · |ν satisfying the following inequality

‖z − ζ‖ν γ̃(F, ζ) ≤ 3 −√
7

2

holds : z is an approximate zero for the system F with associate zero ζ and with respect to the
absolute value ν ∈MK .

Let us point out that the existence of such a universal quantity does not imply the existence of a
universal basin of attraction independent of the absolute value under consideration (cf. Subsection
3.3 below). In fact, we show the following statement :

Corollary 15 Let F := (f1, . . . , fn) be a sequence of multivariate polynomials with integer coeffi-
cients satisfying our hypotheses i) to v) on page 3. Let ζ ∈ VK(f1, . . . , fn) be a smooth K−rational
zero. The only point z ∈ Kn that satisfies the universal γ−Theorem near γ for all absolute values
in MK is z = ζ. Namely, for every z ∈ Kn satisfying the following inequality for every ν ∈Mk

‖z − ζ‖ν ≤ 3 −√
7

2γ̃(F, ζ)

holds z = ζ.
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1.2 Kronecker’s approach to solving

In [Kro82], Kronecker introduced a notion of solution of unmixed complex algebraic varieties,
which we are going to reproduce here. Let f1, . . . , fi ∈ Z[X1, . . . , Xn] be a sequence of polynomials
defining a radical ideal (f1, . . . , fi) of codimension i in C[X1, . . . , Xn]. Let V := V (f1, . . . , fi) ⊆ Cn

be the complex algebraic variety of codimension i given by the common zeros of the fi. A solution
of V is a birational isomorphism of V with some complex algebraic hypersurface in a space of
adequate dimension.
Technically, this is is expressed as follows. First of all, let us assume that the variables X1, . . . , Xn

are in Noether position with respect to the variety V , i.e. we assume that the following is an
integral ring extension :

Q[X1, . . . , Xn−i] ↪→ Q[X1, . . . , Xn]/(f1, . . . , fi).

Let u := λn−i+1Xn−i+1 + · · ·+λnXn ∈ Q[X1, . . . , Xn] be a linear form in the dependent variables
{Xn−i+1, . . . , Xn}. Thus we have a linear projection

U : Cn −→ Cn−i+1 : (x1, . . . , xn) �−→ (x1, . . . , xn−i, u(x1, . . . , xn)) .

Let us also consider the restriction U |V : V −→ Cn−i+1. The linear form u is called a primitive
element, if and only if the projection U |V defines a birational isomorphism of V with some complex
hypersurface Hu in Cn−i+1 with minimal equation χu ∈ Q[X1, . . . , Xn−i, T ]. Then, a Kronecker
solution of variety V consists of a description of the primitive element u, the hypersurface Hu

through the minimal equation χu, and a description of the inverse of the birational isomorphism,
i.e. (U |V )−1. Formally, this list of items can be described as follows :

• The list of variables in Noether position X1, . . . , Xn (which implies a description of the
dimension of V ).

• The primitive element u := λn−i+1Xn−i+1 + · · · + λnXn given by its coefficients in Z.

• The minimal equation of the hypersurface Hu, namely

χu ∈ Z[X1, . . . , Xn−i, T ].

• A description of (U |V )−1. This description is given by the following list :

– A non–zero polynomial ρ ∈ Z[X1, . . . , Xn−i].

– A list of polynomials vj ∈ Z[X1, . . . , Xn−i, T ], n− i+ 1 ≤ j ≤ n, such that the degrees
with respect to variable T satisfy degT (vj) ≤ degT (χu) for every j, n− i+ 1 ≤ j ≤ n.

such that the following holds

(U |V )−1(x, t) =
(
x1, . . . , xn−i, ρ−1(x)vn−i+1(x, t), . . . , ρ−1(x)vn(x, t)

)
,

where x := (x1, . . . , xn−i) ∈ Cn−i and t ∈ C.

Kronecker conceived an iterative procedure to solve multivariate systems of equations F := (f1, . . . , fn)
defining zero–dimensional complex varieties, which can be described in the following terms :
First, you start with system (f1) and you “solve” the unmixed variety of codimension 1, V (f1) ⊆
Cn. Then you proceed iteratively : From Kronecker’s solution of the variety V (f1, . . . , fi) you elim-
inate the new equation fi+1 to obtain a Kronecker solution of the “next” variety V (f1, . . . , fi+1).
Proceed until you reach i = n. This iterative procedure has two main drawbacks, which can be
explained in the following terms :
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• First of all, the space problem arising with the representation of the intermediate polynomi-
als. The polynomials χu, ρ and vj are polynomials of high degree (eventually of degree 2i)
involving several variables. Thus, to represent them, one has to handle all their coefficients,
which amounts to the following quantities(

2i + n− i+ 1
n− i+ 1

)
,

which for i := n/2 amounts to more than 2n
2/4 coefficients of great bit length.

• Secondly, Kronecker’s iterative procedure introduces a nesting of interpolation procedures
required for the iterative process and the linear change of coordinates required by each
computation of a Noether normalisation. This nesting of interpolation procedures is difficult
to avoid and increases the run time complexity.

Therefore, the procedure was forgotten by contemporary mathematicians and hardly mentioned
in the literature of algebraic geometry. Macaulay quotes Kronecker’s procedure in [Mac16] and so
does König in [Kön03]. But both thought that this procedure would require excessive run time to
be efficient, and so it was progressively forgotten. Traces of this procedure can be found spread
over the algebraic geometry literature without giving the required relevance to it. For example,
Kronecker’s notion of solution was used by O. Zariski in [Zar95] to define a notion of dimension
for algebraic varieties, claiming that it was also used in the same form by Severi and others.
In 1995, two works rediscovered Kronecker’s approach to solving without previous knowledge of it’s
existing ancestors. These two works [GHMP95, Par95] were able to overcome the first drawback
(space problem of representation) of the previous methods. The technical trick was the use of
a data structure coming from semi–numerical modeling : straight–line programs. This idea of
representing polynomials by programs evaluating them goes back to previous work of the same
research group (such as [GH93, FGS95, KP94] or [KP96]). Moreover, these ideas were the natural
continuation of the ideas previously developed in [GH91].
To overcome the second drawback (Nesting), the authors introduced a method based on Newton’s
method applied in a non–archimedean context (the approximate zeros in the corresponding non–
archimedean basin of attraction were called Lifting Fibers in [GHH+97]). This result was obtained
in the two papers [GHH+97, GHM+98]. The key trick to avoid the nesting of interpolation pro-
cedures is based on Hensel’s Lemma (also Implicit Mapping Theorem). Perhaps, the following
statement could help explain the relations existing between Hensel’s Lemma and Approximate
Zero Theory.
To this end, let us introduce some more notations. Let f1, . . . , fr ∈ C[X1, . . . , Xn] be a sequence
of polynomials defining a radical ideal of codimension r in C[X1, . . . , Xn]. Let us assume that the
variables X1, . . . , Xn are in Noether position with respect to the ideal I := (f1, . . . , fr), i.e. assume
that the following ring extension is integral

C[X1, . . . , Xn−r] ↪→ C[X1, . . . , Xn]/I.

Let P := (p1, . . . , pn−r) ∈ Cn−r be an affine point, let OP be the ring of formal power series at P ,
and let MP be the field of fractions of OP . Then, the following is finite ring extension

MP ↪→ B := MP [Xn−r+1, . . . , Xn]/(f1, . . . , fr),

and B is a zero–dimensional MP−algebra. Thus, it makes sense to look for approximate zeros
of the solutions in Mr

P of the system of polynomial equations F := (f1, . . . , fr). The following
statement about Hensel’s Lemma explains the connections existing between Kronecker’s solution
and Approximate Zero Theory.

Theorem 16 (Hensel’s Lemma) With the same assumptions and notations as above, let ζ ∈
Mr

P be a solution of the system F . Let ‖ · ‖ : Mr
P −→ R be usual non–archimedean norm in Mr

P .

12



Let C(X1, . . . , Xn−r) be the field of rational functions. Then, for every z ∈ C(X1, . . . , Xn−r)r, if
‖z‖ ≤ 1, and

‖z − ζ‖ < 1
2
,

then z is an approximate zero for the system F := (f1, . . . , fr) with associate zero ζ ∈ Mr
P .

Unfortunately, those two works [GHH+97, GHM+98] introduced (for the Lifting Fibers) run time
requirements which depend on the heights of the intermediate varieties (in the sense of [BGS93,
Phi91, Phi94, Phi95, Som98]). This drawback was finally overcome in the paper [GHMP97], where
integer numbers were represented by straight–line programs and the following result established :

Theorem 17 [GHMP97] There exists a bounded error probability Turing machine M which per-
forms the following task : Given a system of multivariate polynomial equations F := (f1, . . . , fn),
satisfying the following properties

• deg(fi) ≤ 2 and ht(fi) ≤ h for 1 ≤ i ≤ n,

• the ideals (f1, . . . , fi) are radical ideals of codimension i in the ring Q[X1, . . . , Xn] for 1 ≤
i ≤ n− 1,

• the variety V (f1, . . . , fn) ⊆ Cn is a zero–dimensional complex algebraic variety,

the machine M outputs a Kronecker solution of the variety V (f1, . . . , fn). The running time of
the machine M is polynomial in the following quantities

δ(F )nh,

where δ is the maximum of the degrees of the intermediate varieties (in the sense of [Hei83]),
namely

δ(F ) := max{deg(V (f1, . . . , fi)) : 1 ≤ i ≤ n− 1}.
It must be said that the coefficients of the polynomials involved in a Kronecker solution of the
variety V (f1, . . . , fn) are given by straight–line programs that evaluate integer numbers. However,
the complexity estimates for the Turing machine M are independent from the height.
Our attempt in these pages is to compare this approach to solving developed by Kronecker to that
of Newton as described in the previous Subsection.
The exposition of new results starts with a small improvement of the Witness Theorem in [HS80]
and [BCSS96] (cf. also [BCSS98b]). When dealing with straight–line program data structures,
some relevant technical methods of comparison must be developed. These methods are known as
probabilistic zero tests for polynomials given by straight–line programs. Examples of these tests
are those introduced in [Sch79, Zip79, HS80] and the Witness Theorem, introduced in [HS80] for
the case of polynomials with integer coefficients, and in [BCSS96] for polynomials with coefficients
in a number field.
As we already had to introduce a few technical notions and methods spread over the literature
of number theory, numerical analysis, algebraic complexity theory and elimination theory (de-
scribed in Section 2), we can give for free (without introducing any further material) the following
improvement of the estimates for the Witness Theorem, which is proved in Subsection 4.1.

Theorem 18 (Witness Theorem) Let P ∈ K[X1, . . . , Xn] be a non–zero polynomial evaluable
by a non–scalar straight–line program Γ of size L, non–scalar depth � and parameters in F ⊆ K.
Let ω0 ∈ K be such that the following holds :

ht(ω0) ≥ max{log 2, ht(F)}.
Let N ∈ N be a non–negative integer such that

logN > log(�+ 1) + (�+ 2)(log 2) (log log(4L)) .
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Let us define recursively the following sequence of algebraic numbers (known as Kronecker’s scheme) :

ω1 := ωN0 , and for 2 ≤ i ≤ n, ωi := ωNi−1.

Then, the point ω := (ω1, . . . , ωn) ∈ Kn is a witness for P (i.e. P (ω) 	= 0).

Moreover, we observe that approximate zeros are succinct encodings of generic points of the variety
V (f1, . . . , fn). This means that for every smooth K−rational zero ζ ∈ VK(f1, . . . , fn), the binary
encoding of an approximate zero z ∈ Q[i]n is sufficient information to compute the Q−irreducible
component of V (f1, . . . , fn) containing ζ. In more precise terms we show the following statement :

Theorem 19 (From Approximate Zeros to Geometric Solution) With the same assump-
tions as in Theorem 17 above, there exists a bounded error probability Turing machine M , such
that taking as input the binary encoding of an approximate zero z ∈ Q[i] of the system F with
associate zero ζ ∈ VK(f1, . . . , fn) for an archimedean absolute value | · |ν (where ν ∈ S), M outputs
a Kronecker solution of the Q−irreducible component W of V (f1, . . . , fn) containing ζ. Moreover,
the running time of this probabilistic Turing machine is polynomial in the following quantities

deg(W ) (n h ht(z)ht(ζ)) ,

where deg(W ) is the degree of the Q−irreducible component W containing ζ.

The key idea for the proof of this Theorem is the use of the L3 (or LLL) reduction algorithm as
described in Subsection 4.5 below.
Conversely, as approximate zeros may depend on the height of the actual zero they approximate,
we could be interested in the computation of approximate zeros for actual zeros of small (bounded)
height.

Theorem 20 (From Kronecker’s solution to Newton’s solution) There exists a bounded er-
ror probability Turing machine M which performs the following task : Given a sequence of poly-
nomial equations F := (f1, . . . , fn) of degree at most 2 and height at most h, and given a positive
integer number H ∈ N in binary encoding, the machine M outputs approximate zeros for the
archimedean absolute value | · | : K −→ R induced on K by the inclusion i : K ↪→ C for all those
zeros ζ ∈ VK(f1, . . . , fn), whose logarithmic height is at most H, i.e.

ht(ζ) ≤ H.

The running time of M is polynomial in the following quantities :

(n hδ(F )) + (D n h H),

where the notations are the same as in Theorem 17 before.

A proof of this statement is given in Subsection 4.4 below, based again on an application of the
L3 reduction algorithm.
Let V ol(F ) be the normalized volume of the Newton polytope of the set

{1, X1, . . . , Xn,M(F )}

where M(F ) is the set of all monomials occurring in the polynomials f1, . . . , fn (cf. [Ber75, Kus76,
Stu96]).
As δ(F ) ≤ V ol(F ) we obviously conclude the following Corollary for the sparse case.
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Corollary 21 (Sparse case) There exists a bounded error probability Turing machine M which
performs the following task : Given a sequence of polynomial equations F := (f1, . . . , fn) of degree
at most d and height at most h, and given a positive integer number H ∈ N in binary encoding, the
machine M outputs approximate zeros for the archimedean absolute value | · | : K −→ R induced
on K by the inclusion i : K ↪→ C for all those zeros ζ ∈ VK(f1, . . . , fn), whose logarithmic height
is at most H, i.e.

ht(ζ) ≤ H.

The running time of M is polynomial in the following quantities :

(n d hM(F )V ol(F )) + (D n h H),

where the notations are the same as in Theorem 17 before.

1.3 Application : Computation of splitting field and Lagrange resolvent

Combining both Kronecker’s and Newton’s approach to solving, we exhibit an efficient procedure
for computing the splitting field and the Lagrange resolvent of an irreducible monic univariate
polynomial f ∈ Q[X ] of degree d. Let us recall that the splitting field of f is the minimal number
field K(f) containing the field of rational numbers Q and all roots of f (i.e. the minimal number
field where f splits completely, also called the normal closure of the equation f = 0). This normal
closure K(f) is nothing but the Galois field of f and it satisfies

[K(f) : Q] =  (GalQ(f)) ,

where GalQ(f) is the Galois group of the polynomial f . The splitting field of f can be identified with
an irreducible component of the zero–dimensional algebra (known as the universal decomposition
algebra)

A := Q[X1, . . . , Xd]/(σ0 − a0, . . . , σd−1 − ad−1),
where σ0, . . . , σd−1 are the elementary symmetric functions and f is written as f(X) := a0 +a1X+
· · ·+ad−1X

d−1 +Xd. Let us also observe that the Lagrange resolvent is nothing but the Chow (or
Cayley) elimination polynomial of the zero–dimensional residue algebra A/m, where m is a well-
chosen maximal ideal of A. Therefore, we can also show the following Theorem as a consequence
of the comparison between Newton’s and Kronecker’s approach to solving :

Theorem 22 (Splitting Field and Lagrange Resolvent) There exists a probabilistic Turing
machine, which for every given univariate polynomial f ∈ Z[X ] of degree at most d and logarithmic
height at most h computes the following items :

i) Approximate zeros in Q[i] of all zeros of f ,

ii) a geometric description of the splitting field K(f) of the polynomial f ,

iii) and the Lagrange resolvent of the equation f = 0.

The running time of M is polynomial in the following quantities :

 (GalQ(f)) (dh) .

1.4 Structure of the paper

As we have used different notions coming from different fields and different approaches, and we want
to make our pages as readable as possible, we have included a section on fundamental tools, where
all notions are introduced and some elementary and technical Lemmata are shown. The well–read
reader might want to skip this section and go directly to the body of the paper. The Section 3
is devoted to establish the proofs for the results concerning Newton’s approach to solving. In the
Section 4, the relation between both approaches is studied, showing how to go from Kronecker’s
solution to Newton’s and conversely. Finally, the Section 5 gives the proof for our statement about
the computation of splitting field and the Lagrange resolvent.
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2 Fundamental tools

2.1 Heights and norms

2.1.1 Multivariate polynomials

A multivariate polynomial over a field K is a syntactic mathematical object whose existence is due
to the systematic study of a certain class of semantical objects : the polynomial functions

f : Kn −→ K.

Thus, in a polynomial we may observe two aspects : the syntactical and the semantical. Years of
tradition in the systematic study of polynomial functions have established a convention of repre-
senting polynomials by their monomial expansions. Therefore a relevant part of the mathematical
studies has tried to relate both aspects. Several different estimates have been used just to connect
the syntactical representation and the semantical geometric object, for instance, relating the degree
of a polynomial and the degrees of the hypersurfaces given as the fibers f−1({0}).
Let us give here the notation used for the dense monomial encoding : Let 〈·, ·〉 denote the standard
hermitian product on the field of complex numbers C. For every complex number a ∈ C, we denote
by |a| :=

√〈a, a〉 its absolute value. Each multivariate complex polynomial P ∈ C[X1, . . . , Xn] has
a dense representation of the form :

P (X1 . . . , Xn) =
∑
|μ|≤d

PμX
μ1
1 · · ·Xμn

n ,

where d := deg(P ) denotes the total degree of P , μ := (μ1, . . . , μn) ∈ Nn is a multi–index, |μ| :=
μ1 + · · · + μn is its length and the Pμ are coefficients in C. Whereas the degree is an outstanding
syntactical invariant for the geometry of the hypersurface defined by a polynomial, other metric
measures are required when diophantine properties are studied. We define the (standard) weight
of a complex polynomial P ∈ C[X1, . . . , Xn] as :

WT (P ) :=
∑
|μ|≤d

|Pμ|.

To simplify some expressions we often use the following notation : Given X := (X1, . . . , Xn) a list
of variables and μ := (μ1, . . . , μn) ∈ Nn a multi–index, we write Xμ to denote

Xμ := Xμ1
1 · · ·Xμn

n .

2.1.2 Absolute values over number fields

We resume here in a very concise form the language and notation used for absolute values over
number fields. For an introduction refer to e.g. [Lan83, Chapter 1], whereas a more complete
exposition of the theory of absolute values can be found in Artin’s Algebraic Numbers and Algebraic
Functions [Art51] or [McC76]. Let K be the algebraic closure of a number field K.
Let | · |ν : K −→ R+ be an absolute value defined on the number field K. By Kν we denote the
completion of K with respect to this absolute value | · |ν and by Kν we denote the algebraic closure
of Kν . For sake of simplicity, we also denote by | · |ν : Kν −→ R+ the (unique) extension to Kν

of the absolute value | · |ν defined on K. We also assume that for archimedean | · |ν the algebraic
closure Kν is included in C.
Finally, we denote by nν the degree of Kν over the completion of Q with respect to the absolute
value | · |ν : Q −→ R. Following [Lan83], let MK be a proper set of absolute values of K. We
assume that MK has been chosen such that it satisfies Weil’s product formula with multiplicities
nν : For all x ∈ K \ {0} holds

1
[K : Q]

∑
ν∈MK

nν log |x| = 0 (1)
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where log stands for the natural logarithm, cf. [Lan83, Chapter 2].
Let us recall that by [Lan83, Proposition 4.3], for any given absolute value w on Q and all absolute
values ν extending w to K, the following holds :∑

ν|w
nν = [K : Q]. (2)

Observe that the proper set of absolute valuesMK has only a finite number of archimedean absolute
values (precisely the independent extensions of the ordinary archimedean value on Q to K induced
by the non–isomorphic embeddings of K into C, see below).
Let us recall that for archimedean valuations, i.e. ν ∈ S, the absolute value | · |ν is defined in the
following terms : for every ν ∈ S, there exists an associated embedding σν : K −→ C, such that
for all a ∈ K holds

|a| := |σν(a)|,
where | · | stands for the usual absolute value in C. For archimedean valuations ν ∈ S, given a
polynomial P in K[X1, . . . , Xn], we denote by σν(P ) the polynomial in C[X1, . . . , Xn] given by

σν(P ) :=
∑
|μ|≤d

σν(Pμ)X
μ1
1 · · ·Xμn

n .

Now, for all valuations ν ∈MK , we define the (logarithmic) height of P with respect to the absolute
value | · |ν as the logarithm of the maximum of the absolute values of the coefficients of P with
respect to | · |ν , i.e.

htν(P ) := max
|μ|≤d

{log |Pμ|ν}.

Similarly, for every affine point x := (x0, . . . , xn) ∈ Kn+1 and for every ν ∈MK we may define the
height of x with respect to the absolute value | · |ν as

htν(x) := max{log |xi|ν : 0 ≤ i ≤ n}

Finally, we define in the same way for a finite set F ⊆ K the (logarithmic) height of F with respect
to the absolute value | · |ν as

htν(F) := max{log |a|ν : a ∈ F}.
Let us observe that all these notions of height depend on the absolute value | · |ν and on the field
extension Q ⊆ K. Later on (in Subsection 2.1.3 below), we discuss a notion of height independent
of the absolute value and the field extension under consideration : Weil’s height.
For archimedean absolute values we define the weight of P with respect to the absolute value | · |ν
as the sum of the absolute values of the coefficients of P , i.e. for a polynomial P ∈ K[X1, . . . , Xn]
as

wtν(P ) := log

⎛⎝ ∑
|μ|≤d

|Pμ|ν
⎞⎠ .

Let us remark that wtν(P ) = wt(σν(P )) holds. Moreover, if P ∈ K[X1, . . . , Xn] is a polynomial
of degree at most d, the following relations hold :

htν(P ) ≤ wtν(P ) ≤ log
(
d+ n

n

)
+ htν(P ).
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2.1.3 Height of affine points

The measures we have chosen for the estimation of degrees and heights in our complexity study
have a double aspect : geometric and diophantine. The geometric aspect refers to properties
coming from algebraic geometry. Typically we may consider degrees of polynomials, number of
monomials or the cardinality of zero–dimensional solution sets given by systems of multivariate
polynomial equations. The diophantine aspect is more concerned with metric properties of the
polynomials and the solution sets.
Both Nesterenko and Philippon considered in their works the Chow form or elimination polynomial
for the introduction of a notion of height for unmixed varieties. Furthermore, Philippon used the
Mahler measure for the definition of an invariant height for projective varieties over the algebraic
closure of Q by considering local height functions on the Chow form of the variety.
We start with the standard definition for the height of a projective point (cf. [Lan83]).
Given a projective point x := (x0 : x1 : . . . : xn) ∈ Pn(K) with coordinates in the number field K,
we define the logarithmic height of the projective point x (or simply the height) as :

ht(x) :=
1

[K : Q]

( ∑
ν∈MK

nνhtν(x)

)
,

which does not depend on the number field K under consideration. For any affine point x :=
(x1, . . . , xn) ∈ Kn, we define its affine logarithmic height as the height of the projective point
(1 : x1 : . . . : xn) ∈ Pn(K), i.e.

ht(x) := ht(1 : x1 : . . . : xn) :=
1

[K : Q]

( ∑
ν∈MK

nν max{0, htν(x)}
)

This notion of logarithmic height of an affine point is not so far from computational terms. Let
us assume K := Q[i] as number field and x ∈ Q[i]n a point in the corresponding affine space. The
point x := (x1, . . . , xn) can also be seen as a list of objects that may be represented by digits on a
tape of a Turing machine (cf. [BDG88] for more details). The bit length of x is understood as the
amount of tape cells of the Turing machine required to keep written numerators and denominators
of the coordinates of the list x. Let us denote by �(x) this bit length. An elementary argument
shows the following inequalities relating bit length and height :

ht(x) ≤ �(x) ≤ 4nht(x).

In the sequel we use either bit length or height to refer to these essentially equivalent notions for
affine points in Q[i]n.
Given a finite set F := {bi : 1 ≤ i ≤ M} ⊆ K, we can associate the affine point in KM whose
coordinates are the elements of F . Then, the height of F will be defined as the height of this affine
point, namely :

ht(F) := ht(b1, . . . , bM ).

Let us observe that if the finite set F consists of just one point F = {α} ⊂ K, the height ht(F) gives
the usual notion of logarithmic height of the algebraic number α ∈ K. This notion of logarithmic
height verifies the conditions a) to e) of Proposition 4 of Chapter 7 of [BCSS98b] in logarithmic
form, namely :

Lemma 23 Let x, y ∈ K be two complex algebraic numbers. With the previous notations, the
following inequalities hold :

i) ht(a) = log |a| ∀a ∈ Z, ht(x) = ht(−x) = ht(x−1) ∀x ∈ K \ {0},
ii) ht(x+ y) ≤ ht(x) + ht(y) + log 2,
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iii) ht(xk) = kht(x),

iv) ht(x+ y) ≥ ht(x) − (ht(y) + log 2), and

v) ht(xy) ≥ ht(x) − ht(y) for y 	= 0.

vi) For every absolute value ν ∈MK and x ∈ K \ {0} the following holds

−[K : Q]ht(x) ≤ log |x|ν ≤ [K : Q]ht(x).

It is not always wise to use these properties in the obvious inductive form or to apply them as a
recursive tool. For instance, the following Lemma shows how to bound the height of the sum of
algebraic numbers.

Lemma 24 Given x1, . . . , xn ∈ K algebraic numbers, we have:

ht(
n∑
i=1

xi) ≤ logn+ ht(x1, . . . , xn).

Proof.– Let x := (x1, . . . , xn) ∈ Kn be the corresponding affine point. We have

ht(
n∑
i=1

xi) =
1

[K : Q]

( ∑
ν∈MK

nν max{0, log

∣∣∣∣∣
n∑
i=1

xi

∣∣∣∣∣
ν

}
)
.

Now, we discuss separately archimedean and non–archimedean absolute values to obtain the
following inequality :

ht(
n∑
i=1

xi) ≤ 1
[K : Q]

(∑
ν∈S

nν max{0, logn+ htν(x)}
)

+

1
[K : Q]

⎛⎝ ∑
ν∈MK\S

nν max{0, htν(x)}
⎞⎠ ≤

≤ 1
[K : Q]

(∑
ν∈S

nν logn

)
+

1
[K : Q]

( ∑
ν∈MK

nν max{0, htν(x)}
)

By Identity 2 on page 17 above, we easily conclude ht(
∑n

i=1 xi) ≤ logn+ ht(x) as desired.

For multivariate polynomials P ∈ K[X1, . . . , Xn] of degree at most d, we can identify the polyno-
mial P with the affine point P ∈ KM , whose coordinates are the coefficients of P . Let M be the
combinatorial number :

M :=
(
d+ n

n

)
,

then, the height of P is defined as the height of the affine point P ∈ KM . This yields the following
identity

ht(P ) := ht(P ) =
1

[K : Q]

( ∑
ν∈MK

nν max{0, htν(P )}
)
.

Another useful notion is that of absolute logarithmic weight, which is also independent of the field
extension. For every polynomial P ∈ K[X1, . . . , Xn], we define its weight in the following terms :
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• Archimedean weight :

wta(P ) :=
1

[K : Q]

(∑
ν∈S

nν max{0, wtν(P )}
)
,

• Non–archimedean weight :

wtna(P ) :=
1

[K : Q]

⎛⎝ ∑
ν∈MK\S

nν max{0, htν(P )}
⎞⎠ ,

• Weight :
wt(P ) := wta(P ) + wtna(P ).

Let us observe that, if P ∈ Z[X1, . . . , Xn] is a polynomial with integer coefficients, this notion of
height agrees with the logarithm of the standard weight, i.e.

wt(P ) = logWT (P ).

These notions of height and weight have many relevant applications and properties. Let us shortly
point out some relevant facts concerning univariate polynomials.

Lemma 25 Let P =
∑d

k=0 akX
k ∈ K[X ] be a univariate polynomial and x ∈ K an algebraic

number. Then holds :
ht(P (x)) ≤ log(d+ 1) + ht(P ) + dht(x).

Proof.– Let us define the affine points a := (a0, a1, . . . , ad) ∈ Kd+1 and A := (a0, a1x, . . . , adx
d) ∈

Kd+1. Then, we may apply the previous Lemma 24 to obtain

ht(P (α)) ≤ log(d+ 1) + ht(A).

Now, for every ν ∈MK we have the following obvious inequality

max{0, htν(A)} ≤ max{0, htν(a)} + dmax{0, log |vx|}.
This yields the following upper bound :

ht(A) ≤ ht(a) + dht(x) ≤ ht(P ) + dht(x),

which proves the Lemma.

Lemma 26 (A lower bound) Given P =
∑d
k=0 adX

d ∈ K[X ] an univariate polynomial, and
x ∈ K, we have:

ht(P (x)) ≥ ht(x) − (log d+ 2ht(P ) + log 2)

Proof.– This proof follows the same strategy as the proof in [BCSS98b], modified by the bounds
described in the two Lemmata 24,25 above.

An obvious consequence of the previous Lemma is the following estimate for the height of the zeros
of a univariate polynomial.

Corollary 27 Given P =
∑d
k=0 adX

d ∈ K[X ], and ζ ∈ K such that P (ζ) = 0. Then, we have

ht(ζ) ≤ (log d+ 2ht(P ) + log 2) .

It seems convenient to recall the reader the following, simpler estimate :

Lemma 28 Let x ∈ Kn and y ∈ Km be two points in two affine spaces, we have

ht(x, y) ≤ ht(x) + ht(y).
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2.1.4 Norms of affine points and linear operators

For the purposes of our study, we are interested in the normed vector space Kn endowed with the
norms induced by the absolute values in MK . Let ν ∈MK an absolute value and | · |ν : K −→ R+

the absolute value function. We can endow Kn with a norm ‖ · ‖ν : Kn −→ R+ in the following
way :

• If | · |ν is archimedean (i.e. ν ∈ S), we define ‖v‖ν :=

√√√√ n∑
i=1

|zi|2ν .

• Otherwise (i.e. if ν ∈MK \ S), we define ‖v‖ν :=
n

max
i=1

|zi|ν .

Let Kν be the completion of K with respect to the absolute value | · |ν . According to the previous
rules, we may also define the (unique) extensions to Kν and Kn

ν of the previous functions defined
on K. In other words, we also use | · |ν and ‖ · ‖ν to denote the mappings

| · |ν : Kν −→ R+ and ‖ · ‖ν : Kn
ν −→ R+.

Thus, we may introduce the standard notions of norm for linear and multilinear operators over
Kν−vector spaces :
Let us assume that A : Kn

ν −→ Kn
ν is a linear mapping. As usual, we define the norm ‖A‖ν of

the n× n matrix A ∈ Mn(Kν) in the following terms :

‖A‖ν := sup{‖A(v)‖ν : v ∈ Kn
ν , ‖v‖ν ≤ 1}.

Given a multilinear operator
A : (Kn

ν )m −→ Kn
ν ,

we define its norm in a straight forward way as :

‖A‖ν := sup{‖A(v1, . . . , vm)‖ν : vi ∈ Kn
ν , ‖vi‖ν ≤ 1, ∀i, 1 ≤ i ≤ m}.

Let us also introduce the Frobenius or Hilbert–Weil norm ‖ · ‖(F )
ν on Mn(Kν), associated to the

absolute value ν ∈ MK . First of all, let us assume that | · |ν is archimedean. Let σν : Kν −→ C

the embedding of the completion of K into the field of complex numbers. For every square matrix
A ∈ Mn(Kν) we define its Frobenius norm in the following terms :

‖A‖(F )
ν :=

√
Tr(A∗

νAν) =

√√√√ n∑
i,j=1

|aij |2ν ,

where Tr stands for the standard trace of a square matrix, Aν := σν(A) ∈ Mn(C) and A∗
ν is the

transposed conjugate matrix of Aν .
On the other hand, if |·|ν is non–archimedean and A := (ai,j)i,j ∈ Mn(Kν), we define the Frobenius
norm of A with respect to the non–archimedean absolute value | · |ν in the following terms :

‖A‖(F )
ν := max{|ai,j |ν : 1 ≤ i, j ≤ n}.

Let us consider in Mn(Kν) the subgroup GL(n,Kν) of all non–singular n×n matrices with entries
in Kν . Similarly, we denote by GL(n,K) the subgroup of GL(n,Kν) of all non–singular n × n
matrices with entries in the number field K. According to our notation introduced before, we define
the algebraic varieties Σν ⊆ Mn(Kν) and Σ ⊆ Mn(K) of n× n singular matrices respectively in
the following terms :

Σν := Mn(Kν) \GL(n,Kν) and Σ := Mn(K) \GL(n,K).

These notions of norms of linear and multilinear operators verify the obvious usual properties. Let
us point just a few of them which are going to be used in the sequel.
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Lemma 29 Let ν ∈ MK be an absolute value on K. Let A := (ai,j)i,j ∈ Mn(Kν) be a square
matrix and let B : (Kn

ν )m −→ Kn
ν a multilinear operator. Let J denote a suitable set of indices

for B, i.e. B := (bj)j∈J are the entries of B. The following properties hold :

i) (cf. [Cia82], for instance) For archimedean | · |ν holds ‖A‖ν ≤ ‖A‖(F )
ν ≤ √

n‖A‖ν .

ii) (cf. [Tyl94]) For non–archimedean | · |ν holds the equality ‖A‖ν = ‖A‖(F )
ν .

iii) Moreover, if A and B have entries in the number field K, they can be seen as points of the
affine spaces Kn2

and Kmn

, respectively. Thus, the following inequalities hold :

log ‖A‖ν ≤ log ‖A‖(F )
ν ≤ logn+ htν(A) ≤ logn+ [K : Q] max{ht(ai,j) : 1 ≤ i, j ≤ n},

log ‖B‖ν ≤ (m+ 1) logn+ [K : Q] max{ht(bj) : j ∈ J}.

iv) For every ν ∈MK, these notions of norm behave as expected with respect to matrix products,
i.e.

‖AB‖ν ≤ ‖A‖ν‖B‖ν
v) In particular, if A is a non–singular A ∈ GL(n,Kν)), the following inequalities hold :

‖A−1B‖ν ≥ ‖B‖ν
‖A‖ν ,

‖A−1‖ν ≤ ‖A‖n−1
ν

| det(A)|ν .

vi) If the matrix A is non–singular, then for every square matrix C ∈ Mn(Kν) holds :

If ‖A− C‖ν < 1
‖A−1‖ν then this implies C ∈ GL(n,Kν).

We relate norms, height and weight for images of polynomial mappings in the following Lemma :

Lemma 30 Let F : Kn −→ Km a polynomial mapping, where m ≥ n. Let us assume that
F := (f1, . . . , fm), where fi ∈ K[X1, . . . , Xn] is a polynomial of degree at most d such that

wt(fi) ≤ w, ∀i, 1 ≤ i ≤ m.

Let x := (x1, . . . , xn) ∈ Kn be an affine point. The following inequalities hold :

i) ht(F (x)) ≤ w + dht(x).

ii) Let DF (x) : Kn
ν −→ Km

ν be the tangent mapping given by the Jacobian matrix of F at x.
Then holds :

log ‖DF (x)‖ν ≤ log(mnd) + (d− 1)htν(x) + max{wtν(fi) : 1 ≤ i ≤ m},

as well as the upper bound

log ‖DF (x)‖ν ≤ log(mnd) + [K : Q] (w + (d− 1)ht(x)) .

iii) (Liouville lower bound) For every ν ∈MK , the following holds :

log ‖F (x)‖ν ≥ −[K : Q] (w + dht(x)) .
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Proof.– Claim i) follows by a strategy similar to that introduced in the proof of Lemma 25. The
only difference consists in replacing the height by the weight when discussing archimedean absolute
values. Claim ii) uses the following chain of inequalities :

‖DF (x)‖ν ≤ ‖DF (x)‖(F )
ν ≤ log(nm) + log max{| ∂fi

∂Xj
(x)|ν : 1 ≤ i ≤ m, 1 ≤ j ≤ m}.

Finally, we just have to observe that log | ∂fi
∂Xj

(x)|ν ≤ log d+ wtν(fi) + (d− 1)htν(x). The rest

follows then from the relations between local and logarithmic weights and heights. To prove Claim
iii), we argue in the following way : Let us assume that fi(x) 	= 0. In this case, we have

ht(fi(x)−1) = ht(fi(x)).

Moreover, the following inequality holds :

1
[K : Q]

log |fi(x)|−1
ν ≤ 1

[K : Q]

( ∑
ν∈MK

nν max{0, log |fi(x)|−1
ν }

)
= ht(fi(x)).

Using the upper bound of Claim i), we conclude the following inequality :

1
[K : Q]

log |fi(x)|−1
ν ≤ ht(fi(x)) ≤ w + dht(x).

Hence, the following holds : log ‖F (x)‖ν ≥ log |fi(x)|ν ≥ −[K : Q] (w + dht(x)).

3 Newton’s approach to solving : On the bit length of

approximate zeros

In this Section we shall prove the main statements concerning approximate zeros given in the
Introduction. The Section is divided into three Subsections : The first is devoted to a proof of
the Eckardt & Young Theorem for non–archimedean absolute values, the second and third show
respectively lower and upper bounds for the bit length of approximate zeros.

3.1 Eckardt & Young Theorem.

First of all, we show Theorem 3 from page 6 of the Introduction. To this end, we quickly recall
some of the notation : Let us consider in Mn(Kν) the subgroup GL(n,Kν) of all non–singular
n× n matrices with entries in Kν . Similarly, we denote by GL(n,K) the subgroup of GL(n,Kν)
of all non–singular n × n matrices with entries in the number field K. We define the algebraic
varieties Σν ⊆ Mn(Kν) and Σ ⊆ Mn(K) of n× n singular matrices respectively as

Σν := Mn(Kν) \GL(n,Kν), and Σ := Mn(K) \GL(n,K).

Let us also recall that d(F )
ν is the Frobenius (also Hilbert–Weil) metric on Mn(Kν). Then, the

following holds :

Theorem 31 (Eckardt & Young) Let ν ∈ MK be an absolute value. For every non–singular
n× n matrix A ∈ GL(n,K), the following equality holds :

d(F )
ν (A,Σ) = d(F )

ν (A,Σν) = inf{d(F )
ν (A,M) : M ∈ Σ} =

1
‖A−1‖ν .
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Proof.– Let us start by assuming that | · |ν is an archimedean absolute value. The proofs of
[EY36, BCSS98a] establish the following identity :

d(F )
ν (A,Σν) =

1
‖A−1‖ν .

Now, since Σ is dense in Σν for the Frobenius norm, the statement follows for the archimedean
case. Let us assume now that ν ∈MK \S defines a non–archimedean absolute value | · |ν , and that
A = (ai,j)i,j ∈ GL(n,K) is a non–singular matrix. Let Ai,j be the minor of matrix A obtained by
suppressing row i and column j. Thus, from Claim ii) of Lemma 29 on page 22, we conclude the
following identity :

1
‖A−1‖ν = min

{∣∣∣∣det(A)
Ai,j

∣∣∣∣
ν

: Ai,j 	= 0
}
.

Without loss of generality, we may assume that this minimum is reached at A1,1, i.e. we assume
that the following identity holds :

1
‖A−1‖ν =

∣∣∣∣det(A)
A1,1

∣∣∣∣
ν

.

Let us consider the following (n− 1) × (n− 1) system of linear equations :

X2a2,2 + . . .+Xna2,n = a2,1

...
...

... (3)
X2an,2 + . . .+Xnan,n = an,1

As the minor A1,1 is non–zero, this system of equations has a unique solution, which we shall
denote by (λ2, . . . , λn) ∈ Kn−1

ν . Using Cramer’s rule, we can determine the values λi, for every i,
2 ≤ i ≤ n in the following terms :

λi :=
(−1)iA1,i

A1,1
∈ K.

Now we define the n× n square matrix M as

M :=

⎛⎜⎝m1,1 · · · m1,n

...
...

mn,1 · · · mn,n

⎞⎟⎠ ∈ Mn(K),

whose entries are given by the following rules :

• For every j 	= 1, we define mi,j := ai,j ∈ K.

• For every i, 1 ≤ i ≤ n, we define mi,1 :=
n∑
j=2

λiai,j .

Obviously, the matrix M is singular and its entries are in K (i.e. M ∈ Σ). Moreover, we have

A−M :=

⎛⎜⎜⎝
c1,1 0 · · · 0
0 0 · · · 0
...

...
0 0 · · · 0

⎞⎟⎟⎠ , where c1,1 = a1,1 −
n∑
i=2

λia1,i.
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Using the identity that relates the values λi and the minors of the matrix A, one easily concludes
that

c1,1 = a1,1 − 1
A1,1

n∑
i=2

(−1)ia1,iA1,i =
det(A)
A1,1

.

Thus, we conclude the following inequality :

d(F )
ν (A,Σ) ≤ ‖A−M‖(F )

ν =
∣∣∣∣det(A)
A1,1

∣∣∣∣
ν

=
1

‖A−1‖ν
On the other hand, Claim v) of Lemma 29 on page 22 shows that

d(F )
ν (A,Σ) ≥ d(F )

ν (A,Σν) ≥ 1
‖A−1‖ν

and therefore the proof is concluded for the non–archimedean case, too.

3.2 Approximate zero theory : Lower bounds for the bit length of ap-
proximate zeros.

Following the notations and assumptions of Subsection 1.1, we state a few more technical details,
which will be used in the proofs of our statements concerning approximate zero theory.
Introduced by S. Smale as a basic ingredient to study the complexity of Gauss’ proof of the
Fundamental Theorem of Algebra (cf. [Sma81, BCSS98a] and the references therein), the notion
of approximate zero has evolved to become a new foundation for numerical analysis. Previously,
there had been several deep studies of the univariate case ([Sma81, Sma85, Sma86a, Sma86b,
Ren87, SS86, SS85]), where the notion was successfully extended by M. Shub and S. Smale to the
multivariate case (cf. [SS93a, SS93b, SS93c, SS96, SS94b]). Recent advances within this school have
been obtained by J.P. Dedieu ([Ded96, Ded97c, Ded97b, Ded97a, DSa, DSb, DS98]), G. Malajovich
([Mal93, Mal94, Mal95]) and J.C. Yakoubsohn ([Yak95b, Yak95a] and M.H. Kim [Kim]).
A useful technical tool to prove the γ−Theorem 2 (given on page 5 of the Introduction) is the
following Proposition :

Proposition 32 With the same notations and assumptions as in Theorem 2, let us assume that

u := ‖z − ζ‖νγν(F, ζ) ≤ 3 −√
7

2
< 1 −

√
2

2
.

Then DF (z) ∈ GL(n,K) is a non–singular matrix, and the following inequality holds :

‖DF (z)−1DF (ζ)‖ν ≤ (1 − u)2

ψ(u)
,

where ψ(u) := 2u2 − 4u+ 1.

Let us observe two facts concerning the γ−neighbourhood of an isolated smooth zero ζ ∈ VK(f1, . . . , fn) :
First, any smooth zero ζ ∈ VK(f1, . . . , fn) is a fixed point of the Newton operator. Second, singular
zeros ζ′ ∈ VK(f1, . . . , fn) satisfy DF (F, ζ′) 	∈ GL(n,K). Thus, no other zero ζ′ ∈ VK(f1, . . . , fn)
lies in the γν−neighbourhood of ζ. In other words, the following inequality holds for every
ζ′ ∈ VK(f1, . . . , fn), ζ′ 	= ζ :

‖ζ − ζ′‖νγν(F, ζ) ≥ 3 −√
7

2
.
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In fact, defining sepν(F,K) as the minimum “separating” distance of any two K−rational zeros
with respect to the absolute value ν ∈MK , we have

sepν(F,K) ≥ 3 −√
7

2γν(F, ζ)
. (4)

Using the identity established in the Eckardt & Young Theorem 3 on page 6, we can show the
following lower bound for γν(F, ζ) :

Proposition 33 Let f1, . . . , fn ∈ Z[X1, . . . , Xn] be a sequence of multivariate polynomials. Let us
assume that the following holds :

• d = max{deg(fi) : 1 ≤ i ≤ n} ≥ 2,

• ht(fi) ≤ h, wt(fi) ≤ w, 1 ≤ i ≤ n.

Let ζ ∈ VK(f1, . . . , fn) be a smooth K−rational point with respect to the system of polynomials
F := (f1, . . . , fn). Then, with the same notations as before, the following inequality holds :

log γν(F, ζ) ≥ log d(F )
ν (DF (ζ)−1,Σ)

d− 1
− (

h

d− 1
+ 2 log d).

Proof.– Using Claim v) of Lemma 29, we have the following inequality :

γν(F, ζ)d−1 ≥ ‖D(d)F (ζ)
d! ‖ν

‖DF (ζ)‖ν .

From Theorem 3 we obviously conclude

1
‖DF (ζ)‖ν = d(F )

ν (DF (ζ)−1,Σ).

On the other hand D(d)F (ζ) is a multilinear operator whose entries do not depend on ζ. Moreover,
since d = max{deg(fi) : 1 ≤ i ≤ n}, we are sure that this multilinear operator is not identically
zero. Let us use the following notation for the dense encoding of the polynomials f1, . . . , fn :

fi :=
∑
|μ|≤d

a(i)
μ Xμ,

where μ ∈ Nn are multi–indices. Now, there exists some μ := (μ1, . . . , μn) ∈ Nn, such that |μ| = d,
and some i ∈ N, 1 ≤ i ≤ n, such that a(i)

μ 	= 0. Then, the following inequality holds :

‖D
(d)F (ζ)
d!

‖ν ≥ ‖μ1! · · ·μn!
d!

‖ν |a(i)
μ |ν .

As the polynomials f1, . . . , fn have integer coefficients, we know that the following also holds :

log ‖D
(d)F (ζ)
d!

‖ν ≥ −(d log d+ h) ≥ −(d log d+ w).

Thus, we conclude log γν(F, ζ) ≥ log d(F )
ν (DF (ζ)−1,Σ)

d− 1
−

(
d log d
d− 1

+
h

d− 1

)
.

To prove Theorem 4 from page 6, we establish the following Theorem and then derive Theorem 4 :
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Theorem 34 Let f1, . . . , fn ∈ Z[X1, . . . , Xn] be a sequence of multivariate polynomials. Let us
assume that the following properties hold

• d = max{deg(fi) : 1 ≤ i ≤ n} ≥ 2,

• wt(fi) ≤ w, 1 ≤ i ≤ n.

Let ζ ∈ VK(f1, . . . , fn) be a smooth K−rational point of the system F := (f1, . . . , fn). Let | · |ν :
K −→ R+ be an absolute value defined on K, and let L ⊆ K be a number field such that ζ ∈ Lnν .
Then, for every z ∈ Ln, z 	= ζ satisfying

||z − ζ||νγν(F, ζ) ≤ 3 −√
7

2
,

the following inequality holds :

ht(z) ≥ 1
2d− 1

(
log γν(F, ζ) − log(n2d) − 2

[L : Q]
− 2w

)
.

With the same assumptions also holds :

ht(z) ≥ 1
2d− 1

(
log d(F )

ν (DF (ζ)−1,Σν) − (d− 1)(log(n2d3) + 2)
(d− 1)[L : Q]

− 3w

)
.

Moreover, in the case where L = Q[i] is the field of Gaussian rationals, the two previous lower
bounds can be rewritten as :

ht(z) ≥ 1
2d− 1

(
log γν(F, ζ) − log(n2d) − 2

2
− 2w

)
and

ht(z) ≥ 1
2d− 1

(
log d(F )

ν (DF (ζ)−1,Σν) − (d− 1)(log(n2d3) + 2)
2(d− 1)

− 3w

)
.

Proof.– Let us consider the Taylor expansion of F at ζ :

F (z) =
d∑

k=1

D(k)F (ζ)(z − ζ)k

k!
.

The following inequality holds :

‖F (z)‖ν =

∥∥∥∥∥DF (z)DF (z)−1DF (ζ)
d∑

k=1

DF (ζ)−1DF (k)(ζ)(z − ζ)k

k!

∥∥∥∥∥
ν

≤ ‖DF (z)‖ν‖DF (z)−1DF (ζ)‖ν ·
(

d∑
k=1

(γν(F, ζ)‖z − ζ‖ν)k−1

)
‖ζ − z‖ν

Defining u := ‖ζ − z‖νγν(F, ζ) and ψ(u) := 2u2 − 4u + 1, from Proposition 32 above (cf. also
Lemma 2 in [BCSS98a, p. 146] ), we conclude the following inequality :

‖F (z)‖ν ≤ ‖DF (z)‖ν (1 − u)u
ψ(u)γν(F, ζ)

.

Since (1−u)u
ψ(u) is increasing in the closed interval

[
0, 3−√

7
2

]
, we have

‖F (z)‖ν ≤ ‖DF (z)‖ν c1
γν(F, ζ)

,
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where c1 =
4√

7 − 1
. By Claim iii) of Lemma 30, the following holds :

log ‖F (z)‖ν ≥ −[L : Q](w + dht(z)),

whereas by Claim ii) of Lemma 30, we conclude that

log ‖DF (z)‖ν ≤ log(n2d) + [L : Q] ((d− 1)ht(z) + w) .

Thus, we obtain :

−[L : Q](w + dht(z)) ≤ log(n2d) + [L : Q] ((d− 1)ht(z) + w) + log c1 − log γν(F, ζ).

Hence we conclude :

log γν(F, ζ) − log(n2d) − 2 − 2[L : Q]w ≤ (2d− 1)[L : Q]ht(z), and

ht(z) ≥ 1
2d− 1

(
log γν(F, ζ) − log(n2d) − 2

[L : Q]
− 2w

)
.

In particular, in the case where L = Q[i] is the field of Gaussian rationals, we can conclude the
following lower bound :

ht(z) ≥ 1
2d− 1

(
log γν(F, ζ) − log(n2d) − 2

2
− 2w

)
.

On the other hand, using Proposition 33, and noting that the logarithmic height of the polynomials
f1, . . . , fn is bounded by the logarithmic weight, from this lower bound one easily concludes the
following inequality :

ht(z) ≥ 1
2d− 1

(
log d(F )

ν (DF (ζ)−1,Σν) − (d− 1)(log(n2d3) + 2)
(d− 1)[L : Q]

− 3w

)
.

In the case of L = Q[i], this yields the following lower bound :

ht(z) ≥ 1
2d− 1

(
log d(F )

ν (DF (ζ)−1,Σν) − (d− 1)(log(n2d3) + 2)
2(d− 1)

− 3w

)
.

Let us remark that in these lower bounds the “positive part” is essentially log γ(F, ζ), whereas
the “negative part” is always bounded by the input length. This result helps interpreting our
observations on the first example given on page 32 below.
In particular, we can conclude the validity of Theorem 4 (as given in the Introduction on page 6)
by noting that the weight of a multivariate polynomial with integer coefficients of degree at most
2 is easily bounded in terms of its logarithmic height, namely :

wt(fi) ≤ 2 logn+ ht(fi)

It is worth observing that the same techniques also allow us to establish interesting results on the
lower bound for sparse polynomials systems. This can be done in the following way :

Corollary 35 Let f1, . . . , fn ∈ Z[X1, . . . , Xn] be a sequence of multivariate polynomials. Let us
assume that the following properties hold :

• d = max{deg(fi) : 1 ≤ i ≤ n} ≥ 2,
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• ht(fi) ≤ w, 1 ≤ i ≤ n,

• The polynomials f1, . . . , fn have at most M non–zero coefficients.

Let ζ ∈ VK(f1, . . . , fn) be a smooth K−rational point of the system F := (f1, . . . , fn). Let | · |ν :
K −→ R+ be an absolute value defined on K, and let L ⊆ K be a number field such that ζ ∈ Lnν .
Then, for every z ∈ Ln, z 	= ζ satisfying

||z − ζ||νγν(F, ζ) ≤ 3 −√
7

2
,

the following inequality holds :

ht(z) ≥ 1
2d− 1

(
log γν(F, ζ) − log(n2d) − 2

[L : Q]
− 2(logM + h)

)
.

With the same assumptions also holds

ht(z) ≥ 1
2d− 1

(
log d(F )

ν (DF (ζ)−1,Σν) − (d− 1)(log(n2d3) + 2)
(d− 1)[L : Q]

− 3(logM + h)

)
.

Moreover, in the case where L = Q[i] is the field of Gaussian rationals, the two previous lower
bounds may be rewritten as :

ht(z) ≥ 1
2d− 1

(
log γν(F, ζ) − log(n2d) − 2

2
− 2(logM + h)

)
, and

ht(z) ≥ 1
2d− 1

(
log d(F )

ν (DF (ζ)−1,Σν) − (d− 1)(log(n2d3) + 2)
2(d− 1)

− 3(logM + h)

)
.

Now we will show Proposition 5 from page 7 of the Introduction. Let us recall that statement :

Proposition 36 With the notations and assumptions introduced in Section 1, let F := (f1, . . . , fn)
be a sequence of n−variate polynomials with integer coefficients defining a zero–dimensional alge-
braic variety V (f1, . . . , fn), and let ζ ∈ VK(f1, . . . , fn) ∩ ZnK be a smooth K−rational point whose
entries are algebraic integers. Let us also assume that for every archimedean absolute value | · |ν
(i. e. ν ∈ S), the following holds :

3‖ζ‖νγν(F, ζ) ≥ 3 −
√

7.

Then the average height of any approximate zero z ∈ Q[i]nD of the system F with associate variety
Vζ that satisfies the γ–Theorem, also satisfies the following inequality :

htav(z) ≥ 1
2

[
ht(ζ) − (

1
2

logn+ log 2)
]
.

