
Amadeus Project

C�� Programmers� Guide

Distributed Systems Group

Trinity College Dublin

Abstract

The C�� extensions to C�� for distributed and persistent
programming in C�� are described�

Document Identi�er Release Doc��
Document Status Orange���
Created �	Feb�	�

�
Revised

Distribution Public
c� �

� TCD DSG

Permission to copy without fee all or part of this material is granted provided that the

TCD copyright notice and the title of the document appear� To otherwise copy or republish

requires explicit permission in writing from TCD�

Contents

i

Preface

The Amadeus v��� �orange� release is an upgrade of the second release from the Amadeus
project by the Distributed Systems Group of the Department of Computer Science
 Trinity
College Dublin �TCD�� The orange release follows on from the earlier red release in July
�

�� Amadeus extends C�� for distribution and persistence� the extended language is
called C���

Amadeus v��� is itself implemented in C and C��
 on top of Digital Equipment Corpo�
ration�s Ultrix ��� on both MicroVAXes and DECstations
 and on SunOS ��� on Sun��s

and Sun��s�

The C�� compiler in Amadeus v��� is a modi�ed version of the Free Software Foundation�s
g�� ���� compiler�

Future releases
 both planned and underway
 will extend the functionality
 supported
languages and host operating systems�

The Amadeus Project has been in�uenced by the Esprit Comandos�� and Comandos��
projects
 in which TCD has been a partner� The project is also being in�uenced by the
Esprit Harness and Ithaca projects� TCD acknowledges the fruitful interactions with all
of the participating institutions and in particular with Inesc in Lisbon� Bull and IMAG in
Grenoble� GMD in Bonn� and the University of Glasgow�

Information Set

The information set for the Amadeus v��� release includes the following three documents�

� Overview of the Amadeus Project presents an overview of both the Comandos and
Amadeus projects� This document also includes an introduction to distributed sys�
tems and explains the terminology used in the Amadeus Project�

� C�� Programmers� Guide contains both tutorial and reference information on pro�
gramming in the C�� language� The text assumes a knowledge of object�oriented
programming and
 in particular
 the C�� language� This guide lists sample C��

programs which are supplied with Amadeus v���
 and which can be compiled and
linked after installing the Amadeus environment�

ii

CONTENTS iii

� Amadeus Installation and User Guide contains the installation procedure together
with instructions for startup
 and con�guration�

Organization of This Document

The intended audience for C�� Programmers� Guide is applications programmers who
are knowledgeable in C��
 but possibly having only a limited knowledge of distributed
processing� The document is arranged in four chapters�

Chapter � provides a backgound to C�� and some of the guidelines which in�uenced its
design� The chapter may perhaps be skipped on a �rst reading of the document�

Chapter � illustrates the use of C�� via some simple �and trivial� examples�

Chapter � describes the details of the extensions made to C�� by C�� �

Chapter � describes the interface to functions available directly from the Amadeus run�
time�

Related Texts The following texts are recommended as background reading on the
C�� Language�

� The Annotated C�� Reference Manual
 Bjarne Stroustrup
 ��

��
 Addison Wesley

� Users�s Guide to GNU C�� �version ����	
 Michael D� Tiemann
 GNU C�� release

Trademarks The following are trademarks�

� DECstation � Digital Equipment Corporation

� microVAX�II � Digital Equipment Corporation

� Network File System � Sun Microsystems
 Inc

� NFS � Sun Microsystems
 Inc

CONTENTS iv

� Ultrix � Digital Equipment Corporation

� UNIX � UNIX Systems Laboratories
 Inc

� VAX � Digital Equipment Corporation

Chapter �

Background to C��

The overall objective of the Amadeus Project is to design and develop an integrated
application support environment for writing and running distributed applications which
can manipulate persistent �long�lived� data� This release of Amadeus �v���� is a step
towards meeting this overall goal by providing support for C�� in a distributed and
persistent environment� Support will be extended to other Unix variants and well known
programming languages in future releases�

A goal of the Amadeus project is to extend each language as little as possible� This has
two major bene�ts� programmers do not require extensive retraining to use the Amadeus
environment and existing code can be re�used as much as possible�

Ideally
 no language extensions would be necessary to write applications that run in the
Amadeus environment� In practice
 however
 interfacing a language to the Amadeus
environment requires that additional information be provided at runtime� Typically
 a
preprocessor is provided for each supported language which generates the necessary sup�
plementary information and then calls the native compiler� A further practical concern is
that it is not always possible to support all the features of a given language in Amadeus�
distributed and persistent environment�

Amadeus v��� supports C�� with extensions� this extended language is called C��� Rather
than using a preprocessor
 the changes to support C�� have been integrated into a C��
compiler�

An introduction to the Amadeus environment is given in the Overview of the Amadeus
Project� In summary
 the environment is intended to provide the necessary low�level
support for distributed and persistent programming
 including�

� Transparent access to local and remote objects�

� Transparent object storage and retrieval�

� Object location services�

� Garbage collection�

� Dynamic link loading�

�

CHAPTER �� BACKGROUND TO C
�� �

� Object sharing�

In Amadeus ���
 garbage collection is limited
 and dynamic link loading has not been
supported�

The services above are also intended to be supported in a range of programming languages�
However the only language supported by Amadeus v��� is C���

The Amadeus environment itself consists of two components� the generic runtime
 and the
Amadeus kernel � The generic runtime is layered above the Amadeus kernel
 and provides
a language�independent method of accessing remote objects� The normal UNIX services
are
 in principle
 still available in the Amadeus environment� Likewise C�� is an upwards
compatible derivative of C��� any C�� program will continue to execute in the Amadeus
environment for C�� � The Amadeus environment is intended to be language independent

so that both existing and new languages can be used to write distributed and	or persistent
applications�

��� Considerations which in�uenced C��

In extending a language to execute above the Amadeus environment
 we believed it im�
portant to re�ect the philosophy of each particular language
 as far as is reasonable�

In the case of C��
 we felt that an important theme of the language is that C�� pro�
grammers �only pay for those features which they use�� Thus we rejected the option to
provide persistence and distribution support automatically for every C�� object� rather
we felt it important that this support should be selectable by the programmer�

A further theme is �the compiler assumes the programmer knows what she�s doing�� Thus
we felt it important not to disallow
 for example
 type casts which may compromise the
support we provide�

We also felt it important that
 as far as possible
 all existing code should continue to
work� However in re�using existing code in the Amadeus environment
 clearly one must be
aware of the consequences� For example
 Amadeus provides a system wide �distributed�
persistent store� However static storage
 as in C��
 is of course not persistent� updating
a static value
 and then re�running your program will cause the static value to revert to
its initial value� Further
 the same executable �le may be run simultaneously in di�erent
Amadeus clients
 but the static storage of these is not shared� These points may cause the
novice C�� programmer some confusion
 since she may expect to be able to communicate
values through static storage
 persistently to other programs� In summary
 static

storage �works� the same way in C�� as in C��� one must do additional programming to
exploit persistence and distribution�

We felt it important to use inheritance as much as possible� Like several other projects
 and
certain public domain libraries
 in C�� persistence can be added to a class and inherited by
its derived classes� In this way
 persistence can readily be added to a collection of classes�
It should be carefully noted that a persistent class can have both persistent and non�
persistent instances� whether a given object from a persistent class is actually persistent

depends �dynamically� on whether other persistent objects refer to it� Correspondingly

CHAPTER �� BACKGROUND TO C
�� �

a non�persistent class � eg an �ordinary� C�� class � can never have any persistent
instances� Persistent classes incur overheads in additional code and space
 as will become
clear in section ���

In respect of supporting remote use
 we found it di�cult to exploit inheritance as we do
for persistence� Remote use is an attribute of individual members� of a class interface

and not directly of the instances of that class� We also believe it natural to treat remote
use separately from persistence� whether or not a class supports remote use of some or
all of its members
 it may or may not support persistent instances� Naturally
 a member
which can be used remotely can also be used locally� Further
 members which support
remote use can be inherited by derived classes� As a result when using such a member

it is normally transparent to the programmer whether the designated object is actually
local or remote� further
 the proximity of the object may change dynamically at runtime�
Classes which support remote use of their �possibly inherited� members incur overheads
in additional code and space
 as will become clear in section ���

Clearly adding support for distribution to any language increases the range of possible
exception conditions which can arise� While waiting for a stable implementation of ex�
ceptions in C���
 we felt it wisest to have a simple implementation of recovering from
exceptions in the Amadeus environment� We therefore only allow programmers to specify
a single function to be called whenever an environment exception is raised�

For concurrency
 we have extended C�� with a simple �futures� mechanism which allows
asynchronous invocations to be started in parallel with the creating thread of control� The
creating thread of control may choose to synchronise with the result of the asynchronous
invocation at a later stage� or it may choose to ignore that result�

For synchronisation
 we have not made any particular e�ort to extend C��� Instead

the Amadeus environment primitives for these facilities are made available to the C��

programmer�

We believe it ought to be possible to support various C�� libraries which add concurrency
and synchronisation support to C�� � but so far we have not attempted to do this�

�Here we use the term �members� in the C�� sense � i�e� the operations and instance data declared

by a class� Ei�el programmers would use the term �features��
�Currently we use gnu ��	
� whose exception model does not correspond to that suggested in the

Annotated C�� Reference Manual�

Chapter �

Short introduction to C��

C�� is an extension of the C�� programming language suitable for writing programs which
run in a persistent distributed environment�

We start this chapter with a trivial example program which illustrates how a C�� class
can be extended for persistence and remote use in C��� We then proceed to show how to
compile and execute the program� Finally we give a more elaborate example
 illustrating
more of the features of C���

��� Trivia

����� Persistence

Consider the following C�� program�

�include �stream�h�

class integer �

int value �

public�

integer �int Value	
� � value 	 Value � ��

int operator ���� � return value � ��

void inc �� � value

 � ��

� �

main��

� integer �i�

i 	 new integer ���

cout �� �i is � �� ��i��� �� ��n��

i��inc���

�

Clearly
 if we compiled this program as �foo� and ran it twice
 we would obtain�

�

CHAPTER �� SHORT INTRODUCTION TO C
�� �

� foo

i is

� foo

i is

�

We can compile and run this same program using C�� too
 and �naturally� obtain the
same result� However
 we can alter the behaviour of class integer so that its instances
can be persistent � In programming environments
 it is often necessary to manipulate
many persistent objects
 such as application data
 source code
 interface speci�cations

and compiled code� The advantage of providing persistence for programmers working in
an object�oriented environment is that pointers to objects do not have to be rebuilt every
time the objects are retrieved from storage�

If we make class integer persistent �in the manner explained later below�
 then when we
run the �new� foo
 we will obtain��

� foo �reset

i is

� foo

i is �

� foo

i is �

�

Note that there is an optional command line switch �reset� If given
 it indicates that
the application �here foo� should do a full �initialisation�
 based on an empty persistent
store� If not �the default�
 it indicates that the application should resume from the stored
state which resulted from the previous execution� The �reset switch
 if given
 must be
the �rst command line option� further it is not passed to the main of the application
 but
instead �ltered out by the Amadeus runtime� �reset can be given again at any time�

� foo �reset

i is

� foo

i is �

� foo

i is �

� foo �reset

i is

�

In order to make our class integer persistent
 we can either derive a persistent class from
it
 or re�write it� Both options are explored below�

�Note that the Amadeus server daemon must be running on your machine before executing any appli�

cations� The Amadeus Installation and User Guide explains how to run and interact with this daemon�

including control of system level debugging messages if required�

CHAPTER �� SHORT INTRODUCTION TO C
�� �

������� Persistence via a permclass

In C��
 a persistent class is any permclass or any class which inherits �directly or indi�
rectly� from any other permclass�� permclass is a new keyword introduced in C���

Thus
 to de�ne persistent integers
 we just change class to permclass and include the
Amadeus library��

�include �amadeus�h�

�include �stream�h�

permclass perm�integer �

int value �

public�

perm�integer �int Value	
� � value 	 Value � ��

int operator ���� � return value � ��

void inc �� � value

 � ��

� �

main ��

� perm�integer �i�

i 	 new perm�integer ���

cout �� �i is � �� ��i��� �� ��n��

i��inc���

�

Note that
 as in this example
 an object whose value is to persist should always be allocated
on the heap using new� Any other allocation is permissible
 but the lifetime of the object
is the same as it would be for the normal C�� semantics� For example
 an automatic

object will have its lifetime limited by the enclosing block scope� and updates to the value
of a static object will not persist across program runs�

������� Persistence by derivation

An alternative mechanism would be to introduce a permclass as a derived class of
integer��

�include �amadeus�h�

�include �stream�h�

class integer �

int value �

public�

integer �int Value	
� � value 	 Value � ��

int operator ���� � return value � ��

�However see also section ���
�In practice� persistent objects are usually also registered with the name service� c�f� section ���
�In practice� persistent objects are usually also registered with the name service� c�f� section ���

CHAPTER �� SHORT INTRODUCTION TO C
�� �

void inc �� � value

 � ��

� �

permclass perm�integer�v� � public integer���

main ��

� perm�integer�v� �i�

i 	 new perm�integer�v� ���

cout �� � i is � �� ��i��� �� ��n��

i��inc���

�

������� main

As in C��
 every C�� program should contain a function main which is called as the entry
point of the program �in fact it is called after any static constructors have been executed��
As noted in section ��
 if the �reset switch is given in the command line
 it is �ltered
out from the standard argv and argc values before main is called�

The Amadeus runtime supplies a call� int amadeus�reset�� which can be used �e�g� in
main� to determine whether the �reset switch was given in the command line�

�include �amadeus�h�

����

if �amadeus�reset���

�� �reset was given

else

�� �reset was not given

������� Binding to the Persistent Store

In Amadeus every object whose class is a permclass �base or derived� is said to be
potentially persistent� Speci�cally
 it persists if it itself is registered in an Amadeus Name
Store
 or if it is �transitively� referenced by a pointer from an object so registered� If the
object is not registered or referenced in this way
 it will �eventually� be discarded by the
Amadeus garbage collector� Note that for an object to persist it does not necessarily need
to be registered itself in a Name Store � it su�ces for it to be referenced by any other
persistent object�

In Amadeus v��� above Unix
 an Amadeus Name Store is implemented by directly using
the Unix �le system� Each object registered in the Name Store is given a Unix �le name
by calling the function�

void amadeus�record�const char �Unixfilename� void �object��

Likewise the Name Store can be consulted so as to recover a registered object�

�A �down� call in Amadeus terms�

CHAPTER �� SHORT INTRODUCTION TO C
�� �

void� amadeus�lookup�const char �Unixfilename��

The result of a lookup is a void�
 which usually must be �perhaps implicitly� typecast to a
pointer to an appropriate class� In Amadeus v���
 there is no direct support for asserting
that such a type cast is safe�

Note that the programmer does not need to explicitly save or fetch a persistent object�
when called
 record and lookup do not themselves cause an object to be moved to or from
the persistent store� Instead they merely register a binding from an ASCII text string �i�e�
a Unix path speci�cation� to a system wide object identi�er��

Using the Name Store
 the example of a persistent integer �c�f� section ��� can be
completed�

main��

� perm�integer �i�

if �amadeus�reset���

� i 	 new perm�integer���

amadeus�record ��myinteger�ns�� i�� �

�� normal case

if �� �i 	 amadeus�lookup ��myinteger�ns����

� cout �� �Object lost from name store��n�� exit����� �

cout �� � i is � �� ��i��� �� ��n��

i��inc���

�

����� Remote use

As well as extending C�� with support for persistence
 C�� allows speci�ed member
functions of a class to be used remotely� The keyword global is used to mark such
member functions� Member objects which themselves have global functions can also be
used remotely �c�f� section ����

Returning to our integer example
 we could mark member functions for remote use��

class system�wide�int �

int value �

public�

system�wide�int �int Value	
� � value 	 Value � ��

global int operator ���� � return value� ��

global void inc �� � value

 � ��

� �

To create an integer of this class for remote use�

�And currently we rely on NFS to maintain such bindings� Clearly other name services� such as DCE

CDS could in principle be used as an alternative�
�In Amadeus v
��� C�� constructors cannot be used remotely�

CHAPTER �� SHORT INTRODUCTION TO C
��

system�wide�int �i 	 new system�wide�int���

The pointer to the new object can subsequently be communicated to other nodes in the
distributed system� The pointer can then be used to access the object from any point in
the distributed environment�

cout �� �i is � �� ��i��� �� ��n��

Thus in some sense
 the new object �the system wide int� we created above can act as a
�server� for any �client� in the distributed network who has the value of the pointer�

Thus the use of a pointer to a remote object in C�� is syntatically identical to the usual
use of a pointer in C��� the current location of a �potentially remote� object is not
apparent from a pointer to it� Indeed
 the location of the object may change at runtime

transparently to other objects holding pointers to it�

Coupled with the ability to support persistent objects
 Amadeus and C�� provide a pow�
erful and yet elegant environment in which to build distributed C�� programs�

CHAPTER �� SHORT INTRODUCTION TO C
�� ��

��� Compiling and linking a C�� application

The C�� compiler is a modi�ed version of the gnu g�� v���� compiler� The compiler itself is
called
 as usual
 after cpp� has processed the input source� The cpp has not been modi�ed
for C�� �

Every permclass
 or class with global members
 requires the C�� compiler to generate
additional code� This code is generated as C�� source into a single �le with the pre�x
��� and extension ��pr�
 when the �proxy command line switch is enabled� Note that the
��� pre�x results in the generated �les not normally being visible in the directory when a
simple ls command is issued	�

Thus
 given a source �le foo�cc �perhaps containing one of the integer class examples��

� css �proxy foo�cc

compiles foo�cc into foo�o
 as usual
 but also generates a new �le �foo�pr�

Note that the �proxy switch can be used on source �les which do not contain any
permclasses or classes with globalmembers
 although doing so is super�uous� If however
this is done
 then additional �pr �les are generated which in fact are not needed�

The source �le which contains the de�nition of main����� �i�e the main entry point of
the program� must also be compiled with the �proxy switch� This is because main is
currently �mangled� by the C�� compiler to aon main so as to overcome some problems
in constructor initialisation in g���

In addition to generating �pr �les for the various source �les of an application
 three �les
common to the whole application are generated�

� �class�dictionary � a list of class names
 their source �les
 and an unsigned int

number for each class�

� �regclasses�pr � a C�� source �le containing code to register classes with the
Amadeus environment during initialisation�

� preprocessed�cc � a �le which will include all of the �pr �les generated for the
application when compiled�

The preprocessed�cc must also be compiled
 but not until after all the original C��

source �les have been compiled with the �proxy switch�

� css preprocessed�cc

Finally
 the various �o �les should be linked with the standard Amadeus library�

� css �o foo foo�o preprocessed�o �L�usr�lib�gnu�lib libpga�a

�or rather� gcc�cpp�
	i�e� use ls �a to see these �hidden� �les�

CHAPTER �� SHORT INTRODUCTION TO C
�� ��

Naturally
 the sequence of compiles is usually captured in a Makefile� Further
 the
Amadeus library and associated header �les are unlikely to be available in your current
directory and thus
 for example
 the �I switch must be used� The sample programs
included in the Amadeus C�� distribution each include such a Makefile
 which can be
used as models for further ones�

����� Running a C�� application

Running any Amadeus application requires that an Amadeus server daemon be running
on your host�s�
 and that certain con�guration �les are also available� Details of these
issues are given in the Amadeus Installation and User Guide�

����� More details on compilation options

This section can be omitted on a �rst reading of this Guide� It describes further �ags
which can be indicated for a compilation
 and is included at this point in the Guide for
completeness�

������� Concurrent access to the Class Dictionary

The class dictionary
 as indicated above
 is shared between the multiple compiles of an
application� In some cases
 it may be desirable to launch several compiles in parallel�
�
In this case
 simultaneous compiles may attempt to access the class dictionary� In general
the class dictionary is appended to during a compilation
 as well as read� Thus attempted
concurrent access must be serialised�

If the �lock switch is given as a command line option
 the C�� compiler will use the
lockf��� call to control concurrent access to the class dictionary� The compiler uses
lockf��� only when accessing the class dictionary
 and releases each lock as soon as
possible thereafter
 so reducing contention to the shared �le�

The compiler defaults to not using lockf����

������� Sharing a common Class Dictionary across several applications

It is often essential to be able to share a set of header �les across several applications�
Doing so in C�� usually also requires that a common class dictionary �le be used�

The default �le for the class dictionary ��class�dictionary� can be overruled by using
the �CD switch� For example specifying �CDa	b	c indicates that the �le a	b	c should be
used as the class dictionary�

When using the �CD switch
 new classes
 introduced by the current application
 are reg�
istered in the common class dictionary� However the �le �class�dictionary is still used
by C�� so as to indicate which entries in the common class dictionary are needed by the
current application�

�
For example� by using a distributed make facility�

CHAPTER �� SHORT INTRODUCTION TO C
�� ��

Specifying �CD�class�dictionary is illegal�

If a class dictionary is being shared among several programmers
 it is probably advisable
to also use the �lock switch�

��� A moderate example � The Whiteboard Demonstration

The whiteboard demonstration is a distributed
 persistent application built on top of
Amadeus� It consists of a number of objects called whiteboards which are stored in a
directory object� The user may create new whiteboards
 specifying a name
 and enter them
into the directory� A whiteboard may be viewed by a screen object� Once a whiteboard
is registered in the directory
 users may enter text into the whiteboard by specifying its
name and a text string� Similarly
 a whiteboard may be viewed or deleted�

The whiteboard example is a part of the orange release of Amadeus�

����� How to Run the Demonstration

The application is cold started by choosing a node number to provide a logical container
for storage for the application � e�g� node ���
 Then type�

wbserver �reset �

which initiates the application using node � for storage� The application may now be
warm started by typing

wbserver

and the prompt

Enter Command�

All input is prompted for
 and a menu appears if unrecognised input is given� The menu
is�

s � select and display a whiteboard

r � create a whiteboard

c � change to another whiteboard

d � delete a whiteboard from the directory

l � list the contents of the directory

t � enter text into a whiteboard

e � exit

��Note that the Amadeus server daemon must be running on your machine before executing any appli�

cations� The Amadeus Installation and User Guide explains how to run and interact with this daemon�

CHAPTER �� SHORT INTRODUCTION TO C
�� ��

����� Implementation Details

When a user runs the application
 a screen object is created locally on the current node�
An I	O object is also created which runs a menu also on the local node� This provides
the user with a choice of commands to create and manipulate whiteboards� Neither the
screen nor the I	O objects are persistent� each time the application is run a new screen
and I	O object are created�

On a cold start ��reset is speci�ed as a command line argument�
 a directory object is
created and recorded in a logical container speci�ed as a command line argument by the
user
 e�g�

� wbserver �reset �

stores a directory object in logical container �� This dictionary object is used to main�
tain mappings for current whiteboards�� It is consulted on a warm start
 so that the
whiteboards it knows about may be accessed�

������� Hash	 Bu
er and Directory Objects

The directory stores the whiteboards in the system
 and maps a text name to a whiteboard�
This mapping is accomplished using a hash object
 and the directory contains an array of
hash objects� The de�nition of hash is�

��

�� hash Definition

��

permclass hash�

whiteboard �wb�

char name�NAMESIZE��

public�

global Zero���wb 	
��

�� empty the hash object

global int IsZero���return�wb 		
���

�� is the hash object empty�

global Assign�whiteboard �newwb� const char �newname��

�� assign a whiteboard and name to the hash object

global int IsSame�const char �newname��

�� is the hash object the same as another with newname

global whiteboard �GetWB���return wb��

��return a whiteboard

��

��The current implementation does not use lookup and record� but instead implements its own directory

object� It could be changed to do so�

CHAPTER �� SHORT INTRODUCTION TO C
�� ��

The hash object is considered to be empty if the wb reference is zero� Two hash objects
are considered to be identical if the names are the same�

When the names of the whiteboards in the directory are printed in Contents �see below�
a bufferType object is used� The bufferType object is de�ned as follows�

��

�� bufferType Declaration

��

permclass bufferType�

char thebuffer��DIRSIZE�NAMESIZE�
 ���

public�

global void NewBuf�const char �newbuffer��

�� copy the contents of newbuffer into thebuffer

global void OutputNames���

�� output the contents of thebuffer

��

The directory class is de�ned as follows�

��

�� Directory Declaration

��

permclass Directory�

hash table�DIRSIZE��

public�

Directory���

�� constructor

global Register�whiteboard �wb�const char � name��

�� enter a whiteboard into the directory

global whiteboard �LookUp�const char � name��

�� lookup a whiteboard using its name

global Remove�const char � oldname��

�� remove a whiteboard from the directory

global Contents�bufferType �allnames��

�� show the contents of the directory

global CleanUp�screen �old��

�� clean up the directory by removing any

CHAPTER �� SHORT INTRODUCTION TO C
�� ��

�� references to old screens

��

When creating a whiteboard a name for the whiteboard �a string� and a logical container
�a low valued integer� must be speci�ed in which to store the new whiteboard
 allowing
the distribution of the storage for the whiteboards over several nodes� A whiteboard may
be looked up by specifying its name� Contents lists the names of the whiteboards in the
directory and CleanUp removes all references that other objects in the application may
have to an old screen �see below��

������� Screen

A screen object is created locally when the application is warm started
 and conceptually
it models a terminal screen� The screen object contains a reference to the directory object
so that it may access whiteboards
 and a reference to the whiteboard currently being
viewed
 if any� The declaration of the screen class is�

��

�� Screen Declaration

��

permclass screen�

whiteboard �currwb� �� the current whiteboard that the screen has

�� selected

Directory �dir� �� a reference to the recorded directory object

public�

screen���

�� constructor

global CreateWB�const char �name�int contno��

�� create a whiteboard specifying its name and the logical

�� container number in which it is to be placed

global SelectWB�const char �name��

�� select �or view� a whiteboard

global ChangeWB�const char �name��

�� select a different whiteboard to the one previously

�� selected

global DeleteWB�const char �name��

�� remove a whiteboard from the directory

global EnterText�const char �name� const char �text��

�� enter text into a whiteboard replacing the previous text

�� if any

global ListWB���

�� list the names of the whiteboards in the directory

CHAPTER �� SHORT INTRODUCTION TO C
�� ��

global Update�const char �text��

�� update notifies all screen objects

�� that have selected it that its text has changed

��

The screen object may create and delete whiteboards
 as well as entering or changing the
text of a whiteboard� When a screen selects a whiteboard
 it is informed if the whiteboard�s
text is changed by another screen object running on the same or a di�erent node�

������� Class Whiteboard

A whiteboard object consists of a text name �e�g� �wb���
 a text word of �information�

and an array of references to screens� The de�nition of whiteboard is�

��

�� Whiteboard Definition

��

permclass whiteboard �

char name��
�� �� the name of the whiteboard

screen �displayedon�MAXSCREENS�� �� the screens that have selected

�� this whiteboard

char info��
�� ��the text of the whiteboard

public�

whiteboard�const char �name��

�� constructor

global MakeCurrentScreen�screen �newscreen��

�� add newscreen to the displayedon array

global RemoveCurrentScreen�screen �oldscreen��

�� remove newscreen from the displayedon array

global AddText�const char �text��

�� add new text to the whiteboard

global GetText�bufferType �newbuf��

�� write the text of the whiteboard into newbuf

global const char �GetName���

�� get the name of the whiteboard

global CleanUp�screen �old��

�� remove the old screen reference from

�� the displayedon array

��

CHAPTER �� SHORT INTRODUCTION TO C
�� ��

The screen references refer to screen objects that have selected that whiteboard at that
time� When the whiteboard�s text changes
 it checks the array
 and for every screen
reference found
 it sends the screen a new copy of its �information�� Whiteboards are
persistent and screens are not
 so when the application exits
 the reference to the screen
object that no longer exists must be removed from the array so that when the whiteboard�s
text changes in the future it will not try to send an update to that non�existent screen�
This is done by the CleanUp method�

������� I�O Object and Mainline

The purpose of the I	O object is to provide a menu to the user so that whiteboards may
be created
 viewed and changed� The I	O object is created locally with the screen object
when the application is started on a warm start and it has a reference to the local screen�
The I	O object is declared as follows�

��

�� IO Declaration

��

permclass IO�

screen �myscreen� �� the local screen object

public�

IO�screen �newscreen��

�� constructor

global Run���

�� the menu

��

The constructor initialises the myscreen reference to newscreen and the Run method
provides the menu�

The mainline creates a new directory on a cold start and places it in the logical container
speci�ed by the user� On a warm start
 a screen and I	O object is speci�ed and the menu
is run�

Chapter �

C�� speci�cs

��� Persistent classes

C�� extends C�� by allowing speci�ed classes to support persistent instances�

Not all instances of a persistent class necessarily persist� When a program exits� and potentially
at other times� only those instances of a persistent class which are �transitively� reachable from a
Name Store �c�f� section ��� are themselves considered persistent� However the same compiled
code for a class can be executed on both persistent and non�persistent objects from that class�

C�� introduces two new class categories to facilitate persistence� in addition to the usual class�
struct and union�

Any class which inherits� directly or indirectly� from a permclass can also support potentially
persistent objects� Any class which supports potentially persistent instances is called a 	persistent
class
� Objects from a persistent class persist if they are dynamically allocated using new� and
they are �transitively� reachable from a Name Store�

A volclass is in all respects identical to a C�� class� in particular its instances are never persis�
tent� A permclass supports potentially persistent instances � potentially because of �transitive�
reachability from the Name Store� as in the manner described above�

Note that although a volclass is equivalent to a C�� class� it is not in general equivalent to a
C�� class� a C�� class will be persistent if it inherits from a permclass � a volclass is never
persistent� even if it does inherit from a permclass�

Each persistent class so identi�ed by the compiler is associated with a compiler generated class�
the so called upcall class for that persistent class� When an object of a persistent class is created
using new� an upcall object is physically attached to the new object by the storage management
routine�� Each heap allocated object of a persistent class has just a single associated upcall object�
that is� member objects of an object of a persistent class� which themselves are from persistent
classes� share the same common upcall object�

permclass LogBook �

���

��

permclass Car �

�ie user new is overloaded by the compiler�

��

CHAPTER �� C
��

SPECIFICS �

���

LogBook MaintenanceRecord�

��

��

���

Car �c 	 new Car��� �� single upcall object for Car

�� and MaintenanceRecord

The member functions of an upcall class are automatically generated during compilation� and
include identifying the location of all pointers and references in the instance data� This information
is then used at execution time to ensure that the entire graph of connected persistent objects is
faithfully stored and restored to and from storage�

When a pointer to a persistent object is dereferenced� and the target object is not currently
resident in memory� then some overheads are incurred while the target object is being fetched�
Subsequently� all uses of that pointer incur no additional overheads beyond that of C��� the
pointer refers directly to the target object in the usual way � even if it is a nested member such as
MaintenanceRecord above�

As a side e
ect of fetching one object from the store� the Amadeus runtime may fetch further objects
�in the same 	cluster
�� thus reducing the cost of subsequent 	object faults
 on the prefetched
objects�

��� Global classes

A class which has a global member function is termed a 	global class
� Further� any class which
has member objects of global classes is also global� whether or not it itself has any global member
functions� The global functions of an instance of a global class are termed the 	global features
 of
that class� A class can also have a global class as a member of that class� in this case the global
features of the �enclosing� class include those of the member� For example�

permclass LogBook �

���

global void MakeEntry �const char��� �� make entry in log book

��

permclass Car �

���

LogBook MaintenanceRecord�

��

��

Here Car is a global class� since it contains a nested member MaintenanceRecord which is global
because it contains a global member function�

The global features of an object of a global class can be accessed via a pointer� independently of
the current �node� location of that object� As noted above� these global features may in fact be
nested parts of a global class�

Thus� given the above declarations� the following �remote� call can be made from a remote node�

CHAPTER �� C
��

SPECIFICS ��

Car �c�

����

c��MaintenanceRecord�MakeEntry��Serviced on �����������

���

LogBook �lb 	 c��MaintenanceRecord�

���

lb��MakeEntry��Serviced again on �����������

Global features can be inherited in the usual manner of C��� and can appear in the public�
protected or private interfaces in the usual way� For example�

permclass LogBook �

���

global void MakeEntry �const char��� �� make entry in log book

��

permclass Car �

���

private�

LogBook MaintenanceRecord�

��

��

Thus� the following calls can still be made from a remote node�

Car �c�

����

c��MaintenanceRecord�MakeEntry��Serviced yet again on � ���������

���

LogBook �lb 	 c��MaintenanceRecord�

���

lb��MakeEntry��Serviced finally on �����������

Naturally� by the rules of C�� for privatemembers� such a call could now only be made within a
member function or friend of class Car� for example� by a peer object �of class Car�� Nevertheless�
in C�� such a call can be made �e�g� by a peer object� across the underlying network�

Global member functions are always �implicitly� virtual� and thus a rede�nition in a derived class
overrides that in the base class in the usual manner�

Instances of a global class can potentially migrate from one node of the distributed system to
another� Thus access to a global feature is always potentially a remote access� even if the target
global object is currently local� there is no guarantee that it will remain so in the future� Remote
access is only supported for global features� Given a pointer to a global object� the current de�nition
of C�� restricts access to that object to its global features� there is no access to the non�global
features even should the designated object actually be local� Consequently� objects of global classes
are totally encapsulated when accessed via pointers� not even peer instances of the same class or
friends can access any of their private� protected or public members other than those member
functions which are explicitly marked as global and those member objects which are themselves
global�

In Amadeus v���� member by member copying of objects of global classes is not supported � thus
it appears as if the default constructor of each global class is private�

CHAPTER �� C
��

SPECIFICS ��

When a global object is migrated� some of the non�global objects it �transitively� references are
migrated along with it� Those non�global objects which are instances of permclasses are migrated
with it� while all other objects remain behind� Global objects can obtain noti�cation of migration
events by de�ning unmap and map member functions �c�f� section ���� and so rebuild pointers to
non�global� non�persistent classes�

In C��� non�global objects are never shared� between global objects� Each global object forms
the root of a subgraph of non global objects� In order to preserve this assumption� pointers to
non�global objects are never transmissable as arguments or results of global member function calls�

��� Marshalling

Each global member function is supported by an RPC stub so as to allow remote use of the object
via a pointer� However� there are a number of limitations imposed on the type of arguments and
results which can be marshalled� In C�� v���� the types which could be marshalled were�

�� pointers or references to a global class

�� value �const or otherwise� of a basic type� int� float� char� unsigned int

�� value �const or otherwise� of an enum type

�� const char�� for which a null terminated byte string is expected

�� manifestly sized arrays of any of ��� to ���

�� structs whose �elds are any of ��� to ���

Notably arrays whose sizes are determined at runtime� and member by member values of classes
cannot be passed in the present C�� implementation�

Further� pointers to basic values �such as ints� are also currently not supported� other than const

char�� This is because the only globally referencable entities in C�� are global objects� and an int

is not an object� Naturally a programmer may de�ne her own encapsulation of e�g� an int as a
global class if cross�machine pointers to ints is really desirable�

We intend to increase the range of supported types in the future� We are for example consider�
ing adding support to allow for in�out transmission of simple types such as ints� although not
necessarily by presenting these to the programmer as pointers to ints�

����� Additions in v���

In addition to the above list� we have added the ability to pass and return objects�by�value� The
details of this are summarized below�

�� the marshalled objects may contain any of the ��� to ��� above

�� pointers to temporary objects or basic types are re�initialised to zero �as they are no longer
valid in a di
erent context�� except if the �norp command line switch is enabled� in which
case they are not re�initialised�

�� references to temporary objects cannot be reset to �valid� values� and a warning is issued to
that e
ect

�� while arrays of pointers and values can be handled� arrays of objects cannot yet be processed�

�Again� with the corollary that type casting by the programmer can circumvent this�

CHAPTER �� C
��

SPECIFICS ��

An example of an object being mar�
shalled by value is given in amadeus�demos�manual examples�marshal� and an extract is given
here �

class param � public glob�cl � �� this is marshalled recursively

public�

int i 	 � �� is marshalled

int �ip� �� this is a pointer to a non�global value� it is be

�� reset to zero

�� �unless the ��norp� switch is set�

int !ir� �� references to temporaries are invalid when marshalled� and

�� cannot be reset� a warning to this effect is issued

char �cp 	 �
��"#$�� �
�� �� as in �ip�

const char �ccp 	 �abcdefghijklmnop�� �� is marshalled

temp�cl t� �� is marshalled by value recursively

temp�cl �tp� �� as in �ip�

temp�cl !tr� �� as in �ir�

glob�cl g� �� is marshalled by value recursively

glob�cl �gp� �� is marshalled� will still point to its global object

glob�cl !gr� �� is marshalled� will still reference its global object

int iarr���� �� is marshalled by value recursively

int �iparr���� �� as in �ip�

�� temp�cl tarr���� �� error � unfortunately� arrays of objects cannot be

�� marshalled by value yet

��

temp�cl �tparr���� �� as in �ip�

�� glob�cl garr���� �� as in �tarr� ��

glob�cl �gparr���� �� as in �gp�

���

�

��� Amadeus events

Editorial Note�

This feature is not supported in the publicly released C�� v
��� It is considered a high priority�

Each persistent or global class can optionally have its own member functions to respond to partic�
ular events occurring in the Amadeus environment� These currently are�

void unmap�� called when the current object is about to be unmapped from memory and stored
onto disk or migrated�

CHAPTER �� C
��

SPECIFICS ��

void map�� called when the current object is fetched from disk or from another node and brought
into memory� This call might be used to rebuild pointers to objects of volatile classes�

��� Exceptions

Although g��� on which the current C�� implementation is based� provides support for excep�
tions� C�� does not provide exception support� pending the implementation of the exception model
described in the Annotated Reference Manual�

As an interim measure� C�� allows the application programmer to specify a function � a so�called
environment exceptions handler � to be called whenever an exception is raised in the underlying
Amadeus environment�

The programmer can specify one environment exception handler per activity �see below in section
���� This function is called in the context of the activity� when various unusual conditions arise
during the execution of the activity�

To install a new environment exceptions handler use�

handler�func set�eehandler�handler�func Handler��

where Handler has the form�

extern void ��foobar �int�� ���

where foobar is the name of the function� The parameter passed to the handler is the exception
identi�er which indicates which of the set of prede�ned exceptions has occurred�

set eehandler returns the previous handler function for the activity so that the programmer can
implement a stack strategy for environment exceptions handlers� Each activity initially has a
default environment exceptions handler which will terminate the activity having �rst printed an
appropriate error message�

��	 Concurrency

Amadeus provides a concurrency model based on the concepts of activity and job�

A job is at �rst sight similar to a classical Unix process� The di
erence from a classical Unix
process is that a job can span multiple nodes� In particular� a call to a member function of a
remote object can result in the current job executing that member function remotely at another
node� When this happens for the �rst time� the job is said to have di�used to that node�

An activity is likewise similar at �rst sight to a classical lightweight process or thread� A job may
contain one or more activities� running in parallel�� An activity can however di
use to another
node as a part of its job� thus spanning multiple nodes�

Below we �rst present the general design for management of activities and jobs in C�� � Unfortu�
nately this design is not yet implemented� and so instead we consider in section �� how a similar
result can be achieved by explicit hand coding� Finally in section �� we present some macros
which assist in C�� v����

�or� at least� quasi�parallel in Amadeus v
���

CHAPTER �� C
��

SPECIFICS ��

����� Futures

In C��� this model is presented through the concept of futures� as appeared in 	Multilisp
 by R�
Halstead� Instead of invoking a member function synchronously� and waiting for its result� a new
job or activity can be 	forked
 o
 to execute the member function in parallel to the caller� At
some later stage the caller can test for termination of the forked activity or job� and recover the
results of the member function call� Equally� the caller may choose to ignore those results and
never synchronise with the termination�

Member functions which can be used for futures must be explicitly marked using the keyword
active� active member functions are also treated as global�

For example� given�

class foo � �� or permclass� or volclass��

���

active result fn �args��

���

�

the function fn can be used as the initial operation of a new job or activity�

A new job or activity can then be created and controlled as follows�

�include �amadeus�h�

foo� f�

f 	 new foo ��� �� create a foo

result r 	 f��fn �args�� �� foo��fn�� can be used as usual

future �ft 	 f��fn �JOB� args���� create a new job

ft��suspend��� �� suspend the job

ft��resume��� �� resume the job again

if �ft��done��� �� can we get the result yet�

�

f��redeem�ft� r�� �� pick up result of forked call here���

�

Note that the active member function of foo can still be used as normal� fn can also be called to
create a new job or activity in which case it takes an extra parameter �of type actjob t� to specify
whether a job or activity is required and returns a �pointer to a� future to be used to control the
job or activity subsequently� The job�activity can be suspended or resumed as often as is required�
Moreover the new job or activity can be explicitly terminated by means of the kill function�

Each active member function is expanded by the C�� compiler into two functions� one to create
a future� and one to obtain its result�

����� Futures in C�� v���

This section shows by example how jobs and activities can be created in C�� v����

CHAPTER �� C
��

SPECIFICS ��

������� Hand
coding

As a �rst example� consider the following class de�nition�

class foo �

public�

global void launch�int a� ref �b� int c�� �� operation no� �

�� ref is a global class

��

Only operations marked as global may be used for creating jobs or activities� The operation
numbers �see below� are assigned to all global operations of a class consecutively starting from � in
the order in which the operations are declared� To create a job or activity to invoke the operation
foo��launch on an instance of foo� another C�� method is required� This method should be
declared as follows�

�include �amadeus�h�

�include �future�h�

class bar �

public�

future� future�launch� foo� f� actjob�t which�

int a� ref �b� int c��

��

The �rst parameter f is a pointer to an instance of foo� The parameter which speci�es whether
a job or activity is to be created �ACT speci�es an activity and JOB speci�es a job�� The necessary
de�nitions may be obtained by including the �le amadeus�h� The remaining parameters should
match the ones given in the declaration of foo��launch�

Class future is de�ned in the include �le future�h�

The body of future launch should be as follows�

�� future�launch� foo� f� actjob�t which� int a� ref �b� int c�

�� �

"� �� change these next four line accordingly

#� const int opid 	 ��

$� const int dsize 	 sizeof�a�
sizeof�c��

�� const int nrefs 	 ��

�� const aon�oo �obj 	 �aon�oo �� f�

 �

�� future �ft 	 new future�which��

�
�

��� aon�stub s��

��� amadeus�getstub �ft� s���

�"�

CHAPTER �� C
��

SPECIFICS ��

�#� aon�oo� �t 	 obj��object���

�$� aon�marshal m ��t� opid� dsize� nrefs� which� s�� s���

���

��� �� push all parameters

� � m�push�a��

��� m�push�b��

�
� m�push�c��

���

��� void �amh 	 �void�� ��int�m�block�� � �"���

�"�

�#� aon�absentcluster �amh� m�badd����

�$�

��� return ft�

��� �

Opid �line �� should be changed as appropriate according to which operation is being invoked�
The constant dsize� on line �� is the size of the parameters excluding any object references� The
number of object references is given next in nrefs �line ��� Here� there is one object reference in
the parameter list� so this is given as �� The f in line � refers to the object being invoked� Lines
�� to �� should be changed depending on the parameters to the operation� Parameters should be
pushed in the order that they are declared� Note that only lines ��� and ����� need be changed�
as described� to create a job�activity to invoke a di
erent operation�

Note that if future launch is a member function of class foo� the �rst parameter f can be dropped
and the reference to f in line � should be changed to this�

The code necessary to actually create a job�activity is as follows�

�� �

��

"� future �ft�

#� foo �f 	 new foo�

$� bar �b 	 new bar�

��

�� ft 	 b��future�launch�f� ACT� ��"#� b� #$����

 �

�� �

This example creates an activity �ACT on line ��� Note that here� instances of foo and bar are
explicitly created� They could� however� have been created elsewhere�

������� Using macros

The second example illustrates the use of macros which hide and simplify the implementation of
futures� The macros we have de�ned in the release of C�� v��� may only be used to implement
futures of methods of a class if those methods take a single integer parameter� However the macros
can of course be edited and re�ned if required�

Consider a modi�ed version of class foo�

�� class foo �

��

CHAPTER �� C
��

SPECIFICS ��

"� public�

#� global void act
�int p��

$� global void launch����

�� global void launch����

��

 �

�� ��

Class foo has three global functions� the �rst of which must take a single integer parameter� To
implement futures for launch� and launch�� class bar� as introduced above in section �� is
unnecessary� In its place two macros are used�

The �rst macro� ACTIVE� takes a class name as a parameter�

�� ACTIVE�foo�

and is used to indicate an active function� which is always the �rst global function in the class� in
this case act
� To use these macros act
 must take a single integer parameter and not return any
results� The purpose of act
 is to multiplex the other functions in the class that are to be invoked
using a future� For example� the implementation of act
 here is�

�� void foo��act
�int p�

�� �

"� switch�p��

#� case �� launch����break�

$� case �� launch����break�

�� �

�� �

If p is � then launch� is called� and correspondingly if p is �� launch� is called�

The second macro� BUILD ACTIVATE� also takes the class name as a parameter�

�� BUILD�ACTIVATE�foo��

and is used to implement the future support for the active function �act
� of the speci�ed class
�foo�� The support provided is essentially that of the code in future launch in section ���

The code to create a job or activity is called using the macro ACTIVATE� which takes three param�
eters�

�� ACTIVATE�CLASS �c� actjob�t which� int select��

c is a reference to an object of type CLASS �in this case foo�� the parameter which denotes an
activity or job as before� and select is used by the active function act
 to determine which
function �launch� or launch�� to call� The code to create an activity for launch� and launch�

is�

�� �

��

"� future �ft���ft��

CHAPTER �� C
��

SPECIFICS ��

#� foo �f 	 new foo�

$�

�� ft� 	 activate�f�ACT����

�� ft� 	 activate�f�ACT����

 �

�� �

An activity to execute launch� is created on line �� and another for launch� on line ��

��
 Synchronisation

As stated above� the Amadeus activity is analagous to the concept of a process thread� Program�
mers wanting to use threads or activities need to take special care when sharing data between
threads or when using Unix system calls�

Sharing data between threads simply requires synchronised access to the data� as outlined below�
Standard Unix libraries such as clib do not currently support multi�threaded execution� A number
of di�culties arise in the areas of non re�entrant system calls� the errno variable� signals and
blocking I�O�� Current thread packages such as Cthreads or Sun�s lwp package o
er no real library
support for threaded programming� The Pthreads initiative� as part of the POSIX standard intends
solving all related problems�

The following gives examples of how Amadeus supports use of activities in view of the problems
outlined above�

����� Shared data areas for activities�

Amadeus provides the semaphore class� which can be used to synchronise access to shared data�
The de�nition of the semaphore class is as follows�

permclass semaphore � public aon�semaphore �

public�

semaphore������ �� �� binary semaphore

semaphore�int i���i� �� �� general semaphore

global void wait��� �� wait

global void condwait��� �� conditional wait

global void signal��� �� signal

��

where the usual wait� signal and condwait operations are de�ned� The semaphore class can be
used by including the �le sem�h�

To synchronise access to shared data a user program must wait on a semaphore before accessing
shared data and signal the semaphore afterwards� Generally there is one semaphore per shared
data section� however the programmer may opt for a �ner granularity��

�For a complete discussion of the issues see Bringing the C libraries with us into a mutli�threaded future

by Jones� Usenix �����
�i�e� a semaphore per �eld of a shared data area so as to improve concurrency�

CHAPTER �� C
��

SPECIFICS �

The following is an example of how two activities may synchronise access to a shared integer�

�� Shared semaphore

semaphore �mutex�

��

�� Activity One

��

while����

mutex��wait���

shared�int

�

mutex��signal���

�

��

�� Activity Two

��

while����

mutex��wait���

shared�int

�

mutex��signal���

�

�� Extract from mainline

�

�

mutex 	 new semaphore���

����� Making system or library calls

Di�culties arise when multi�threaded programs use the standard Unix libraries due to the following
reasons�

� Some functions �e�g� getserverbyname� are non re�entrant as they return a pointer to a data
area which is allocated on a per process basis�

� Some functions maintain state between calls �e�g� malloc or �le access� and su
er from the
same problems as non re�entrant functions

� The Unix errno variable is allocated on a per process basis�

The C�� programmer is provided with basic support for the above problems� namely the ability
to serialize system calls� The user is allowed to de�ne critical sections of application code� which
cannot be interrupted� Amadeus guarantees that an activity which is in a critical section� will not
be preempted until it exits the critical section� therefore guaranteeing an activity unobstructed use
of a library call�

The following is an example of an activity which makes a system call inside a critical section�
accessing �or possibly copying� the results before leaving the section�

CHAPTER �� C
��

SPECIFICS ��

�� Enter a critical section

amadeus�enter�critical���

cout �� �Activity is non�preemptable�n�n��

hostent�ptr 	 getserverbyname��HOST���

�� Now read required field from per�process buffer

�� with guarantee of non�preemption

�� Finally leave critical section and allow premption

amadeus�exit�critical���

����� Blocking I�O system calls�

Many standard output functions �e�g� printf�write� are asynchronous semantically� However
most standard input functions �e�g� read� scanf� are synchronous� meaning that they block until
input is available� This may be unacceptable to the threads programmer� as a call to a blocking
I�O function will block the entire process of threads� It is usually desirable to only block the calling
thread�

Amadeus provides facilities whereby an activity can await input or output on a speci�ed �le
descriptor� This facility allows other threads to be scheduled while the thread is awaiting input or
output� The following is an example of how a thread may await input on stdin��

char� string�

int r 	 �� �� r 	 � 	� await input on descriptor�

int w 	
� �� w 	 � 	� await output on descriptor�

int i 	 amadeus�await�fd�
�!r�!w��

if �r��

cout �� �������RECEIVED INPUT��������n��

�� Enter a critical section �No preemption�

amadeus�enter�critical���

scanf���s��string��

amadeus�exit�critical���

�

In the case where more than one thread is awaiting input or output on a common �le descriptor�
i�e� the �le descriptor is a shared variable� then the programmer must synchronise access to the
�le descriptor using semaphores as explained previously� In the above case� this would involve
encapsulating the entire piece of code inside a semaphore�

�Recall that �le descriptor � is stdin�

CHAPTER �� C
��

SPECIFICS ��

��� Using Signals�

Currently Amadeus provides no extra support for Unix signals in a threaded environment� Signals
are delivered and handled on a per process basis�

��� Managing storage

The distributed store of an Amadeus installation is divided into a number of containers� Above
Unix� each container is implemented as a directory containing a number of �les� Within C��

programs� containers are identi�ed by system�wide unique ints�

Each container can store up to ��� persistent objects� Each such persistent object itself forms the
root of a subgraph of objects �c�f� section ���� Groups of objects can be stored together in clusters�
in such a way that an 	object fault
 which brings in an object will also fetch from store the other
objects belonging the same cluster�

In Amadeus v���� there is no direct programmable control over clusters from a C�� program�
Allocation of objects to clusters is done when the objects are created� and cannot be changed
thereafter�

A C�� programmer can establish which container should be used to store all subsequently created
permclass objects� by using the Amadeus library call setlc� Naturally only those permclass

objects which are not manifestly garbage are actually stored� setlc can be used at any time to
change the current container used for newly created objects�

The Amadeus library provides further calls to create a container� mount and unmount a container�
and obtain the associated Unix directory name for a container� Chapter �� describes these in
more detail�

Chapter �

The Amadeus runtime

The set of down�calls described below can be invoked on the Amadeus runtime from a C�� program�

int reset���

void record�const char �Unixfilename� void �object��

void� lookup�const char �Unixfilename��

int getnodeid���

int setlc�int LcNum��

int getlc���

int createlc�char� LcPath��

int wherelc�int LcNum� char� LcPath��

int mountlc�int LcNum� char� LcPath��

int unmountlc�int LcNum��

handler�func set�eehandler�handler�func Handler��

int getpid�void���

reset�� returns true if the �reset �ag was passed to the application�

record�� registers the speci�ed object in the Name Store under the speci�ed name�

lookup�� returns a pointer to the object registered with the speci�ed name in the Name Store�

getnodeid�� returns the identi�er of the local node�

setlc�� sets a given container to be the 	current
 container� The given container has to be already
mounted on one of the nodes�

The parameter is� int LcNum� the container�s identi�er�

Return value� �� if successful� otherwise ��

getlc�� obtains the 	current
 container identi�er�

Return value� the current container identi�er�

createlc�� creates a new container� It allocates a new container identi�er� and creates the control
�les associated with a container� This function does not mount the new container�

Parameter is� char� LcPath� the container�s directory path�

Return value� The new container number� or zero on error�

wherelc�� searches the local and remote mount tables for a speci�ed container� If found� the node
number of the control node� and optionally the container�s path are returned�

Parameters are�

��

CHAPTER �� THE AMADEUS RUNTIME ��

�� int LcNum� the number of the container being searched for�

�� char� LcPath� the container�s path� This argument is ignored if it is empty�

Return value� The node number of the container�s control node� or zero if it is not mounted
anywhere�

mountlc�� mounts a container on the current node� It checks that the container is not mounted
elsewhere already� and if not� a message is sent to other servers telling them that the container
is mounted on this node�

Parameters are�

�� int LcNum� number of the container being mounted�

�� char� LcPath� path of the container�s directory�

Return value� � on success� � otherwise�

unmount�� makes the given container inaccessible� There should be no objects from the given
container mapped in memory when this down�call is issued�

The only parameter is LcNum� number of the container being unmounted�

Return value� � on success� � otherwise�

set eehandler�� sets the environment exceptions handler for the current �calling� activity�

Return value� the previous environment exceptions handler for the activity�

getpid�void�� given a C�� pointer� returns a short unique identi�er for the object �its pid � a
logical container number and a unique number within this��

Appendix A

Summary of restrictions in the C��

v��� implementation

As noted in the text� the current C�� implementation imposes a number of undesirable restrictions�
which we hope to remove in the future� These are summarised here for convenience�

� restrictions on marshalling

� the Amadeus environment does not yet allow global� but non persistent� classes� Currently
therefore C�� converts such declarations into global and persistent classes� and provides a
warning that it is doing so�

� active member functions are not yet compiler supported�

� unmap and map are not yet supported�

� Exception handling is not currently supported�

� unions as members �data� of permclasses are not yet supported�

� An object cannot be migrated between heterogeneous hosts�

� static data �such as �stream�h��s cout� are not accessed correctly in inline member func�
tions in a class de�nition �a bug���

� Explicit use of delete on a permclass object fails to interact correctly with the Amadeus
garbage collector �a bug���

� anonymous structs and unions are not correctly handled �a bug���

��

