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Memory-Based Reasoning (MBR) represents a radical new departure in AI research. Whereas work in
symbolic AI is based on inference and knowledge representation MBR depends on using a large
memory of examples as a reasoning base. The MBR methodology is empirical so a typical system
does not contain an explicit domain model. This means that MBR systems are quick to set up so the
methodology shows considerable promise for knowledge based systems development. Indeed some
impressive full scale systems have been demonstrated. In this paper we argue that despite this initial
success there are considerable limitations to what can be achieved with MBR. We believe that the
absence of a domain model means that MBR will not succeed in complex applications. We illustrate
problems in natural language processing and planning that will require access to domain theories in
their solution. Our conclusion is that the memory oriented philosophy of MBR has advantages but, for
truly intelligent systems, this philosophy is better realised in the CBR paradigm where it can be
integrated with a strong domain theory.

1.  Introduction

This paper is prompted by concern about some of the claims made in research on Memory-Based Reasoning
(MBR). The motivation behind the MBR movement is that the advent of massively parallel computing radically
changes the way AI should be done. The argument is that intelligent performance can be based on a large
empirical database of examples and in particular the requirement that the symbolic AI paradigm has for a strong
domain model is avoided (Stanfill & Waltz, 1986; 1992), (Kitano, 1993), (Creecy et al., 1992). In this paper we
will attempt to illustrate the unavoidable requirement of domain models and inference mechanisms for more
complex tasks.  We will use examples from planning and natural language processing to illustrate situations
where empirical analysis is not adequate and inference based on a strong domain model is required.

MBR uses similarity metrics to find examples in memory that are similar to the problem in hand and then uses
the actions associated with these examples to deal with the current situation. This is similar to the methodology
used in Case-Based Reasoning (CBR) with the important difference that CBR systems incorporate some domain
theory to guide the case matching and adaptation processes (see Kolodner, (1991); Veloso & Carbonell,(1991);
Smyth & Cunningham, (1992), for descriptions of representative CBR systems). Thus MBR is a significant
departure from the physical symbol system hypothesis of traditional AI. Instead it is memory centred, depending
on a large content addressable memory of examples quickly accessible on parallel hardware. This means that
MBR systems are easier to set up than symbolic AI systems as the knowledge engineering task is largely
avoided (see Creecy et al., (1992) for example).

Advocates of the MBR idea have argued for the advantages of MBR over techniques based on knowledge
representation and inference; the contention being that MBR techniques take better advantage of massively
parallel architectures. This argument is a performance argument, whereas we believe that the crucial drawback
with MBR is the lack of domain semantics. It is clear that MBR is a powerful methodology for some tasks for
example; phrase translation (Kitano & Higuchi, 1991), classification (Creecy et al., 1992), or information
retrieval (Stanfill & Waltz, 1992). However, there is reason to doubt that this impressive performance on what
are essentially 'entry level' intelligent tasks will be manifest in tasks of greater complexity. In this paper we
will describe problems in natural language processing and planning/design where it is clear that MBR will not
succeed without an adequate domain model that captures the causal interactions between domain elements.

Our conclusion is that the memory oriented philosophy of MBR has advantages but, for truly intelligent
systems, this philosophy is better realised in the CBR paradigm where it can be integrated with a strong domain
theory.

Before elaborating on these arguments a brief introduction to MBR will be presented in the next section.
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2.  MBR and Massively Parallel AI

Before examining the MBR methodology it is worth reflecting on the problems with the conventional AI
paradigm that MBR wishes to avoid. The case is presented [in Kitano '93]. 'The traditional AI approach' is based
on the physical symbol system hypothesis. He argues that it has the following characteristics:-

• Formal Representations

• Rule driven inferencing

• Strong Methods: domain theory must be understood

• Hand-Crafted Knowledge Base

This approach has had considerable success with 'toy systems' but has had problems scaling up to larger
applications. Kitano uses the diagram in Figure 1 to contrast the approach of traditional AI with that in MBR.
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(based on (Kitano,  1993))

Figure 1:  Approaches for building intelligent systems

The techniques of traditional AI have been successful in developing 'Toy Systems' that exhibit competence in
limited domains. There is a widely recognised problem in scaling up this competence to a more broadly based
intelligence. The approach in MBR is different. MBR focuses on performance from the start, concentrating on
useful full scale systems for simple tasks. This performance on simple tasks has been illustrated in useful
systems (see Creecy et al., (1992) for instance) however it is not clear that this methodology can be extended to
cover more complex tasks.

The basic idea in MBR is to found intelligence on a large memory of examples. Nearest match computation is
used to find the items in memory most similar to a current situation and then the actions associated with these
items are used to deal with the current situation. Kitano emphasises three characteristics that are essential to the
success of the MBR idea. These are; massive power, massive data resources and sophisticated modelling. He
emphasises the importance of this modelling acknowledging that results will be poor if the modelling is not
appropriate (Kitano, 1993). For the simple tasks tackled to date this sophisticated modelling involves
structuring examples in a manner that allows useful remindings to be generated using statistical techniques. We
believe that for more complex tasks this sophisticated modelling will be every bit as complex as the knowledge
engineering that MBR wishes to avoid.

One of the major advantages of MBR is that it is a technique that takes full advantage of massively parallel
hardware. Proponents of MBR argue that this is in contrast to logic based or rules based techniques used in
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traditional AI. While it is true that MBR can take full advantage of parallelisation there has been considerable
success in transferring the symbolic reasoning paradigm to parallel systems [Evett et al. '93]. Evett and Co.
have shown that on parallel hardware recognition queries can be performed on a large knowledge base in O(d)
time where d is the depth of the knowledge base. This is in contrast to O(Bd) (where B is the average branching
factor in the network), the worst case performance on serial machines. This research is important in that it
illustrates that AI on massively parallel hardware can be based on symbolic inferencing.

Some examples of areas of application of MBR to date are as follows:-

• Pronouncing English words (MBRTalk)

• Text retrieval (CMDRS)

• Classifying free text questionnaire responses (PACE)

• Speech to speech translation (ΦDMDIALOG)

It is worth looking at the details of one of these systems in order to get some understanding of the
characteristics of MBR. The PACE system (Creecy et al., 1992) is a typical MBR system for classifying US
Census Bureau long forms. These forms contain free-text responses to questions on occupation, company,
duties and industry type. These responses have to be classified into predetermined categories; 232 industry
categories, and 504 categories in the case of the occupation response. PACE uses a database of 132,000
manually classified returns as its reasoning base. The responses under consideration are compared with these
using nearest neighbour techniques to determine the best classification. Similarity is normally determined based
on features and in this task the features are the words in the responses. One of the main contributions of the
PACE work has been the analysis of the reasoning base that determines the features that are most predictive in
classification. Evidently, these features are weighted in the nearest neighbour classification. PACE runs on a
CM2 Connection Machine so it meets the three criteria of, massive power, massive data resources and
sophisticated modelling for MBR emphasised by Kitano. It is also a wholly empirical system.

In terms of the structure presented in Figure 1 this is a 'Useful System'; it tackles a full scale but simple
problem. In the next few sections we will argue that this architecture will not be adequate for addressing more
complex tasks. In particular we will argue that a system lacking a domain model will not be able to detect
useful similarity in retrieval and will not be able to perform the required adaptations on retrieved solutions.
We will conclude that domain knowledge must be available for effective retrieval and adaptation as is the case in
CBR.

3  MBR in NLP: A Case of Performance Vs. Competence?

Inasmuch as strong MBR proponents seek to overturn the apple cart of traditional rule-based AI, they
necessarily also part company with established formal linguistics on the complementary issues of competence
and performance in language comprehension, and in particular, translation. Formal linguistics traditionally seeks
to account for performance data, the actual use of language by a native speaker, in terms of a rule-based grammar
of linguistic competence which generatively models the language ability of the speaker. In contrast, proponents
of MBR-based translation claim that a rich example-base, in effect a highly-structured corpus of performance
data, tied to a sophisticated statistical model of matching and retrieval, provides a sufficient basis for translation
without the need for an explicit model of competence.

To commence the argument against this latter view, it is useful to first highlight those aspects of translation in
which a performance-based approach reaps strong results. One such boon occurs in the treatment of language
aberrations such as metaphor and metonymy, in which conceptual transpositions are performed, for reasons of
eloquence or conciseness, in violation of default semantic constraints (see Veale & Keane, 1992). For example
“boiling the kettle” is quite a different action to “boiling an egg”, the former usage  employing a metonymic
shorthand for “the water in the kettle”. Likewise, “to play Mozart” and “to play the Jupiter symphony” both use
the verb “play” in isomorphic syntactic constructs, but with differing conceptual intent. The conventional rule-
based approach to metonymy is to bolster the model of language competence with additional rules of construal
(see Jackendoff, 1991), or metonymic coherence rules (see Fass, 1988). In contrast, the MBR approach does not
place a dependence upon explicit fixit rules but instead relies upon a preponderance of performance data to
provide a nearest-neighbour match. When translating to another language, the MBR system is thus not required
to either resolve the metonymy in advance, or determine whether the metonymy will hold in the target
language; it is enough (and indeed, from the point of preserving the style of the original statement, often
preferable) to retrieve a similar usage from memory and modify the corresponding translation.
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By choosing to emphasise linguistic performance over competence, an MBR treatment of language is
essentially statistical rather than semantic, the aspiration being that given enough performance data and a
sufficiently sophisticated stochastic model, an implicit model of competence will emerge. As argued above, this
often is indeed the case, but it is vital to note here that such implicit competence is inherently dependent upon
the chunk size employed by the statistical model. As the sentences processed by a translation system will be of
a varying (and indefinite) size, the past examples stored in memory will have to be partitioned, or chunked, at
some level of detail if the obvious combinatorial nightmare is to be avoided, and the utility of the example-base
is to be maximised. Consider the following example:

(1) Neville Mariner played Mozart in a concert tour that has gathered great reviews

This sentence is simply too long to expect the case base to contain a complete match. More realistically, the
sentence needs to be chunked into several semantically viable components, each of which can be matched and
modified independently. But while an MBR model demonstrates a semantic competence comparable to a rule-
based system on an intra-chunk basis, its reliance upon a reduction to statistics philosophy leaves it poorly
positioned to reason at an inter-chunk level. Consider the following sentence, which is isomorphic with (1)
above:

(2) Tom Hulce played Mozart in a film that has gathered many awards

In example (2) the verb “play” is used in quite a different sense to that employed in (1) however, unless the
system possesses (and utilises) prior knowledge that Tom Hulce is an actor, this distinction can only become
apparent at an inter-chunk level of processing. Ultimately, without a deep conceptual analysis of each individual
chunk, performed against a strong conceptual model of the world, a translation system is unable to adequately
characterise how different chunks inter-relate and combine to produce a coherent whole. Because of a reliance on
statistics over semantics, an MBR system is unable to meet either of these requirements.

4  MBR & Planning

Before focusing on the role MBR has to play in planning it is worth considering some of the early work on the
notion of "plan reuse".  The basic idea in MBR of the replacement of a domain model with a extensive but
shallow example-base is in direct contrast with the  lessons that have been learnt from this early research.  One
of the first instances of plan-reuse was the work of Fikes, Hart, and Nilsson, (1972).  To improve planning
efficiency, the STRIPS planner was extended to facilitate the storage and retrieval of plan segments (Macrops).
The nature of these stored segments is comparable to the type of examples stored in an MBR system's memory
in that they were shallow packets of plan exemplars.  It was soon recognised however that there were inherent
problems with retrieving a suitable Macrop.  Without a complex description language, Macrops were selected
on the basis of surface features resulting in unforeseen instantiation problems due to bad interactions.  As we
shall see, we can expect similar problems within the MBR framework.

While there is a general acceptance of the advantages of "reuse" for many planning tasks, we will argue that it
has the effect of redistributing rather than reducing domain knowledge requirements. In a reuse-based planning
system a domain model is required to fulfil not only the needs of the adaptation task (which is similar in nature
to traditional first-principles planning)  but also the needs of the retrieval task.

We will consider these issues using examples taken from Déjà Vu, a case-based reasoning system for the design
of Plant-Control software.1  The problem domain of Déjà Vu has already been introduced in (Smyth &
Cunningham, 1992) and so will only be described in outline here.  Plant-Control software is concerned with the
control of autonomous vehicles within a factory environment.  An important class of Plant-Control tasks is
aimed at the control of vehicles during the loading and unloading of metal coils in a steel mill.  Déjà Vu's cases
are software modules for controlling vehicles and other devices performing such tasks.   An example of the type
of code is shown in the Solution section in Figure 2.

1 This software design task is essentially a planning problem.
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Advance*B1*Spool

Machine:
Content:
Action:

Speed:
Direction:
Source:
Dest.:
    :

Buggy*1
Spool
Advance

2-Speed
Forward
Skid
TR
    :

Indices

Position Check

Buggy*1
fast forward

Buggy*1
slow forward

Buggy*1
stop

Stop(TR position)

Decelerate
(200mm before TR)

Solution

Figure 2. An example case from Déjà Vu.

The code is expressed in this network representation that is compilable into and executable form. This sample
case controls the movement of a buggy carrying an empty spool.  Buggy*1 is a two speed buggy, so stopping
is a two stage process with the buggy switching to its slower speed 200mm from its destination.2

4.1  Retrieval

It seems clear that if MBR systems are to enjoy their stated advantage of ease of set-up then the stored examples
must be readily described in terms of shallow, easily observable, surface features. The analytical expense of deep
thematic feature descriptors outlaws their use in a pure MBR system.  However, surface features are not
sufficiently powerful to capture the causal dependencies that exist between plan steps.  Consequently, the
retrieval mechanism has the potential to generate false remindings. That is, it is likely that example plans will
be selected whose measurable similarity does not accurately reflect their true similarity to the target
specification.  In computing an accurate measurement of plan similarity one must consider not only surface
features (such as the goals), but also deeper causal features that capture dependency configurations within plan
structures.  The result is the retrieval of a base example which exhibits strong surface commonalties to the
target but is at best, difficult to adapt and at worst completely unsuitable.