Proof.– Let us denote by Vζ ⊆ V (f1, . . . , fn) the Q−definable irreducible component of V (f1, . . . , fn)
containing ζ. Let D := deg(Vζ) and Vζ := {ζ1, . . . , ζD}. Let us write z := (z1, . . . , zD) ∈ Q[i]nD,
such that for every i, 1 ≤ i ≤ D, the following inequalities hold :

‖zi − ζi‖ ≤ 3 −√
7

2γ(F, ζi)
,

where ‖ · ‖ : Kn −→ R is the standard hermitian norm induced by the inclusion ι : K ↪→ C.
Thus, we conclude that for every i, 1 ≤ i ≤ D, the following inequality holds :

‖zi‖ ≥ ‖ζi‖ − 3 −√
7

2γ(F, ζi)
.
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Without loss of generality, let us assume that K = K(ζ) = K(Vζ), and let D := [K : Q]. Let us
also consider the class of all Q− embeddings of K in C, i.e. σ1, . . . , σD : K ↪→ C. In a slight abuse
of notation, we also use σ1, . . . , σD to denote the corresponding embeddings of the affine space Kn

in Cn, namely
σ1, . . . , σD : Kn ↪→ Cn.

Thus, we have Vζ := {σ1(ζ), . . . , σD(ζ)}, and we may conclude that for every i, 1 ≤ i ≤ D, the
following inequality holds :

‖zi‖ ≥ ‖σi(ζ)‖ − 3 −√
7

2γ(F, σi(ζ))
. (5)

Moreover, for every i, 1 ≤ i ≤ D, there exists an archimedean absolute value νi ∈ S, such that the
following two equalities hold :

• ‖ζi‖ = ‖σi(ζ)‖ = ‖ζ‖νi ,

• γ(F, ζi) = γ(F, σi(ζ)) = γνi(F, ζ).

Our hypothesis on ζ would obviously imply for every i, 1 ≤ i ≤ D the following inequality :

‖ζi‖ − 3 −√
7

2γ(F, ζi)
≥ 1

2
‖ζ‖νi .

Thus, we conclude that for every i, 1 ≤ i ≤ D holds :

‖zi‖ ≥ 1
2
‖ζ‖νi .

Let us denote zi := (zi,1, . . . , zi,n) ∈ Q[i]n for every i, 1 ≤ i ≤ D. Then, we may conclude the
following inequality : √

nmax{1, |zi,1|, . . . , |zi,n|} ≥ 1
2
‖ζ‖νi ,

which implies that for every i, 1 ≤ i ≤ D holds :

log
(√
nmax{1, |zi,1|, . . . , |zi,n|}

) ≥ htνi(ζ) − log 2. (6)

This implies 2ht(zi)+ 1
2 logn ≥ htνi(ζ)− log 2. Adding all these quantities, we obtain the following

inequality :

2

(
D∑
i=1

ht(zi)

)
≥

(
D∑
i=1

htνi(ζ)

)
−D

(
1
2

logn+ log 2
)
,

or equivalently, the following inequality :

2

(
D∑
i=1

ht(zi)

)
≥

(∑
ν∈S

nνht(ζ)

)
−D

(
1
2

logn+ log 2
)
.

Finally, since D = [K : Q] and ζ ∈ ZnK , we conclude that

htav(z) ≥ 1
2

[
ht(ζ) −

(
1
2

logn+ log 2
)]

,

as desired.

The proof of Corollary 5 on page 7 of the Introduction follows a similar sequence of arguments.
We reproduce the statement here and show how it can be proved.
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Corollary 37 With the same notations as in Proposition 36, let ζ ∈ ZnK ∩ VK(f1, . . . , fn) be
a smooth K−rational zero of the system F := (f1, . . . , fn) and let us assume that for every
archimedean absolute value | · |ν : K −→ R (i. e. for every ν ∈ S), the following holds :

γν(F, ζ) ≥ 3 −√
7

2
.

Then the average height of any approximate zero z ∈ Q[i]nD of the system F with associate variety
Vζ that satisfies the γ–Theorem, also satisfies the following inequality :

htav(z) ≥ 1
2

[
ht(ζ) − (

1
2

logn+ log 2)
]
.

Proof.– Using the same notations and steps as in the proof of the Proposition 36 on page 29, we
obtain the following inequalities for every i, 1 ≤ i ≤ D (cf. inequality 5 on page 30) :

‖zi‖ ≥ ‖ζ‖νi −
3 −√

7
2γνi(F, ζ)

.

Now, provided that ‖ζ‖νi ≥ 1, since γνi(F, ζ) ≥ 3−√
7

2 , we conclude that :

3‖ζ‖νi ≥ 3 −
√

7.

Hence,

‖zi‖ ≥ ‖ζ‖νi −
3 −√

7
2γνi(F, ζ)

≥ 1
2
‖ζ‖νi .

In this case, we may conclude (as in inequality 6 above) the following inequality :

log
(√
nmax{1, |zi,1|, . . . , |zi,n|}

) ≥ htνi(ζ) − log 2.

Otherwise, if ‖ζ‖νi ≤ 1, the following inequality obviously holds :

log
(√
nmax{1, |zi,1|, . . . , |zi,n|}

) ≥ htνi(ζ) − log 2.

Thus, to complete the proof, one proceeds as in the proof of the Proposition 5 on page 29.

Let us recall Corollary 7 from page 8 of the Introduction before proving it :

Corollary 38 Let F := (f1, . . . , fn) be a system of multivariate polynomials with integer coeffi-
cients satisfying the conditions i) to v) given on page 3. Let ζ = (ζ1, . . . , ζn) ∈ Zn+1

K ∩VK(f1, . . . , fn)
be a smooth K−rational zero whose coordinates are algebraic integers. Let us now define the system
of polynomial equations in n+ 1 variables :

G := (g1, . . . , gn+1) ∈ (Z[X1, . . . , Xn+1])
n+1

,

given by the following rules :

• gi := fi ∈ Z[X1, . . . , Xn+1] for every i, 1 ≤ i ≤ n,

• gn+1 := (Xn+1 −Xn) (Xn+1 − (Xn + 1)) .

Let ζ′ ∈ VK(g1, . . . , gn+1) ∩ Zn+1
K be the affine point given by

ζ′ := (ζ1, . . . , ζn, ζn) ∈ Zn+1
K .

Let Vζ′ ⊆ V (g1, . . . , gn+1) be the Q−definable irreducible component of V (g1, . . . , gn+1) containing
ζ′. Then the average height of any approximate zero z ∈ Q[i](n+1)D of the system F with associate
variety Vζ′ that satisfies the γ–Theorem, also satisfies the following inequality :

htav(z) ≥ 1
2

[
ht(ζ) − (

1
2

log(n+ 1) + log 2)
]
.
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Proof.– Let us consider the two affine points in V (g1, . . . , gn+1) ∩ Zn+1
K given by

ζ′ := (ζ1, . . . , ζn, ζn) ∈ Zn+1
K , andζ” := (ζ1, . . . , ζn, ζn+1) ∈ Zn+1

K .

We make use of Inequality 4 on page 26 to conclude that for every archimedean absolute value
ν ∈MK , the following holds :

1 = ‖ζ′ − ζ”‖ν ≥ 3 −√
7

2γν(G, ζ′)
.

In particular, we conclude that for every archimedean absolute value ν ∈ S holds :

γν(G, ζ′) ≥ 3 −√
7

2
.

Now, let us assume D := deg(Vζ′) = [K : Q] and Vζ′ := {ζ′1, . . . , ζ′D}. Let σ1, . . . , σD : K ↪→ C be
the set of Q−embeddings of K in C and let us denote accordingly σ1, . . . , σD : Kn ↪→ Cn. Then
Vζ′ := {σ1(ζ′), . . . , σD(ζ′)}, and for every i, 1 ≤ i ≤ D, there exists νi ∈ S such that :

• ‖ζ′i‖ = ‖σi(ζ′)‖ = ‖ζ′‖νi and

• γ(F, ζ′i) = γ(F, σi(ζ′)) = γνi(F, ζ′).

Now, if ‖ζ′‖νi ≥ 1, we obviously have

3‖ζ′‖νiγνi(F, ζ
′) ≥ 3

(
3 −√

7
2

)
≥ 3 −

√
7.

Following the same steps as in the proof of Proposition 5 on page 29 above, we may conclude that
the following inequality holds for ‖ζ′‖νi ≥ 1 (recall Inequality 6 from page 30) :

log
(√
n+ 1max{1, |zi,1|, . . . , |zi,n+1|}

) ≥ htνi(ζ
′) − log 2 = htνi(ζ) − log 2.

On the other hand, the same inequality also holds for ‖ζ′‖νi ≤ 1. Thus, we proceed again as in
the proof of Proposition 5 on page 29.

3.2.1 Examples

The following examples illustrate how the previous lower bounds for the bit length of approximate
zeros apply. We start with an example inspired by a classical univariate example due to M.
Mignotte (cf. [Mig89]) :

Example 1 (Using log γ as in Theorem 34) Let us consider the system of multivariate poly-
nomials F := (f1, . . . , fn+1) given by the following rules :

• f1 := X1 − 2,

• fi := Xi −X2
i−1 for every i, 2 ≤ i ≤ n− 1,

• fn := Xn+1 −X2
n,

• fn+1 := Xn+1Xn − 2(Xn−1Xn − 1)2.

This system F has three solutions in Cn+1, where two of them, say ζ1, ζ2 ∈ Rn+1, satisfy the
following inequality :

‖ζ1 − ζ2‖ ≤ 2

2
5·2n−2

2

≤ 2
22n−1 .
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Thus, using Inequality 4 from page 26, we may conclude :

2
22n−1 ≥ ‖ζ1 − ζ2‖ ≥ 3 −√

7
2γ(F, ζi)

.

By the first lower bound given in Theorem 34 on page 27, we conclude that for all approximate zeros
z1, z2 ∈ Q[i]n+1 of the system F associated to ζ1, ζ2 respectively and satisfying the corresponding
γ−Theorem, the following holds :

ht(zi) ≥ 1
6

(log γ(F, ζi) − 2 log(n+ 1)) −O(1) ≥ 1
6
(
2n−1 − 2 log(n+ 1)

)−O(1).

and that they require exponential bit length, both for binary or continuous fraction encodings.
Floating point encoding also requires an exponential number of digits.
Let us observe that alternative examples with low separation between the roots can be easily obtained
without using Mignotte’s example. Consider for example the following system F := (f1, . . . , fn)
given by :

• f1 := 2X1 − 1,

• fi := Xi −X2
i−1, for every i, 2 ≤ i ≤ n− 1,

• fn := Xn(Xn −Xn−1).

This system has two distinct solutions ζ1 	= ζ2 at a distance ‖ζ1 − ζ2‖ ≤ 1
22n−2 , and the same lower

bound applies.

Example 2 (Using log d(F )(DF (ζ)−1,Σ) as in Theorem 34) Let us consider the system of mul-
tivariate polynomial equations F := (f1, . . . , fn+1) given by the following rules :

• f1 := Xn+1(2X1 − 1),

• fi := Xn+1(Xi −X2
i−1), for every i, 2 ≤ i ≤ n,

• fn+1 := X2
n+1 −X2

n.

We consider the solution of this system given by :

ζ :=
(

1
2
,

1
22
, . . . ,

1
22n−1 ,

1
22n−1

)
.

Thus, we consider the Jacobian matrix of the system F at ζ, i.e.

DF (ζ) :=
(
∂fi
∂Xj

(ζ)
)

1≤i,j≤n+1

.

The entries of this non–singular matrix are given by the following rules :

If j = i ≤ n,
∂fi
∂Xj

(ζ) =
1

22n−1 ,

if 1 ≤ j = i− 1, i ≤ n,
∂fi
∂Xj

(ζ) =
−2

22n−1+2j−1 ,

if j = n, i = n+ 1,
∂fn+1

∂Xn
(ζ) =

−2
22n−1 ,

if j = i = n+ 1,
∂fn+1

∂Xn+1
(ζ) =

2
22n−1 ,

and otherwise
∂fi
∂Xj

(ζ) = 0.
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We conclude that : ‖DF (ζ)‖ ≤ ‖DF (ζ)‖(F ) ≤ 2(n+ 1)2

22n−1 .

Thus holds :
22n−1

2(n+ 1)2
≤ 1

‖DF (ζ)‖ = d(F )(DF (ζ−1,Σ).

Now, using the lower bound shown in Theorem 34 on page 27 with d = 3, w = log 3 and n = n+1,
we conclude that for every z ∈ Q[i]n+1 satisfying the γ−Theorem with associate zero ζ, the following
inequality holds :

ht(z) ≥ 1
20

(
2n−1 − 6 log(n+ 1)

)− 2.

As mentioned in the Introduction on page 8, the same comments also show the validity of Corol-
laries 8, 9 and 10.

Example 3 (Using Proposition 5 or Corollary 7) Consider the following sequence of multi-
variate polynomials F := (f1, . . . , fn+1) given by the following rules :

• f1 := X1 − 2,

• fi := Xi −X2
i−1, for every i, 2 ≤ i ≤ n,

• fn+1 := (Xn+1 −Xn) (Xn+1 − (Xn + 1)).

This system has two solutions ζ1, ζ2 ∈ Zn+1, which can be described as follows :

ζ1 :=
(
2, 22, . . . , 22n−1

, 22n−1
)
∈ Zn+1 and ζ2 :=

(
2, 22, . . . , 22n−1

, 1 + 22n−1
)
.

By Inequality 4 on page 26, we may conclude that for i = 1, 2 holds :

1 := ‖ζ1 − ζ2‖ ≥ 3 −√
7

2γ(F, ζi)
.

In particular, since 3‖ζi‖γ(F, ζi) ≥ 3 − √
7, we may apply either Corollary 7 or Proposition 5 to

conclude that for every z1, z2 ∈ Q[i]n+1 satisfying the γ−Theorem with associate zero ζ1 and ζ2
respectively, the following holds :

ht(zi) ≥ 1
2
[
2n−1 − log(n+ 1) − log 2

]
.

Again, Corollaries 8, 9 and 10 follow from this example.

3.3 Approximate zero theory : Upper bounds for the bit length of ap-
proximate zeros

Here we show the statements of the Introduction concerning upper bounds for the bit length of
approximate zeros. We start with the following statement and then show Theorem 11 from page
9 of the Introduction.

Theorem 39 (Upper bounds for γ(F, ζ)) Let f1, . . . , fn ∈ Z[X1, . . . , Xn] be polynomials with
integer coefficients. Let us assume that the following properties hold

• d := max{deg(fi) : 1 ≤ i ≤ n},
• wt(fi) ≤ w, 1 ≤ i ≤ n.

Let ζ ∈ VK(f1, . . . , fn) be a smooth K−rational point. Let | · |ν : K −→ R+ be an absolute value
on K. Thus, the following inequality holds :

log γν(F, ζ) ≤ [K : Q](t+ 1)
(
t2 + 8 log t+ 2w + tht(ζ)

)
,

where t := max{d, n} ≥ 2.
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Proof.– First of all, using Claim iv) of Lemma 29 on page 22, the following inequality holds :

γν(F, ζ) ≤ max
k≥2

(
‖(DF (ζ))−1‖ν

∥∥∥∥D(k)F (ζ)
k!

∥∥∥∥
ν

) 1
k−1

.

By Claim v) of Lemma 29 the following holds :

‖DF (ζ)−1‖ν =
1

d
(F )
ν (DF (ζ,Σ)

≤ ‖DF (ζ)‖n−1
ν

| det(DF (ζ)|ν .

By Claim iii) of Lemma 30, we obtain :

log | det(DF (ζ))|ν ≥ −[K : Q]n (logn+ ht(DF (ζ))) .

Now, using Lemma 28, we have :

ht(DF (ζ)) ≤ n2 + max{ht
(
∂fi
∂Xj

(ζ)
)

: 1 ≤ i, j ≤ n}.

Thus, we may use Claim i) of Lemma 30 to conclude :

max{ht
(
∂fi
∂Xj

(ζ)
)

: 1 ≤ i, j ≤ n} ≤ w + log d+ (d− 1)ht(ζ).

This chain of inequalities yields :

− log | det(DF (ζ)|ν ≤ [K : Q]n
(
n2 + logn+ w + log d+ (d− 1)ht(ζ)

)
.

On the other hand, using Claim ii) of Lemma 30, we have :

log ‖DF (ζ)‖ν ≤ log(n2d) + [K : Q] (w + (d− 1)ht(ζ)) .

Moreover, using Claim iii) of Lemma 29, we obtain :

log ‖D
(k)F (ζ)
k!

‖ν ≤ (k + 1) logn

+[K : Q] max{ht
(

1
k!
∂|μ|fi
∂Xμ (ζ)

)
: μ ∈ Nn, |μ| = k, 1 ≤ i ≤ n}.

Now, using Claim i) of Lemma 30 on page 22, we conclude that for every multi–index μ ∈ Nn,
|μ| = 1 and for every i, 1 ≤ i ≤ n, the following holds :

ht

(
1
k!
∂|μ|fi
∂Xμ (ζ)

)
≤ k log k + d log d+ w + (d− 1)ht(ζ).

Thus, adding all these quantities, we obtain :

log ‖D
(k)F (ζ)
k!

‖ν ≤ [K : Q] (2(d+ 1) logn+ 2d log d+ w + (d− 1)ht(ζ)) .

Thus, taking t := max{d, n} ≥ 2, we conclude :

log γν(F, ζ) ≤
(
[K : Q] (4(t+ 1) log t+ w + (t− 1)ht(ζ)) − log d(F )

ν (DF (ζ)−1,Σ))
)
.

Finally, combining all upper bounds above, we may conclude :

log γν(F, ζ) ≤ [K : Q](t+ 1)
(
t2 + 8 log t+ 2w + tht(ζ)

)
.
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Theorem 40 (Lower bounds for γ) With the same assumptions and notations as in Theo-
rem 39 above, the following holds :

log γν(F, ζ) ≥ −
(

3
d− 1

)
[K : Q](logn+ w + d2(ht(ζ))).

Proof.– First of all, the following obvious inequality holds :

γν(F, ζ) ≥ ‖D(d)F (ζ)‖
1

d−1
ν

‖DF (ζ)‖
1

d−1
ν

.

From Lemma 30, Claim ii) the following holds :

− 1
d− 1

log ‖DF (ζ)‖ ≥ −1
d− 1

log(n2d) + [K : Q](w + (d− 1)ht(ζ)).

From Lemma 30, Claim iii) we also have :

log ‖D(d)F (ζ)‖ ≥ −[K : Q](d log d+ w + dht(ζ))

Combining both inequalities we can conclude the inequality stated at the Theorem.

Remark 41 Using [BCSS98a, Proposition 3, p. 50] the previous upper and lower bounds may
also be written in the terms of the height of the approximate zero. With the same notations and
assumptions as in Theorem 39 let z ∈ Q[i]n be an approximate zero of system F satisfying the
following inequality :

‖z − ζ‖ν ≤ 3 −√
7

2γν(F, ζ)

First of all, the following two inequalities hold :

log γν(F, z) ≤
(
(t+ 1)

(
t2 + 8 log t+ 2w + tht(z)

))
,

log γν(F, z) ≥ −
(

3
d− 1

)
2(logn+ w + d2(ht(z)))

where t := max{d, n} ≥ 2. Now, we apply [BCSS98a, Proposition 3, p. 50] to conclude :

log γν(F, ζ) ≤ c log γν(F, z) ≤ c′ log γν(F, ζ),

where c, c′ > 0 are universal constants. In particular, we also conclude the following lower bound
for the height of the approximate zero :

ht(z) ≥ Ω
(

log γν(F, ζ) − (t+ 1)(t2 + 8 log t+ 2w)
t(t+ 1)

)
.

Let us observe the analogies between this lower bound and those stated at Theorem 4 above.

Once again, we can conclude the validity of Theorem 11 as given in the Introduction, since it is a
particular case of the Theorem above. Now we are in condition to show Corollary 12 from page 9
of the Introduction. Let us recall that statement :
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Corollary 42 (Upper bound on the bit length of approximate zeros) With the same as-
sumptions and notations as in Theorem 11, let ζ ∈ VK(f1, . . . , fn) be a smooth K−rational zero,
and let | · |ν be an absolute value on K. Let L ⊆ K be a number field such that ζ ∈ Lnν . Then
there exist approximate zeros z ∈ Ln of the system F := (f1, . . . , fn) with approximate zero ζ with
respect to the absolute value | · |ν , such that the logarithmic height ht(z) of z is at most linear in
the following quantities :

1
[L : Q]

log |ΔL| + [K : Q]t
(
t2 + w + tht(ζ)

)
,

where w is an upper bound for the logarithmic weight of the polynomials f1, . . . , fn, t := max{d, n},
and |ΔL| is the absolute value of the discriminant of the field L.
Moreover, in the case where L = Q[i] (for instance, if | · |ν is archimedean), there exist approximate
zeros z ∈ Q[i]n for the system F with associate zero ζ with respect to | · |ν , such that their bit length
is at most linear in the following quantity :

[K : Q]t
(
t2 + w + tht(ζ)

)
,

in other words :
ht(z) ≤ c1[K : Q]t

(
t2 + w + tht(ζ)

)
.

where c1 > 0 is a small universal constant.

This statement follows immediately from the upper bounds for γν(F, ζ) described in Theorem 39
above, together with the following two statements on the classical Dirichlet Theorem. The first
statement is an extension of the classical Dirichlet Theorem to the case of archimedean absolute
values (cf. [Sch80, Cas97] for instance) :

Theorem 43 (Archimedean Dirichlet Theorem, 1842) Suppose given n·m real numbers αij (1 ≤
i ≤ n, 1 ≤ j ≤ m) and that Q > 1 is an integer. Then, there exist integers q1, . . . , qm, p1, . . . , pn
with :

1 ≤ max(|q1|, . . . , |qm|) < Q
n
m ,

|αi1q1 + . . .+ αimqm − pi| ≤ 1
Q

(1 ≤ i ≤ n).

On the other hand, for non–archimedean absolute values, we made use of the following statement.
A proof can be found in [BVdPV96] or [Tyl94].

Theorem 44 (Non–archimedean Dirichlet Theorem) Let K be a number field and ν ∈MK\
S a non–archimedean absolute value defined on K. Let ζ ∈ Kν be a point in the completion of K
with respect to | · |ν . Then, for every τ ∈ Kν , 1 ≤ |τ |ν , there exists z ∈ K, such that the following
holds :

i) ht(z) ≤ 1
2[K : Q]

log |ΔL| + log |τ |ν + log c,

ii) |ζ − z|ν ≤ |ΔK | 1
2[H : Q] ec+ht(ζ)

|τ |ν .

Thus, taking either sufficiently big denominators (for the archimedean case) or τ such that |τ |ν is
big enough (for the non–archimedean case), Corollary 12 follows.
To conclude the statements claimed at the Introduction, let us say that the Universal γ−Theorem
(Corollary 14 stated at the Introduction) follows obviously as a consequence of Theorem 2 and the
universal condition number is well–defined as a consequence of Theorem 39 on page 34 above.
Finally, we have to prove Corollary 15. We recall that statement from page 10 of the Introduction :
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Corollary 45 Let F := (f1, . . . , fn) be a sequence of multivariate polynomials with integer coeffi-
cients satisfying conditions i) to v) stated on page 3 of the Introduction. Let ζ ∈ VK(f1, . . . , fn) a
smooth K−rational zero. The only point z ∈ Kn which satisfies the Universal γ−Theorem near γ
for all absolute values in MK is z = ζ. Namely, for every z ∈ Kn satisfying for every ν ∈Mk the
following inequality

‖z − ζ‖ν ≤ 3 −√
7

2γ̃(F, ζ)

holds z = ζ.

Proof.– First, let us consider z ∈ Kn, such that for every absolute value ν ∈MK holds :

‖z − ζ‖ν ≤ 3 −√
7

2γ̃(F, ζ)
.

As γ̃(F, ζ) ≥ 1, we easily conclude that for all non–archimedean absolute values ν ∈MK \ S holds
‖z − ζ‖ν ≤ 1. In particular, the coordinates of the affine point z − ζ are algebraic integers in K,
i.e. z − ζ ∈ ZnK .
On the other hand, for archimedean absolute values holds ‖z − ζ‖ν ≤ 1, and hence, we obtain :

eht(z−ζ) ≤
(∏
ν∈S

‖z − ζ‖nν
ν

) 1
[K : Q]

< 1.

This last condition can only be satisfied, if z − ζ = 0 ∈ Kn and thus the claim follows.

4 Kronecker’s approach to solving

In this Section we prove Theorems 18, 19, 20 as stated in the Introduction. To this end, we have
divided this Section into three main parts.

• An improvement of the Witness Theorem. In this Subsection we introduce some standard
notations concerning straight–line programs encoding of multivariate polynomials. We also
show an improvement of the Witness Theorem of [BCSS98b, BCSS98a] using parallel com-
plexity estimates.

• From Kronecker’s to Newton’s solution. In this Subsection we show Theorem 20. In fact,
using the main statement of [GHMP95, Par95, GHM+98, GHH+97, GHMP97], this Theorem
is established by exhibiting a procedure that transforms a Kronecker description of a solution
variety into a list of approximates zeros of bounded height.

• From Newton’s to Kronecker’s solution. In this Subsection we show Theorem 19, exhibiting
a procedure that transforms approximate zeros into a Kronecker description of a certain
Q–definable irreducible component of a solution variety.

4.1 An improvement of the Witness Theorem

In the sequel we will work with the complexity model of non–scalar straight–line programs (see
for instance [Hei89, Str90, Par95, MPR91] or [KP96]) : a non–scalar straight–line program is
a structure which evaluates (and hence represents) a given polynomial of K[X1, . . . , Xn], taking
K–linear operations for free.

Remark 46 We shall tacitly assume that our straight–line programs do not contain any divisions.
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We represent a straight–line program for the evaluation of a polynomial P ∈ K[X1, . . . , Xn] by
a directed acyclic graph G whose nodes are labeled gates which perform arithmetical operations.
Therefore we identify the nodes of G with the corresponding gates. The graph G disposes of n+ 1
particular nodes labeled by the variables X1, . . . , Xn and the constant 1. These nodes are called
the input gates of G. We define the depth of a gate ν of our graph as the length of the longest path
which joins ν with some input gate. Let us denote the gates of the directed acyclic graph by pairs
of integer numbers (i, j), where i represents the depth of the gate and j is the corresponding value
of an arbitrary numbering imposed to the set of gates of depth i (this notation for the analysis of
parallel complexity has been inspired by [MP93] and [MMP96]).

Definition 47 (Non-scalar straight–line program) A division-free non–scalar straight–line pro-
gram with inputs X1, . . . , Xn is a pair Γ := (G, Q), where G is a directed acyclic graph, with n+ 1
input gates, unbounded fan–in, and Q is a function that assigns to every gate (i, j) one of the
following instructions :

i = 0 : Q0,1 := 1 , Q0,2 := X1 , . . . , Q0,n+1 := Xn

1 ≤ i ≤ � : Qi,j := (
∑

r≤i−1
1≤s≤Lr

Ar,si,j Qr,s) · (
∑

r′≤i−1
1≤s′≤L

r′

Br
′,s′
i,j Qr′,s′)

Here, Ar,si,j and Br
′,s′
i,j are indeterminates called the parameters introduced in Γ. The non–scalar

size of the straight–line program Γ is L(Γ) = L0 + . . . + L� (where L0 := n + 1) and its non–
scalar depth �(Γ) = � (these notions coincide with the notions of size and depth of the underlying
computation graph).

Observe that the rather complicated notation in Definition 47 (non–scalar straight–line program
) arises from the fact that a single non–scalar node in the graph represents the total of all scalar
(i.e. K–linear) operations contributing to this node.
Let us mention that in our notation the sub–indices i, j of the parameters Ar,si,j and Br

′,s′
i,j represent

the gate of the multiplication they are assigned to and the super–indices r, s correspond to the
previous result they involve in the multiplication. We abbreviate A = (Ar,si,j ) and B = (Br

′,s′
i,j ). Se-

mantically speaking the straight–line program Γ defines an evaluation algorithm of the polynomials
(intermediate results) :

Qi,j =
∑

|μ|≤2i

Qμi,j(A,B)Xμ1
1 . . .Xμn

n . (7)

Here, each coefficient Qμi,j(A,B) belongs to the polynomial ring Z[A,B]. The result Qi,j has degree
at most 2i with respect to the variables X1, . . . , Xn.
We obtain a non–scalar straight–line program over a ring R by specialisation of the non–scalar
straight–line program Γ, substituting the parameter lists A and B by elements of the ring R

α = (αr,si,j ) and β = (βr
′,s′
i,j ) (we insist on the fact that αr,si,j , β

r′,s′
i,j belong to R).

A specialisation A → α, B → β of the parameters of Γ induces a straight–line program (com-
putation) in K[X1, . . . , Xn] in the most obvious way. The intermediate results of this specialized
straight–line program γ are the polynomials of the form Qi,j(α, β,X1, . . . , Xn). In this sense we
shall say that a given polynomial P ∈ K[X1, . . . , Xn] is evaluable, or computable, by (a special-
isation of) the straight–line program Γ if there exists a specialisation A −→ α, B −→ β of the
parameters of Γ such that for some gate (i, j) the following equality holds :

P (X1, . . . , Xn) = Qi,j(α, β,X1, . . . , Xn). (8)

Taking into account the representation of (7) we can rewrite Identity (8) as :

Pμ = Qμi,j(α, β)
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for all μ with |μ| ≤ 2i and Pμ = 0 for |μ| > 2i. Let us remark that the degree of such a polynomial
P = Qi,j(α, β,X1, . . . , Xn) is generically equal to 2i in the space of parameters.
Finally, we say that P ∈ K[X1, . . . , Xn] is computable by a straight–line program Γ with parame-
ters in the finite set F := {αrsij , βr

′s′
ij }.

Here we resume how these notions and the logarithmic height (Subsection 2.1.3) relate, by es-
tablishing bounds for polynomials given by straight–line programs using the different notions of
height.
First of all, we can easily bound the number of parameters used by a non–scalar straight–line
program Γ of size L in n variables by 2L(L− (n+ 1)).
The following Lemma relates the notions of height and weight with the notions of size, non–scalar
depth and height of the parameters used in a straight–line program.

Lemma 48 ([HMPS00]) Let Γ be a non–scalar straight–line program over K of size L, non–
scalar depth � and parameters in a finite set F ⊆ K that evaluates a polynomial P ∈ K[X1, . . . , Xn].
Then, we have the following inequality.

ht(P ) ≤ wt(P ) ≤ (2�+1 − 2)(logL+ ht(F)).

Moreover, for a given x = (x1, . . . , xn) ∈ Kn we have the following upper bound:

ht(P (x)) ≤ (2�+1 − 2) (logL+ ht(F) + ht(x)) .

We start with the proof of an improvement of the Witness Theorem of [BCSS98b] and [BCSS98a].
A witness is a point where a non–zero polynomial does not vanishes. The main problem will be
given a non–zero polynomial, show explicitely a witness. This can be performed by a procedure
based on repeated squaring (Kronecker’s scheme). In fact, this idea of using an explicit witness
by repeated squaring for zero tests of polynomials goes back to Kronecker and can also be found
in [HS82]. Here we discuss the effect of the depth, using some of the statements described in
Subsections 2.1.3 and the Lemma 48 above.

Definition 49 A witness for a polynomial P ∈ K[X1, . . . , Xn] is a point ω ∈ Kn such that
P (ω) = 0 implies P = 0.

In other words, a witness is a point ω ∈ Kn from the set of K–rational points VK(P ) of the
hypersurface V (P ) (if any). There exist several methods for finding such a point, here we insist on
the idea of explicit exhibition of such a witness in terms of the complexity of the given polynomial
P .

Theorem 50 (Theorem) Let P ∈ K[X1, . . . , Xn] be a non–zero polynomial evaluable by a non–
scalar straight–line program Γ of size L, non–scalar depth � and parameters in F ⊆ K. Let ω0 ∈ K
be such that the following holds :

ht(ω0) ≥ max{log 2, ht(F)}.
Let N ∈ N be a non–negative integer such that

logN > log(�+ 1) + (�+ 2)(log 2) (log log(4L)) .

Let us define recursively the following sequence of algebraic numbers (Kronecker’s scheme) :

ω1 = ωN0 ,

and for every i, 2 ≤ i ≤ n, let us define

ωi = ωNi−1.

Then, the point ω := (ω1, . . . , ωn) ∈ Kn is a witness for P (i.e. P (ω) 	= 0).
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Proof.– Before giving the arguments (very close to those in [HS82] and [BCSS98a]), we have to
introduce some additional notations. Let Γ be a non–scalar straight–line program of size L, depth
� with input variables X := (X1, . . . , Xn). Let P ∈ K[X1, . . . , Xn] be a polynomial evaluable by
the straight–line program Γ with parameters in F ⊆ K. Let us also assume the following dense
encoding for P :

P :=
∑
μ

Pμ X
μ.

For every 0 ≤ j ≤ n and every affine point ω := (ω1, . . . , ωn) ∈ Kn, we consider the polynomials

P (j)
ω :=

∑
μ∈Nn

Pμ ω
μ1
1 · · ·ωμj

j X
μj+1
j+1 · · ·Xμn

n ∈ K[Xj+1, . . . , Xn],

where Pμ ∈ K. Let us observe that P (0)
ω = P ∈ K[X1, . . . , Xn], whereas P (n)

ω = P (ω) ∈ K. We

shall apply induction on n, starting from P
(0)
ω and ending at P (n)

ω . In order to perform this inductive
argument we need a list of polynomials to go from step j to step j+ 1. Roughly speaking, this list
of polynomials are the coefficients of P (j)

ω as element in K[Xj+1][Xj+2, . . . Xn]. More precisely, for
every 0 ≤ j < n, every ω ∈ Kn and every multi–index α := (αj+1, . . . , αn) ∈ Nn−j we introduce
the following univariate polynomials :

P (j,j+1)
α,ω :=

∑
μ∈Nn

Pμ ω
μ1
1 · · ·ωμj

j X
αj+1
j+1 ∈ K[Xj+1].

The following identity relates polynomials P (j,j+1)
α,ω and polynomials P (j)

ω :

P (j)
ω =

∑
α∈Nn−j

P (j,j+1)
α,ω (Xj+1)X

αj+2
j+2 · · ·Xαn

n .

Moreover, as the coefficients in K of P (j,j+1)
α,ω are some of the coefficients in K of P (j)

ω we obviously
conclude from Lemma 48 the following inequalities :

ht(P (j,j+1)
α,ω ) ≤ ht(P (j)

ω ) ≤ (2�+1 − 1) (logL+ ht(F) + ht(ω1, . . . , ωj)) .

We are now in condition to prove Theorem 50 by an inductive argument on the number n of
variables involved. This proof is strongly based on the following Lemma. With the previous
notations and assumptions, let ω0 ∈ K be such that

ht(ω0) ≥ max{log 2, ht(F)}.
Let us recursively define the following algebraic numbers

ω1 := ωN0 and ωj+1 := ωNj , for every j, 2 ≤ j ≤ n− 1,

where N ∈ N verifies the following inequality

N >
(
(�+ 1) + 2�+2 log(4L)

)
.

Finally, let ω ∈ Kn be the affine point

ω := (ω1, . . . , ωn) ∈ Kn.

Lemma 51 With the previous notations, for every j, 0 ≤ j < n, and for every multi–index
α ∈ Nn−j, if P (j,j+1)

α,ω ∈ K[Xj+1] is a non–zero polynomial, then we have :

P (j,j+1)
α,ω (ωj+1) 	= 0.
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Assuming that this Lemma is true, the proof of Theorem 50 runs as follows. If P := P
(0)
ω ∈

K[X1, . . . , Xn] is a non–zero polynomial, then there exists some non–zero coefficient P (0,1)
α,ω ∈

K[X1], which is a non–zero univariate polynomial. Then, by the Claim above, we have P (0,1)
α,ω (ω1) 	=

0. Thus, the polynomial P (1)
ω ∈ K[X2, . . . , Xn] has as coefficients the list

P (1)
ω =

∑
α

P (0,1)
α,ω (ω1)Xα2

2 · · ·Xαn
n .

In particular, the polynomial P (1)
ω is a non–zero polynomial and it has a non–zero coefficient

P (1,2)
α,ω ∈ K[X2].

The same argument, using the Lemma above, shows that P (2)
ω ∈ K[X3, . . . , Xn] is a non–zero

polynomial. Inductively, we obtain P (ω) := P
(n)
ω ∈ K as a non–zero polynomial and the statement

claimed is proved.

Thus, to conclude the proof, we will have to prove Lemma 51 introduced above.

Proof.– [of Lemma 51] First of all, we recall the following inequalities.

• N >
(
(�+ 1) + 2�+2 log(4L)

)
• ht(P (j,j+1)

α,ω ) ≤ ht(P (j)
ω ) ≤ (2�+1 − 1) (logL+ ht(F) + ht(ω1, . . . , ωj))

• For every ν ∈MK holds max{0, log |ω1|ν , . . . , log |ωj|ν} = max{0, log |ωj |ν}.
• Thus, we have ht(ω1, . . . , ωj) ≤ ht(ωj).

Hence, we conclude that ht(F) + ht(ω1, . . . , ωj) ≤ 2ht(ωj), and by Lemma 48, we conclude the
following inequality :

ht(P (j,j+1)
α,ω ) ≤ ht(P (j)

ω ) ≤ (2�+1 − 2) (logL+ 2ht(ωj)) .

Moreover, we have the following inequality : log deg(P (j,j+1)
α,ω ) ≤ � log 2 ≤ �ht(ωj).

By virtue of Corollary 27, if P (j,j+1)
α,ω 	= 0, the following inequality holds for every ζ ∈ K satisfying

P
(j,j+1)
α,ω (ζ) = 0 :

ht(ζ) ≤ (
(�+ 1) + 2�+2 log(4L)

)
ht(ωj) < Nht(ωj) = ht(ωj+1).

In particular, if P (j,j+1)
α,ω is not the zero polynomial, we have as desired :

P (j,j+1)
α,ω (ωj+1) 	= 0.

Now, as a final comment to conclude the proof : The lower bound of the statement of Theorem 50
above,

log2N > log2(�+ 1) + (�+ 2)(log 2) (log log(4L))

obviously implies the lower bound used to prove Lemma 51, i.e.

N >
(
(�+ 1) + 2�+2 log(4L)

)
.

In order to transform Theorem 50 above into a deterministic procedure, we just have to observe
that the number of parameters used by a non–scalar straight–line program Γ of size L is at most
2L2. Thus, we conclude the following Corollary :
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Corollary 52 Let P ∈ K[X1, . . . , Xn] be a non–zero polynomial evaluable by a non–scalar straight–
line program Γ of size L, non–scalar depth � and parameters in F := {x1, . . . , xr} ⊆ K. Let
ω−1 ∈ K be such that

ht(ω−1) := max{log 2, ht(x1), . . . , ht(xr)}.
Let us define ω0 ∈ K as ω0 := ω2L2

−1 . Let N ∈ N be a non–negative integer such that

logN > log(�+ 1) + (�+ 2)(log 2) (log log(4L)) .

Let us define recursively the following sequence of algebraic numbers (Kronecker’s scheme) :

ω1 = ωN0 ,

and for every i, 2 ≤ i ≤ n, let us define ωi = ωNi−1. Then, the point ω := (ω1, . . . , ωn) ∈ Kn is a
witness for P (i.e. P (ω) 	= 0).

Remark 53 i) The procedure described in Corollary 52 above for choosing ω−1 can be improved
in several obvious cases. For instance, if K = Q and F ⊆ Z, the same assertion holds taking
ω0 = ω−1.

ii) Theorem 50 above is an improvement of the previous established requirements for N . In
[BCSS98b, BCSS98a] the authors showed a lower bound for N of the order :

logN > 4nL2 + 4L,

which is obviously less sharp.

iii) The general dense case. For generically many polynomials P ∈ K[X1, . . . , Xn] of degree
at most d, the optimal straight–line program is of size

L =
(
d+ n

n

)
and non–scalar depth of order � = log d+O(1). The parameters of this straight–line program
are the coefficients of P . Our Theorem 50 says that there exists a (small) universal constant
c2 > 1, such that the requirement for selecting the non– negative integer N in Kronecker’s
scheme is just the one described by the following inequality :

logN > c2n log2 d.

Previous requirements were of order logN > 4n
(
d+ n

n

)2

+ 4
(
d+ n

n

)
.

iv) The sparse/fewnomial case. Let us assume the our polynomial P ∈ K[X1, . . . , Xn] has
very few terms with non–zero coefficients (i.e. P is sparse as much as it is a fewnomial).
Let us assume that P has degree at most d and also that at most M of its terms have non–
zero coefficients. Among the fewnomials of this class the (generically) optimal non–scalar
straight–line program that evaluates P has size of order L = c3Md (where c3 > 0 is a
universal constant), and depth log2 d + O(1). Once again, the parameters are the non–zero
coefficients of the non–zero terms of P . Thus, Theorem 50 above says that there exists a
(small) universal constant c3 > 1, such that the only requirement for selecting the non–
negative integer N in Kronecker’s scheme is the following one :

logN > c3 log d (log log d+ log logM) .

Previous estimates were of order logN > 4n (c3Md)2 + 4c3Md.
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4.2 Factoring polynomials given by straight–line programs.

Factoring univariate polynomials given by straight–line program encoding has been subject of
research since the eighties. An excellent reference list can be found in the works of E. Kaltofen
([Kal90, Kal92]). However, we have not found any reference related to the subject described above :
computing just those irreducible factors of “a priori” bounded height. Thus, we have to develop
this subject here. We establish the following technical statement :

Theorem 54 There exists a bounded error probabilistic Turing machine M that performs the
following task : Given as input for M :

• a univariate polynomial f ∈ Z[T ] with integer coefficients given by straight–line program
encoding, and

• a positive integer number H ∈ N given in binary encoding,

the output of M is a list of irreducible polynomials {f1, . . . , fs} ⊂ Z[T ], such that the following
holds :

•
s∏
i=1

fi divides f ,

• wt(fi) ≤ log2(d+ 1) +H for every i, 1 ≤ i ≤ s, and

• for every irreducible factor g of f , the following holds : either wt(g) > H or g ∈ {f1, . . . , fs}.
The running time of M is polynomial in :

d L H η,

where d = deg(f), L is the size of the straight–line program Γ that evaluates the coefficients of f ,
and η is an upper bound for the bit length of the integer parameters used by Γ.

The proof of this Theorem is divided into four main tasks which are essentially the usual four steps
in any univariate polynomial factoring procedure :

i) choosing a ”good” prime number,

ii) efficient factoring modulo this prime number,

iii) Newton–Hensel lifting, and

iv) A modified L3 basis reduction algorithm.

Now we proceed to describe these four tasks. The notations introduced above will be used in the
remaining parts of this description.

Task 1: Choosing a “good” prime number

Lemma 55 There exists a bounded error probability Turing machine M1 that performs the follow-
ing task. The input of M1 is a polynomial f ∈ Z[T ] given as in Theorem 54 above. The output of
M1 is a prime number p ∈ N, such that the following properties hold :

• the leading coefficient of f is non–zero in Z/pZ, and

• the polynomial f̄ ∈ Z/pZ[T ] obtained from f by taking residues module p is squarefree.
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The running time of M1 is polynomial in the following quantities :

d L η,

where d = deg(f), L is the length of the straight–line program Γ encoding the coefficients of f , and
η is an upper bound of the logarithmic height of the parameters used by Γ.

Proof.– This Lemma follows by an strategy similar to that used in [IM83]. More precisely, we
combine the Prime Number Theorem (cf. [Ros94], for instance) with the upper bounds shown in
Lemma 48.
First of all, let us write f as f = adT

d + . . . + a0, where ai ∈ Z for every i, 0 ≤ i ≤ d. Let us
assume that the straight–line program Γ that evaluates a0, . . . , ad ∈ Z has size L, depth �, and the
parameters used by Γ are of logarithmic height at most η.
Let us define the following integer number

τ := addiscT (f) ∈ Z \ {0},

where discT (f) is the discriminant of f . From Lemma 48 we conclude

ht(discT (f)) ≤ d(log d+ (2�+1 − 2)(logL+ η)).

Now, let N ∈ N be a positive integer number such that

d(log d+ 2(2�+1 − 2)(logL+ η)) < N2N .

Thus, the machine M1 proceeds as follows :

• First of all, M1 chooses at random 4N disjoint lists L1, . . . , L4N of integer numbers between
2N and 22N . We assume that each list Li contains 4N different integer numbers.

• Then, M1 uses a probabilistic primality test running in polynomial time (cf. [AH92, AM93,
SG86, Mor90, Mor91], for instance) to detect a prime number pi ∈ Li for every i, 1 ≤ i ≤ 4N
(if any).

• Then, M1 takes the list P = {p1, . . . , p4N} and looks for some prime number p ∈ P, such that

τ mod p 	= 0.

This last task is performed by using the straight–line program Γ that evaluates ad and the
obvious straight–line program Γ′ that evaluates discT (f).

The error probability of this procedure is at most
(

1 − 1
2N

)8N

<
1
e4

<
1
2
.

Task 2: Efficient factoring module a prime number It is a well-known that Berlekamp’s
factoring procedure in Z/pZ[T ] is deterministic, but its running time depends polynomially on the
prime number p, and hence exponentially on the bit length of p. To avoid this drawback, P. Camion,
D. Cantor and H. Zassenhauss ( [CZ81, Cam, Cam83], for instance) have developed a probabilistic
factoring procedure for polynomials f ∈ Z/pZ[X ] whose running time depends polynomially on
deg(f) and the bit length of the prime number p. This method yields the following technical
statement :
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Lemma 56 With the same assumptions as in Theorem 54 above, there exists a bounded error
probabilistic Turing machine M2 that performs the following task:
The input of M2 are polynomials f ∈ Z[T ] as given in Theorem 54 above.
The output of M2 is a prime number p ∈ Z as in Lemma 55 above and a list of polynomials

{f1, . . . , fs} ∈ Z/pZ[T ],

such that every fi ∈ Z/pZ[T ] is an irreducible univariate polynomial for every i, 1 ≤ i ≤ s and

f̄ =
s∏
i=1

fi,

where f̄ ∈ Z/pZ[T ] is the univariate squarefree polynomial obtained by taking residues modulo p of
the coefficients of f . The running time of M2 is polynomial in the following quantities :

L d η,

where d, L and η are as in Theorem 54 above.

Task 3 and 4: Newton–Hensel lifting and L3 basis reduction From the output of the
Turing machine M2 of Lemma 56 above, we perform a Newton–Hensel lifting of each of the irre-
ducible factors fi ∈ Z/pZ[T ] of f̄ ∈ Z/pZ[T ] until we reach the bounds which allow us to apply
the L3 reduction procedure of [LLL82a].
However, the original bounds in [LLL82a] depend on the weight of the input polynomial f ∈ Z[T ].
Since we are not interested in computing all irreducible factors of f in Q[T ], but just a few of them
(those of weight bounded by H), we explain how the main statement of [LLL82a] can be modified
for our purposes. The same proof of [LLL82a] yields our statement :
For every positive integer number k ≥ 1, we shall denote by Z/pkZ the residue ring of integers
modulo pk. For every integer number a ∈ Z, we denote by āp ∈ Fp and āp

k ∈ Z/pkZ the residual
classes modulo p and pk respectively. For every univariate polynomial g with integer coefficients

g = amX
m + . . .+ a1X + a0

we denote by ḡp ∈ Fp[X ] and ḡp
k ∈ Z/pkZ[X ] the polynomials obtained respectively as :

ḡp := āpmX
m + . . .+ āp1X + āp0 ∈ Fp[X ], and ḡp

k

:= āp
k

mX
m + . . .+ āp

k

1 X + āp
k

0 ∈ Fpk [X ].

In the sequel we shall omit the superscripts p and pk

where no confusion may occur. From now on,
let f ∈ Z[X ] be a squarefree univariate polynomial with integer coefficients. Let p ∈ N be a prime
number and let us assume that f̄ ∈ Fp[X ] is also squarefree and that

deg(f) := deg(f̄) = d.

Let us observe, that under these conditions f̄p
k ∈ Z/pkZ[X ] is also squarefree and for every k ≥ 1

holds :
deg(f) = deg(f̄p

k

).

Let h ∈ Z[X ] be a polynomial of degree r ≥ 0 such that the following holds :

• the leading coefficient of h is 1,

• h̄ divides f̄ in Z/pkZ[X ], and

• h̄ is an irreducible polynomial in Fp[X ].
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Proposition 57 [LLL82a] With the previous notations and assumptions, there exists one and
only one irreducible factor h0 ∈ Z[X ] of f (in Z[X ]) such that h̄ divides h̄0 in Fp[X ].

Now, we may define the following lattice (which depends only on h, pk and m ∈ N, ≤ m ≤ d):

Lr,m(h) := {g ∈ Z[X ] : deg(g) ≤ m, h̄ divides ḡ in Z/pkZ[X ]}

Finally, for every polynomial g ∈ Z[X ], given as g = amX
m + . . .+ a1X + a0, we shall denote the

norm of g as :
‖g‖ := (a2

m + . . .+ a2
1 + a2

0)
1
2 .

Let us observe that ‖g‖ ≤WT (g) ≤ (d+ 1)‖g‖.
The following Theorem essentially states that the main statement in [LLL82b] depends principally
on ‖h0‖ and not on ‖f‖.

Theorem 58 With the same notations and conventions as before, let b1, . . . , bm+1 be a L3–reduced
basis of the lattice Lr,m(h). Let us also assume that

pkr ≥ 2
dm
2 2dm‖h0‖m+d.

Thus, h0 ∈ Lr,m(h) if and only if ‖b1‖ ≤
(

pkr

‖h0‖m
) 1

d

.

Moreover, let t ∈ {1, . . . ,m+ 1} be the maximal integer number such that :

‖bj‖ ≤
(

pkr

‖h0‖m
) 1

d

for every i, 1 ≤ j ≤ t.

Then, deg(h0) = m+ 1 − t and h0 = gcd(b1, . . . , bt).

The proof of this Theorem follows step by step as that of Proposition 2.13 in [LLL82b].

Now, we can show Theorem 54:

Proof.– [of Theorem 54] The machine M of Theorem 54 can be described as follows :
First of all, we apply the machine M2 of Lemma 56 (which contains M1) and yield the following
list of items as output :

• a prime number p ∈ Z as in Lemma 56 above, and

• a list of polynomials {f1, . . . , fs} ⊂ Z/pZ[T ], such that every fi ∈ Z/pZ[T ] is an irreducible
univariate polynomial for every i, 1 ≤ i ≤ s and

f̄ =
s∏
i=1

fi.

For every h ∈ {f1, . . . , fs}, the machine applies a Hensel Lifting procedure log2 k times (as
in [PZ89], for instance) to obtain a univariate polynomial hi ∈ Z[X ] satisfying :

• the leading coefficient of h, is 1 (and agrees with that of h),

• h̄ and h̄1 agree in Fp[X ], and

• h̄1 divides f̄ in Z/pkZ[X ].
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The number k has been chosen such that holds : pkr ≥ 2
d2
2 2d

2
22dH .

Now, let h0 ∈ Z[X ] be the unique irreducible factor of f determined by Proposition 57.
Let r be the degree of h1 and for every m, r ≤ m ≤ d, let b(m)

1 , . . . , b
(m)
m+1 be a L3–reduced basis of

the lattice Lr,m(h1).

Now, if ‖b(m)
1 ‖ <

(
pkr

2mH

) 1
d

, for some m, r ≤ m ≤ d, we conclude

• h0 ∈ Lr,m(h1), and

• log2 ‖h0‖ ≤ H (which, in particular, implies wt(h0) ≤ log2(d+ 1) +H).

Conversely, if ‖b(m)
1 ‖ ≥

(
pkr

2mH

) 1
d

for every m, r ≤ m ≤ d, we conclude that wt(h0) > H, and we

do not compute this irreducible factor.
Thus, we proceed by computing h0 according to the strategy described by Theorem 58 above.

4.3 Computing binary encodings of suitable approximations

In the spite of the fast convergence of Newton’s method, the bit length (i.e. the height) of the
results obtained after several iterations may grow much faster than desirable. That is why we have
to truncate the intermediate results obtained and this is the goal of the following statement :

Theorem 59 (Efficient Diophantine Approximation) There exists a Turing machine M ,
which performs the following task :
The input of M is the following list :

i) A list F := (f1, . . . , fn) of polynomials with integer coefficients of degree at most d and
(logarithmic) weight at most w given by a division–free non–scalar straight–line program Γ
of length L and depth � and parameters in {−1, 0, 1}.

ii) The binary encoding of a point z ∈ Q[i]n which is an approximate zero of the system F :=
(f1, . . . , fn) with associated zero ζ ∈ VK(f1, . . . , fn) with respect to the standard archimedean
absolute value | · | : K → R induced by the standard inclusion i : K ↪→ C satisfying the
γ–Theorem, namely

γ(F, ζ)‖z − ζ‖ ≤ 3 −√
7

2
.

iii) A positive rational ε ∈ Q, ε < 1.

The machine M outputs the binary encoding of an approximation z̄ ∈ Q[i]n, such that

‖z̄ − ζ‖ ≤ ε.

The (logarithmic) height of z̄ satisfies the following inequality :

ht(z̄) ≤ (n d w ht(z)(− log2 ε))
c4

where c4 > 0 is a universal constant. The running time of M is polynomial in the following
quantities :

n d L w ht(z) (− log2 ε).

The proof of this statement will make use of several technical procedures which we are going to
state now.
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Rational Reconstruction of Newton Iteration.

Lemma 60 With the same notations and assumptions as in Theorem 59 above, there is a universal
constant c5 > 0 such that the following holds : for every z ∈ Q[i]n :

ht(NF (z)) ≤ (wdn)c5ht(z).

Due to the straight–line program encoding of the polynomials f1, . . . , fn, we have to use the
following Lemma which gives a well-suited version of Newton operator for this encoding.