For example, in Figure 2 we have presented the two-speed motion scenario where a buggy travels from one
floor position to another.  A behaviourally very similar task is that of controlling the motion of a lifter (a speed
controlled lifting platform).  This lifter is used to adjust the height of the load for loading and unloading.  Like
the buggy, the lifter can be a one or two speed device and a component case for a two speed lifter is shown in
Figure 3. It can be seen that the solution for the two speed lifter has the same structure as the buggy case
described above so it should be possible to reuse the solution from one in designing the other. However, this is
problematic because these two cases do not share important surface features. So if this lifter case were a target
case, the useful Advance*B1*Spool case may not be retrieved using similarity based on surface features.

Raise*L2*Spool

Machine:
Content:
Action:

Speed:
Direction:
Source:
Dest.:
    :

Lifter*2
Spool
Raise

2-Speed
Up
Carry-Ht
Insert-Ht
    :

Indices

Position Check

Lifter*2
fast upward

Lifter*2
slow upward

Lifter*2
stop

Stop(Reel position)

Decelerate
(50mm before Reel)

Solution

Figure 3. A two-speed lifter case.

2 It should be noted that Déjà Vu uses a hierarchical reasoning technique and cases are arranged into partonomies
that represent complex software designs.  As such, the case here is a sub-component of a number of more
sophisticated designs.
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The current example from Déjà Vu has attempted to describe two cases in terms of surface features, indicating
the ACTION, MACHINE, and CONTENT of the cases.  The problem is that the observed difference in
ACTION types means that the cases are superficially different, even though both behaviourally and structurally
the cases are very similar.

It is difficult to see how the MBR paradigm could cope with such problems without moving towards more
knowledge intensive and computationally expensive similarity-based retrieval models; for example, using
abstract features or feature transformation techniques.

4.2  Adaptation

The shortcomings of pure MBR do not stop with retrieval.  Probably the most compelling and obvious
argument against the shallow knowledge ideal of MBR has to do with the post-retrieval task;  an example has
been retrieved, it differs from the target in terms of a number of criteria, how can it can be adapted to provide the
desired target solution?  Without an elaborate "fixing" of representation it should be apparent that this adaptation
process will not be adequate in an MBR system tackling a complex task.

Without domain knowledge of any form, adaptation is driven solely on the basis of the mappings generated
during the matching stage of retrieval.  These mappings are nothing more than correspondences between
"similar" base and target features.  Differences are captured in the form of base and target features that have failed
to be associated with a  matching partner.  The limited inferencing power of this similarity/dissimilarity
information can be used only to guide a straightforward substitution of target features with their matching base
features.  The hope presumably being that such a superficial modification of the base example will yield the
desired target solution.  This will of course only work in simple domains.

Let us consider the problem of designing a single speed motion module in Déjà Vu as specified by Figure 4.
The retrieval of the Advance*B1*Spool case means that the adaptation process must transform the two-speed
structure into a single speed structure.  The essential transformation is the removal of the "fast forward" speed
control and the "deceleration" check.

Advance*B2*Spool

Machine:
Content:
Action:

Speed:
Direction:
Source:
Dest.:
    :

Buggy*2
Spool
Advance

1-Speed
Forward
Skid
TR
    :

Indices
Stop

(TR position)Position Check

Buggy*2
slow forward

Buggy*2
stop

Solution

Generated 
Solution

Figure 4.  Designing a single speed motion solution.

This sort of modification is impossible without having domain knowledge available during the adaptation
process.  This is further illustrated with many more complex examples from Déjà Vu which rely of far more
sophisticated adaptation;  for example, arbitrary speed changes may effect a vehicle's fuel supply or particular
routes while working for one vehicle may not work for another, due to size restrictions perhaps.

5  Conclusion

It this paper we have presented some examples of tasks for which we believe the pure MBR methodology will
not be appropriate. For complex tasks in NLP and in planning an MBR system will not always be able to
retrieve useful examples from memory nor will it be able to adapt solutions that are retrieved. In the first case,
abstract features and domain knowledge are required to assess similarity. In the second case, a model of causal
interactions is required in manipulating retrieved solutions.

These problems are not manifest in MBR systems presented to date because the comparatively simple domains
chosen do not manifest the complex inter-dependencies that occur in more complex tasks.

Despite these criticisms we believe that MBR (or CBR systems without much domain knowledge) will have a
significant impact in AI applications. For many tasks MBR does have tremendous advantages over traditional
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AI techniques—primarily because it does overcome many knowledge engineering problems. However MBR on
its own is not an architecture for general intelligence. The idea of reasoning from examples stored in memory is
valid but for more complex tasks it needs to be augmented with domain knowledge—like in CBR.
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