Lemma 61 [GHH+97, Mor97] Let f1, . . . , fn ∈ Z[X1, . . . , Xn] be polynomials as in Theorem 66.
Then, there exists a straight–line program of length O(d2n7L) and non-scalar depth O(log2 n+ �)
which using the same parameters, computes the numerators g1, . . . , gn and a non–zero denominator
h for NF (X1, . . . , Xn)Z(X1, . . . , Xn).

In order to obtain the binary encoding of NF (z), we use the following Lemma (as given in [HM97])
which is suitable for our particular straight–line program encoding of NF . It is based on a rational
reconstruction procedure due to J. Dixon (see [Dix82] or [Häg98, HM97] for details).

Lemma 62 [HM97] There exists a Turing machine which, taking as input the straight–line pro-
gram of NF (z1, . . . , zn), outputs in time polynomial in

d n w ht(z) L

a reduced binary encoding of NF (z1, . . . , zn) (i.e. numerators and denominators have no common
factors).

Effective Dirichlet Theorem. The first relevant statement is the following effective version of
Dirichlet’s Theorem due to [LLL82a].

Theorem 63 (Effective Dirichlet Theorem) There exists a polynomial–time algorithm that,
given a positive integer n and rational numbers a1, . . . , an, ε satisfying 0 < ε < 1, finds integers
p1, . . . , pn, q satisfying

|pi − qai| ≤ ε for 1 ≤ i ≤ n, and 1 ≤ q ≤ 2n(n+1)/4

ε2n
.

Proof.– [of Theorem 59] Let us denote by EDT (z, ε) the result of applying the Effective Dirichlet
Theorem above to the point z and the rational number ε. Let us recursively define the following
sequence of points in Q[i] :

z(1) := NF (z), and z̄(1) := EDT (z(1), ε/4)

and for k ≥ 2,
z(k) := NF (z̄(k−1)), and z̄(k) := EDT (z(k), ε/4).

Now, we have : ‖z̄(k) − ζ‖ < ‖z(k) − ζ‖ +
ε

4
. On the other hand, the following holds :

‖z(k) − ζ‖ ≤ 1
2
‖z̄(k−1) − ζ‖.

From the previous inequalities we conclude :

‖z̄(k) − ζ‖ ≤ 1
2k

‖ζ − z‖ +
k−1∑
i=0

ε

2i+2
.
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In order to estimate ‖ζ − z‖, we apply Remark 41 to conclude :

log ‖ζ − z‖ ≤ c

(
3

d− 1

)
2(logn+ w + d2(ht(z))) + 1,

where c is a small universal constant c > 0. Therefore the following inequality holds :

‖z̄(k) − ζ‖ ≤ 1
2k

2c(logn+w+d2ht(z) +
ε

2
.

Thus, taking k ∈ N such that k > (− log2 ε)c(logn+ w + d2ht(z)), the result follows.

Let us observe that the procedure described in the previous Theorem is essentially optimal due to
the lower bound given in [GHH+97].

4.4 From Kronecker’s to Newton’s solution

In this Subsection we prove Theorem 20 as stated in the Introduction. That statement is merely
a consequence of the following Theorem we are going to show here.

Theorem 64 (From Kronecker’s solution to Newton’s solution) There exists a bounded er-
ror probability Turing machine M which performs the following task :
Given as input a positive integer H ∈ N in binary encoding and a sequence F of multivariate
polynomials with integer coefficients F := (f1, . . . , fn) with f1, . . . , fn ∈ Z[X1, . . . , Xn] satisfying :

• the polynomials f1, . . . , fn are of degree at most d and (logarithmic) weight at most w,

• the sequence f1, . . . , fn is given by a division–free non–scalar straight–line program Γ of length
L, non–scalar depth � and parameters in {−1, 0, 1}, and

• the sequence f1, . . . , fn ∈ Z[X1, . . . , Xn] is a smooth regular sequence,

the machine M outputs approximate zeros with respect to the archimedean absolute value | · | : K →
R induced on K by the canonical inclusion i : K ↪→ C for all those zeros ζ ∈ VK(f1, . . . , fn), whose
(logarithmic) height is at most H, i.e.

ht(ζ) ≤ H.

The running time of M is polynomial in the following quantities

(n d δ(F ) L w) + (n d D H [K : Q]),

where δ(F ) := max{degV (f1, . . . , fi) : 1 ≤ i ≤ n} and D := deg V (f1, . . . , fn).

Proof.– This statement follows by giving a procedure that transforms a Kronecker description of
the solution variety into a list of approximate zeros of bounded height.
First of all, let us recall how to relate Q–definable irreducible components of bounded height and
irreducible factors of bounded height of the minimal equation of the primitive element χu of the
Kronecker solution.
A Q–definable complex variety is an algebraic subset W ⊂ Cn, such that there exist polynomials
f1, . . . , fs ∈ Z[X1, . . . , Xn] with integer coefficients, such that

W = {x ∈ Cn : f1(x) = 0, . . . , fs(x) = 0}.
In particular, under our hypothesis the solution variety V (f1, . . . , fn) ⊂ Cn is Q–definable. A Q–
definable algebraic subset W ⊂ Cn is said to be Q–definable irreducible if for any two Q–definable
algebraic subsets W1,W2 ⊂ Cn, the following holds :

W ⊂ W1 ∪W2 ⇒ [W ⊂ W1] ∨ [W ⊂ W2].
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In particular, the usual method shows that every Q–definable algebraic subset V ⊂ Cn has a unique
minimal description as a finite union of Q–definable irreducible algebraic subsets W1, . . . ,Ws ⊂ Cn.
Namely,

V = W1 ∪ . . . ∪Ws.

These Q–definable irreducible subsets W1, . . . ,Ws are called the Q–definable irreducible compo-
nents of V .
Let us observe that if V ⊂ Cn is zero–dimensional (i.e. if V is a finite set) and if

V = W1 ∪ . . . ∪Ws

is the decomposition of V into Q–definable irreducible components, then this is a partition of V .
Namely, Wi ∩Wj = ∅ for every i 	= j.
Let us assume now that K is a number field and that ζ ∈ VK(f1, . . . , fn) is a K–rational point of
a zero–dimensional algebraic subset V (f1, . . . , fn) ⊂ Cn. Then, there exists a unique Q–definable
irreducible component Wζ ⊂ Cn containing ζ. Moreover, as ζ ∈ Kn, we easily conclude the
following inequality :

degWζ = deg(ζ) = #Wζ ≤ [K : Q].

Let f1, . . . , fn ∈ Z[X1, . . . , Xn] be a sequence of polynomials defining a zero–dimensional Q–
definable affine algebraic variety V := V (f1, . . . , fn) := {x : f1(x) = 0, . . . , fn(x) = 0}. Let us
assume that the ideal (f1, . . . , fn) is a radical ideal in Q[X1, . . . , Xn]. In particular all points in V
are smooth.
As defined in the Introduction, a Kronecker solution of V (f1, . . . , fn) is the following list of items :

• The list of variables in Noether position X1, . . . , Xn.

• The primitive element u := λ1X1 + · · · + λnXn given by its coefficients in Z. Let us recall
that the linear form u is a primitive element u if and only if the polynomial mapping :

U : Cn −→ C : (x1, . . . , xn) �→ u(x1, . . . , xn)

defines a birational isomorphism between V (f1, . . . , fn) and a hypersurface Hu ⊂ C (i.e. the
set of roots of a univariate polynomials χu ∈ Z[T ]).

• The minimal equation of the hypersurface Hu, namely χu ∈ Z[T ].

• A description of (U |V )−1. This description is given by the following list :

– a non–zero integer number ρ ∈ Z,

– a list of polynomials vj ∈ Z[T ], 1 ≤ j ≤ n, such that deg(vj) ≤ deg(χu) for every j,
1 ≤ j ≤ n,

and such that the following holds for every t ∈ Hu :

(U |V )−1(t) :=
(
ρ−1v1(t), . . . , ρ−1vn(t)

)
.

In particular, the birational isomorphism U : V ⊂ Cn → Hu ⊂ C defines a biregular isomorphism
that identifies the Q–definable irreducible components of V and the Q–definable irreducible compo-
nents of Hu. Moreover, the Q–definable irreducible components of Hu are completely determined
by the prime factors of the univariate polynomial χu ∈ Z[T ].
This is explained in the following Lemma, whose elementary proof we omit.

Lemma 65 With the previous notations and assumptions, let ζ := (ζ1, . . . , ζn) ∈ VK(f1, . . . , fn)
be a smooth K–rational zero of the system V = (f1, . . . , fn). Let Wζ ⊂ V (f1, . . . , fn) be the
Q–definable irreducible component of V (f1, . . . , fn) containing ζ. Then the following properties
hold :
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• #Wζ = degWζ ≤ [K : Q],

• there exists a unique prime factor g ∈ Q[T ] of χu ∈ Z[T ] such that :

– g ∈ Z[T ] is a primitive polynomial,

– g vanishes on U(Wζ),

– g contains a zero in K,

– ht(g) ≤ [K : Q](ht(ζ) + ht(u)).

Moreover, there exists a non–zero integer ρ̄ ∈ Z \ {0} and polynomials w1, . . . , wn, such that the
following holds :

• the (logarithmic) height of ρ̄,w1, . . . , wn is at most polynomial in

[K : Q] deg(g)[ht(ζ) + ht(u)]n,

• deg(wi) ≤ deg(g) − 1 for all i, 1 ≤ i ≤ n, and

• Vζ := {(ρ̄−1w1(t), . . . , ρ̄−1wn(t)) : t ∈ C and g(t) = 0}.

This univariate polynomial g is obviously the minimal polynomial over Q of the algebraic number :

u(ζ) := u1ζ1 + . . .+ unζn.

The polynomials w1, . . . , wn ∈ Z[T ] and the non–zero integer ρ̄ ∈ Z\{0} introduced by the previous
Lemma are given by the following rule. Let q1, . . . , qn ∈ Q[T ] be the remainders of the division of
ρ−1vi(T ) by g(T ), i.e. qi := rem(ρ−1vi, g) for every i, 1 ≤ i ≤ n. Then, taking a minimal non–zero
integer ρ̄ ∈ Z\ {0}, such that ρ̄qi ∈ Z[T ] for all i, 1 ≤ i ≤ n and defining wi := ρ̄qi ∈ Z[T ] for every
i, 1 ≤ i ≤ n, we obtain the desired polynomials.
In conclusion, to determine the list of smooth K–rational zeros of the system F of height bounded
by H , we may determine the irreducible factors of χu such that

• K contains a root of g, and

• ht(g) ≤ [K : Q](H + ht(u)).

Thus, to prove Theorem 20, we start by using Theorem 17 (cf. [GHMP97]) as stated in the
Introduction.
Let us recall that the output of the procedure described in Theorem 17 is a Kronecker solution of
the variety V (f1, . . . , fn) with the following properties :

• the coefficients of the primitive element u have height at most cn log2 d,

• the coefficients of the polynomials χu, v1, . . . , vn ∈ Z[T ] and the non–zero integer number
ρ ∈ Z \ {0} are given by a straight–line program Γ satisfying the following properties :

– size of Γ ≤ (ndδ)c6L,

– non–scalar depth of Γ ≤ nc(log2 δ + �+ log2 d),

– the parameters used by Γ are in {−1, 0, 1} ⊂ Z,

where c6 > 0 is some some “small” universal constant.

In order to conclude Theorem 20 from this data, we proceed as follows :
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Task 1.- Computing irreducible factors of χu of bounded height Using the method
described in Subsection 4.2 above, we compute all irreducible factors of χu of height bounded by

[K : Q](H + ht(u)).

Let us observe that these factors are given by their coefficient lists and that the coefficients are
given by their binary encoding.

Task 2.- Selecting factors with some zero in K We make use of the factoring procedures
described in [Lan85, LM85] or [Len83]. Thus, from the output of Task 1, we choose just the factors
g of χu satisfying :

• g contains a root in k, and

• ht(g) ≤ [K : Q](H + ht(u)).

Let us observe that the running time required to perform this task is polynomial in c(K)[K :
Q](H + ht(u))D, where D is the degree of the solution variety V , and c(K) is the height of the
field K. As the field K is fixed in our considerations, we will omit this quantity from now on.

Task 3.-Computing irreducible components of bounded height Let F := {g1, . . . , gs} ⊂
Z[T ] be the output of Task 2, i.e. a list of irreducible factors of χu of bounded height having a
root in K. Now, for every g ∈ F , we apply the following procedure :
Let C(g) be the companion matrix of g. For every i, 1 ≤ i ≤ n, let us introduce the matrices

Mi := ρ−1vi(C(g)).

Let q1, . . . , qn ∈ Z[T ] be the characteristic polynomials of the matrices M1, . . . ,Mn. Let ζ ∈
VK(f1, . . . , fn) be a smooth zero and Vζ ⊂ VK(f1, . . . , fn) the Q–definable irreducible component
of VK(f1, . . . , fn) that contains ζ. Let us assume that Vζ is identified with the irreducible factor g
of χu according to the rules described in Lemma 65 above. Let us finally assume ζ := (ζ1, . . . , ζn).
Then, we obviously have the following property :
For every i, 1 ≤ i ≤ n, the minimal polynomial of the matrix Mi is the minimal polynomial of ζi
over Q, and the characteristic polynomial of Mi is a power of the minimal polynomial of ζi ∈ K
over Q.
Now, we proceed as follows. Applying the factoring procedure described in Subsection 4.2 above,
we verify for every i, 1 ≤ i ≤ n, whether the polynomial qi has any irreducible factor (the only one
if any) of height at most H .
In the affirmative case, we have

ht(ζi) ≤ (log2(d+ 1) +H)[K : Q] and ht(ζ) ≤ n(log2(d+ 1) +H)[K : Q].

Thus, we select all those irreducible factors g of the list F above, such that

• ht(ζ) ≤ n(log2(d+ 1) +H)[K : Q],

• ht(g) ≤ [K : Q](H + ht(u)), and

• K contains a root of g.

This can be done in time polynomial in the quantities :

[K : Q] n d L δ H.
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Task 4.- Computing bounded height parametrizations Let F1 := {g1, . . . , gs1} be the
output of Task 3. Now, for every g ∈ F1 we perform the following task.
Using the technical tool described in [Dix82] (cf. also [Häg98, HM97]) and Lemma 65, we may
compute

• a non–zero integer ρ̄ ∈ Z \ {0} and

• univariate polynomials w1, . . . , wn ∈ Z[T ],

such that the following holds :

i) ht(ρ̄), ht(w1), . . . , ht(wn) are bounded by a polynomial in the quantities [K : Q]nddeg(g)H,

ii) deg(Wi) ≤ deg(g) − 1 for all i, 1 ≤ i ≤ n.

iii) Let ζ ∈ VK(f1, . . . , fn) be the smooth K–rational zero of the system F associated to the
irreducible factor g according to Lemma 65 above. Let Vζ be the Q–definable irreducible
component of VK(f1, . . . , fn) that contains ζ. Then, the following is a biregular isomorphism :

U|Vζ
: Vζ ⊂ Cn → {t ∈ C : g(t) = 0} and

(U|Vζ

)−1 := (ρ̄−1w1(t), . . . , ρ̄−1wn(t)).

Task 5.- Computing approximate zeros of univariate polynomials For this task, we
consider the univariate polynomial with integer coefficients

f(T ) :=
∏
g∈F

g ∈ Z[T ],

where F1 is the output of Task 3. Thus, we compute approximate zeros of the univariate polynomial
f . This can be done by means of any of the procedures described for instance in [BCSS98a, Ren87,
Sch86, Sch81, Sma81, Sma86a]. The running time of any of these procedures is polynomial in

n [K : Q] D H.

Task 6.- Computing approximate zeros in the multivariate case Now, we recall Theo-
rem 11 in Subsection 3.3 above, to conclude that for every smoothK–rational zero ζ ∈ VK(f1, . . . , fn)
the following holds :

log2 γ(F, ζ) ≤ (nd)3[K : Q](h+ ht(ζ)).

Now, let F1 := {g1, . . . , gs1} be the list of irreducible factors of χu computed after Task 3.
For every g ∈ F1, we apply :

i) Task 4 to compute the parametrization of bounded height,

i.e. ρ̄ ∈ Z \ {0} and w1, . . . , wn ∈ Z[T ].

ii) Task 5 to compute for every zero of g an approximate zero.

Let us assume ζ ∈ VK(f1, . . . , fn) be the smooth K–rational zero associated to g according to
the rules of Lemma 65 above. Let Vζ be the Q–definable irreducible component of V (f1, . . . , fn)
containing ζ.
Next, let z ∈ Q[i] be an approximate zero of u(ζ) computed by applying Task 5 to g. For sake
of simplicity we may assume that |u(ζ) − z| < 1 and that the height of z is polynomial in the
following quantities : ht(g)ht(ζ)[K : Q] n d.
Finally, let us observe that ζ := (ρ̄−1w1(u(ζ)), . . . , ρ̄−1wn(u(ζ))) and for every x ∈ Q[i], the
following inequality holds :

‖ζ − (ρ̄−1w1(x), . . . , ρ̄−1wn(x))‖ ≤ n2wt(wi)‖x− u(ζ)‖.
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Then, we may apply the procedure described in Subsection 4.3 to compute a point x ∈ Q[i]
satisfying

‖x− u(ζ)‖ < ε,

where ε satisfies n2wt(wi)ε < 3−√
7

2γ(F,ζ) .

Using the previous bounds, we observe that there exists a universal constant c7 > 0 such that if
log2 ε < ([K : Q]ndHw)c7 holds, then the point z̄ ∈ Q[i]n given by z̄ := (ρ̄−1w1(x), . . . , ρ̄−1wn(x))
is an approximate zero of the system F with associated ζ, i.e.

‖z̄ − ζ‖ < 3 −√
7

2γ(F, ζ)
.

The running time of this task is polynomial in the following quantities :

[K : Q] n d w H log2 ε,

and the bounds above also show that log2 ε is polynomially bounded in the same quantities.

4.5 From Newton’s to Kronecker’s solution

In this Subsection we show Theorem 19 of the Introduction. This statement is a consequence of
the following Theorem :

Theorem 66 (From Approximate Zeros to Geometric Solution) There exists a bounded er-
ror probability Turing machine M which performs the following task :
Suppose given as input a sequence F := (f1, . . . , fn) of multivariate polynomial with integer coeffi-
cients of degree at most d and (logarithmic) weight at most w satisfying the following properties :

• the polynomials f1, . . . , fn are given by a division–free non–scalar straight–line program Γ of
length L, non–scalar depth � and parameters in {−1, 0, 1},

• the sequence f1, . . . , fn ∈ Z[X1, . . . , Xn] is a smooth regular sequence,

and a point z ∈ Q[i]n in binary encoding which is an approximate zero of the system F associated
to some smooth K–rational zero ζ ∈ VK(f1, . . . , fn) with respect to the archimedean absolute value
||̇ : K → R induced on K by the standard inclusion i : K ↪→ C. Let us also assume that z satisfies
the γ–Theorem, namely

‖ζ − z‖ ≤ 3 −√
7

2γ(F, ζ)
.

The machine M then outputs a Kronecker description of the Q–definable irreducible component
Vζ of VK(f1, . . . , fn) containing ζ ∈ Vζ . The running time of M is polynomial in the following
quantities :

w n d L ht(ζ) deg(Vζ)ht(z).

Proof.– The proof combines a method of reconstruction of minimal equations from diophantine
approximations (cf. [KLL84, KLL88]) with a technical tool introduced in [KP94, KP96].
Let us introduced new variables T1, . . . , Tn. We denote by KT the quotient field of the ring
Z[T1, . . . , Tn] and by KT an algebraic closure of it.
Let U := T1X1 + . . . + TnXn ∈ Z[T1, . . . , Tn, X1, . . . , Tn] be a generic projection. Let Vζ ⊂
V (f1, . . . , fn) be the Q–definable irreducible component of V (f1, . . . , fn) containing the smooth
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K–rational zero ζ ∈ VK(f1, . . . , fn). The Chow polynomial of Vζ is the homogeneous polynomial
of degree deg(Vζ) given by the following identity :

χU ,ζ(T1, . . . , Tn, Z) :=
∏
α∈Vζ

(Z − (T1α1 + . . .+ Tnαn)),

where α := (α1, . . . , αn) runs over all complex points in Vζ . For every t := (t1, . . . , tn) ∈ Zn and
for every i, 1 ≤ i ≤ n we introduce the following polynomials :

pi(t, Z) := χU ,ζ(T1, . . . , Ti−1, 0, Ti+1, . . . , Tn, Z) and qi := χU(0, . . . ,i) 1, . . . , 0, T ) =
∏
α∈Vζ

(Z − αi).

Finally, we introduce for every i, 1 ≤ i ≤ n, and every t := (t1, . . . , tn) ∈ Zn the following family
of planar algebraic sets :

Vi(t) := {(x, y) ∈ K2 : qi(x) = 0, pi(t, y) = 0}.
Now, we have the following two statement :

Lemma 67 [KP94, KP96] With the same notations and assumptions as above, there exists a
multivariate polynomial F ∈ Z[T1, . . . , Tn] of degree at most n deg(Vζ)2, such that the following
holds :
For every t := (t1, . . . , tn) ∈ Zn satisfying F (t1, . . . , tn) 	= 0 holds : for every i, 1 ≤ i ≤ n, the
linear form ui := X + tiY is a primitive element of the residue ring

Q[X,Y ]/
√
pi(t,X), qi(Y ),

where √ stands for the radical of this ideal.

Moreover, the polynomial F can be computed from the coefficients of the polynomials pi(t,X) and
qi(Y ) in time polynomial in the following quantities :

ht(t) deg(Vζ) n ht(ζ).

Let us observe that for every t := (t1, . . . , tn) ∈ Zn satisfying F (t) 	= 0 the following linear form

U := t1X1 + . . .+ tnXn ∈ Z[X1, . . . , Xn]

is a primitive element of the residue ring

Q[Vζ ] := Q[X!, . . . , Xn]/I(Vζ), where I(Vζ) := {g ∈ Q[X1, . . . , Xn] : g|Vζ
≡ 0}.

Now, to find a point t ∈ Zn that satisfies F (t) 	= 0, we can make use of any of the so–called
probabilistic zero test for polynomials. We may apply for instance the following Lemma, due
to [Sch79, Zip79].

Lemma 68 (Zippel–Schwartz) Let F ∈ Z[T1, . . . , Tn] be as above and let

A := {1, . . . , (n deg(Vζ)c8}n ⊂ Zn

be a subset of integers of low height (where c8 > 0 is a suitable universal constant). Then, choosing
(at random) a point t ∈ A, the probability that F (t) = 0 is strictly less than 1

2 .

Now we can exhibit a procedure which proves the claims made in Theorem 66.
First of all, let us choose at random a sequence of integer numbers t := (t1, . . . , tn) ∈ Zn, such that

|ti| ≤ (n deg(Vζ))c8 , for all i, 1 ≤ i ≤ n,
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where c8 > 0 is the universal constant of Lemma 68 above. For every i, 1 ≤ i ≤ n, let us define
the following algebraic numbers :

αi := t1ζ1 + . . .+ ti−1ζi−1 + ti+1ζi+1 + . . .+ tnζn and βi := ζi,

where ζ := (ζ1, . . . , ζn) ∈ Kn is the actual smooth K–rational zero.
Now, we apply the method described in Subsection 4.3 above to compute an approximate zero
z̄ ∈ Q[i]n of the system F with associated zero ζ, such that the following holds :

‖z̄ − ζ‖ ≤ ε−1.

Let us write z̄ := (z1, . . . , zn) ∈ Q[i]n. For every i, 1 ≤ i ≤ n, we define the following Gaussian
rationals

xi := t1z1 + . . .+ ti−1zi−1 + ti+1zi+1 + . . .+ tnzn and yi := zi.

Then, we have ‖xi − αi‖ ≤ n(n deg(Vζ))c8ε−1 and ‖yi − βi‖ ≤ ε−1.
Now, choosing ε ∈ N, ε > 1 such that log2 ε > [(10 + c8)ddeg(Vζ)2(n+ ht(ζ))], we conclude

‖xi − αi‖ ≤ 1
29 deg(αi)2ht(αi)

and ‖yi − βi‖ ≤ 1
29 deg(βi)2ht(βi)

.

Then, we apply the procedure described in the following Theorem (see [KLL84] for details) :

Theorem 69 Let α ∈ C be an algebraic number of (logarithmic) height ht(α) and degree d :=
[Q(α) : Q] and let ᾱ ∈ Q[i] be an approximation such that :

|α− ᾱ| < 2−2d2+3d+4dh.

Then, there exists a polynomial time algorithm which, taking as input the approximation ᾱ, com-
putes the minimal polynomial of α.

Thus, we have computed for every i, 1 ≤ i ≤ n, the following univariate polynomials :

• pi(X) ∈ Z[X ], the minimal polynomial of αi over Q , and

• qi(Y ) ∈ Z[Y ], the minimal polynomial of βi over Q.

We apply a similar procedure to compute the minimal polynomial p(Z) ∈ Q[Z] of the algebraic
number

u := t1ζ1 + . . . tnζn ∈ K.

Next, we test whether for every i, 1 ≤ i ≤ n, the linear form X + tiY is a primitive element of the
residue ring

Q[X,Y ]/
√
pi(X), qi(Y ).

In the affirmative case, we apply the following Lemma, otherwise, we choose a different point
t ∈ Zn.

Lemma 70 [KP96, KP94] With the previous notations and assumptions, there exists a procedure
that computes the following items :

i) A non–zero integer ρ ∈ Z, and

ii) univariate polynomials v1, . . . , vn ∈ Z[T ],

such that for every i, 1 ≤ i ≤ n holds :

ρY − vi(X + ZiY ) ∈
√

(pi, qi) in Q[X,Y ].

The running time of this procedure is polynomial in the following quantities

ht(t)max{deg(pi), deg(qi)}max{ht(pi), ht(qi)}.
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Finally, let us define the linear form u := t1X1 + . . . + tnXn ∈ Q[X1, . . . , Xn] and the ideal
I := (p(u), ρX1 − v1(u), . . . , ρXn − vn(u)) ⊂ Q[X1, . . . , Xn].
The procedure outputs the above list if and only if I ⊂ (f1, . . . , fn). This inclusion can be tested
by the following equivalence :

I ⊂ (f1, . . . , fn) if and only if p|fi(ρ−1v1(u), . . . , ρ−1vn(u)), ∀i, 1 ≤ i ≤ n.

The output is obviously the Kronecker encoding of the Q–definable irreducible component of V
containing ζ.

5 Lagrange resolvent

Let f := adX
d + · · · + a0 ∈ Z[X ] be a squarefree univariate polynomial of degree d with integer

coefficients. As f is square free, we obviously have αi 	= αj for all i, j, 1 ≤ i, j ≤ d and i 	= j.
Let α1, . . . , αd ∈ C be the complex roots of the polynomial f . We obviously have the following
identity :

f(X) = ad

d∏
i=1

(X − αi) ∈ Z[X ].

Let σ0, . . . , σd−1 ∈ Z[X1, . . . , Xd] be the elementary symmetric functions, i.e. the polynomial
mappings satisfying the following identities :

σi(α1, . . . , αd) = a−1
d ai, ∀i, 0 ≤ i ≤ d− 1.

The normal closure of f (also called the splitting field of f) is the smallest number field K(f) ⊆ C

that contains all complex roots of f , i.e. the following holds :

K(f) = Q(α1, . . . , αd).

The Galois group of f is the group GalQ(f) of all field automorphism τ : K(f) → K(f) such
that its restriction to Q is the identity. The order of the Galois group GalQ(f) agrees with the
dimension of K(f) as a Q−vectorspace, i.e. #GalQ(f) = [K(f) : Q].
The Cayley–Lagrange resolvent of the polynomial f is a multivariate homogeneous polynomial
which rational coefficients that represents both the Galois group GalQ(f) and the normal closure
K(f). Namely, the Cayley–Lagrange resolvent is a polynomial LAGf (T1, . . . , Td, Z) ∈ Q[T1, . . . , Td, Z]
of degree [K(f) : Q] given by the following identity :

LAGf (T1, . . . , Td, Z) :=
∏

τ∈GalQ(f)

(Z − (T1τ(α1) + · · · + Tdτ(αd)), τ ∈ GalQ(f).

The polynomial LAGf (T1, . . . , Td, Z) is homogeneous and a monic polynomial with respect to the
variable Z. The total degree of LAGf (T1, . . . , Td, Z) is the order of the Galois group GalQ(f). The
classical Lagrange resolvent is simply the univariate polynomial :

γ(Z) := LAGf (1, α, . . . , αd−1, Z),

where α is a root of unity. The Cayley–Lagrange resolvent satisfies the following additional prop-
erty, which explains why LAGf characterizes K(f).

Proposition 71 With the same assumptions and notations as above, let D(T1, . . . , Td) ∈ Q[T1, . . . , Td]
be the discriminant of LAGf with respect to the variable Z. Then, for every t := (t1, . . . , td) ∈ Zd

satisfying D(t) 	= 0, the following holds :
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• The algebraic number θ := t1α1 + . . . + tdαd is a primitive element of K(f) over Q, i.e.
K(f) = Q(θ).

• The univariate polynomial p(Z) := LAGf (t1, . . . , td, Z) ∈ Z[Z] satisfies K(f) := Q[Z]/p(Z).

In fact, using an strategy similar to that of [KP96] and Lemma 70 we may compute from the
Cayley–Lagrange resolvent both a primitive element θ of K(f) and a description of the roots
α1, . . . , αd in terms of θ in time polynomial in [K(f) : Q]h.
There is a more geometrical approach to the notion of Cayley–Lagrange resolvent. Let us consider
the following zero–dimensional algebra (called the universal Resolution Algebra, cf. [Duc97]) :

U(f) := Q[X1, . . . , Xd]/I(f),

where I(f) is the zero–dimensional ideal generated by the polynomials I(f) := (F0, . . . , Fd−1)
where F0, . . . , Fd−1 are given by the following identity :

Fi := σi(X1, . . . , Xd) − a−1
d a0 ∈ Q[X1, . . . , Xn] for every i, 0 ≤ i ≤ d− 1.

Let Vf := V (F0, . . . , Fd−1) ⊂ Cd be the set of all common zeros of the system of equations
F0 = 0, . . . , Fd−1 = 0. The algebraic set Vf is Q–definable. Let us consider a Q–definable irreducible
component W ⊂ Vf of Vf . We denote by CCW (T1, . . . , Td, Z) ∈ Q[T1, . . . , Td, Z] the Cayley–Chow
polynomial of the algebraic variety W . Namely, the following identity holds :

CCW(T1, . . . , Td, Z) :=
∏
α∈W

(Z − (T1α1 + . . .+ Tnαn)),

where α := (α1, . . . , αd) ∈ Cn. Then, the following Proposition holds :

Proposition 72 With the same assumptions and notations as above, for every Q–definable irre-
ducible component W of Vf , the following holds :

LAGf (T1, . . . , Td, Z) = CCW(T1, . . . , Td, Z)

In particular, degW = #GalQ(f) = [K(f) : Q].

Let us observe that a Kronecker description of any Q–definable irreducible component of Vf im-
mediately yields both the Cayley–Lagrange resolvent LAGf (T1, . . . , Td, Z) and a full description
(via a primitive element) of the normal closure K(f).
Now, we introduce a new collection of multivariate polynomial equations in Q[X1, . . . , Xd] :

gi(X1, . . . , Xd) := f(Xi), for every i, 1 ≤ i ≤ d.

Let us consider now the zero–dimensional algebra : B(f) := Q[X1, . . . , Xd]/(g1, . . . , gd).
Let V ′

f ⊂ Cd be the Q–definable algebraic set formed by all common complex zeros of the system
of equations :

g1 = 0, . . . , gd = 0.

Then, the following statement holds :

Lemma 73 Let ζ := (ζ1, . . . , ζd) ∈ V ′
f be a complex point such that ζi 	= ζj, ∀i 	= j, 1 ≤ i, j ≤ d.

Let Wζ ⊂ V ′
f be the Q–definable irreducible component of V ′

f containing ζ. Then, Wζ is also a
Q–definable irreducible component of Vf .

In particular, we conclude that LAGf (T1, . . . , Td, Z) and a primitive element of K(f) can be easily
computed from a Kronecker’s description of any Q–definable irreducible component Wζ of V ′

f ,
where

ζ := (ζ1, . . . , ζd) ∈ V ′
f ⊂ Cd and ζi 	= ζj for all i 	= j.
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Moreover, we obviously have

degWζ = [K(f) : Q] = #GalQ(f) and ht(ζ) ≤ log(d+ 1) + h.

Thus, applying the methods and techniques described in Subsection 4.5 above, we conclude that
both the Cayley-Lagrange resolvent of f over Q and a description of K(f) by a primitive element
can be computed from an approximate zero z ∈ Q[i]d of the system G with associated zero ζ :=
(ζ1, . . . , ζd) ∈ V ′

f , such that
ζi 	= ζj , for all i 	= j.

The running time of this procedure is polynomial in

d h #GalQ(f).

Now, we have the following statement.

Lemma 74 With the same assumptions and notations as above, let ζ = (ζ1, . . . , ζd) ∈ V ′
f be a zero

of the system G. Then, for every z := (z1, . . . , zd) ∈ Q[i]d, the following are equivalent properties :

i) For every i, 1 ≤ i ≤ d, zi is an approximate zero of f with associate zero ζi ∈ C.

ii) The point z ∈ Q[i]d is an approximate zero of G with associate zero ζ := (ζ1, . . . , ζd).

Proof.– This is an obvious fact since the Newton operatorNG splits as a direct sum of the univariate
Newton operators Ng1 , . . . , Ngd

. Namely, the following holds :

NG(x) :=

⎛⎜⎝ Ng1(x1) · · · 0
...

. . .
...

0 · · · Ngd
(xd)

⎞⎟⎠
for every x := (x1, . . . , xd) ∈ Cd.

Thus, the Cayley–Lagrange resolvent of f over Q and the splitting field K(f) can be computed
just by computing a list z := (z1, . . . , zd) ∈ Q[i]d of Gauss rationals, such that the following two
properties hold :

• For every i, 1 ≤ i ≤ d, zi is an approximate zero of f with associated zero ζi ∈ C.

• For every i, j, 1 ≤ i, j ≤ d, i 	= j, ζi 	= ζj .

This task can be performed in time polynomial in the degree d and the (logarithmic) weight wt(f)
of f .
Applying the method described in Subsection 4.5, Theorem 66, the next Theorem follows.

Theorem 75 There exists a bounded error probability Turing machine M that performs the fol-
lowing task : Given as input a squarefree univariate polynomial f := adX

d+, . . . ,+a0 ∈ Z[X ] with
integer coefficients, of degree d and height at most h, the machine M outputs :

i) a description of the normal closure of f over Q, K(f), and

ii) the Cayley–Lagrange resolvent of f over Q.

The running time of M is polynomial in the following quantities :

d h #GalQ(f).
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1981.

65



[Sch86] Arnold Schönhage. Equation solving in terms of computational complexity. In Pro-
ceedings of the International Congress of Mathematicians, volume 3, page 40, 1986.

[SG86] J. Kilian S. Goldwasser. Almost all primes can be quickly certified. In 18th Annual
ACM Symp. on Theory of Computing, pages 316–329, 1986.

[Sma81] S. Smale. The fundamental theorem of algebra and complexity theory. Bulletin of the
Amer. Math. Soc., (4):1–36, 1981.

[Sma85] S. Smale. On the efficiency of algorithms of analysis. Bull. of the AMS, 13(2):87–121,
1985.

[Sma86a] S. Smale. Algorithms for solving equations. In Proceedings of the International
Congress of Mathematicians, pages 172–195, Berkeley, California, USA, 1986.

[Sma86b] S. Smale. Newton’s method estimates from data at one point. Springer, 1986.

[Som98] M. Sombra. Estimaciones para el teorema de ceros de Hilbert. PhD thesis, Universidad
de Buenos Aires, Argentina, 1998.

[SS85] M. Shub and S. Smale. Computational complexity: on the geometry of polynomials
and a theory of cost. I. Ann Sci. École Norm. Sup., 18:107–142, 1985.
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