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Abstract

The Incremental Analogy Machine (IAM) predicts that the
order in which parts of an analogy are processed can affect
the ease of analogical mapping.   In this paper, the
predictions of this model are tested in two experiments.
Previous work has shown that such order effects can be
found in attribute-mapping problems.   In the first
experiment, it is shown that these effects generalise to
relational-mapping problems, when subjects' error
performance (incorrect mappings) is considered.   It is also
found that relational-mapping problems are significantly
harder than attribute-mapping problems.  In the second
experiment, it is shown using relational-mapping
problems, that order effects can be demonstrated for
doubles (two sentences about two indiviudals) in these
problems.   Throughout the paper it is shown that these
results are best approximated by IAM's measure of the
complexity of global mappings (the remaps-complexity
measure), and not as has been found previously, by a
measure using frequency of remaps (the re-maps measure).
The empirical and theoretical significance of these results
are discussed.

Introduction
The importance of analogy to problems solving, creativity
and learning is well-documented  (see e.g., Koestler, 1964).
Now, the theoretical basis of analogy is better understood
than it was 30 years ago, with the elaboration of the
subprocesses underlying the phenomenon; that is,
representation, retrieval, mapping, adaptation and induction.
Many empirical studies now substantiate these theories (see
e.g., Clement & Gentner, 1991; Gentner & Toupin, 1985;
Gick & Holyoak, 1980; Holyoak & Koh, 1987; Keane,
1985, 1987, 1988, 1994; Novick & Holyoak, 1991).   The
distinctive, core sub-process in analogy is analogical
mapping; it establishes the correspondences between the
concepts in a base domain of knowledge and a target domain,
performing any analogical inferences that follow from these
correspondences.   For example, in drawing an analogy
between the solar sytem and the atom, it is analogical
mapping that determines the correspondences between, say,
the revolution of the planets around the sun and the
revolution of the electrons around the nucleus (see Gentner,
1983).

In performing analogical mapping subjects resolve many
ambiguities in the mappings between the two domains,
ambiguities that are highlighted in Holyoak & Thagard's
(1989) attribute-mapping problem (see e.g., singletons-
crossed problem in Table 1).  In attribute-mapping
problems, subjects are asked to say which things in list A
correspond to which things in list B (ignoring the meaning

of the words); they have to discover a one-to-one mapping
between all the individuals and attributes in list A and list
B.  This mapping is difficult because many ambiguous
matches have to be resolved.  For example, smart may
match hungry or friendly or frisky and the correct match can
only be determined by eliminating the inconsistent matches
that follow from all but one of these matches.  The unique
one-to-one mapping which solves the problem is to match
Steve and Fido, Bill and Rover, Tom and Blackie, smart and
hungry, tall and friendly, and timid and frisky.

This paper examines people's performance on this type of
mapping problem.   In particular, I test the predictions of
one analogy model, the Incremental Analogy Machine, with
a view to selecting its best predictor of the empirical data.
Unlike much previous analogy research the emphasis here is
on predicting subjects' specific, error performance rather than
simply characterising their broad analogical competence.

Theories and Models of Analogical Mapping
There is some theoretical consensus as to the nature of
analogical mapping, although the models used to instantiate
this theory differ considerably.   The basic view is that
analogical mapping is a matching process that is sensitive
to three main sets of informational constraints (see Keane,
Ledgeway & Duff, 1994, for more details):

• structural constraints - which establish isomorphic
matches between entities of the same type in both
domains (e.g., objects with objects, relations with
relations), enforce structural consistency  [if the relation
hit(x, y) and hit(a, b) are matched then their arguments
must be placed in correspondence (x with a, y with b)],
and take the systematicity of the mapping into account
(see Gentner, 1983)

• similarity constraints - that in deciding between
alternative matches, matches that are semantically
similar to one another should be preferred over ones that
are less similar,

• pragmatic constraints - that matches that are goal-
relevant or pragmatically important in the task context
(e.g., because an experimenter has indicated them to be
so) should be preferred over alternative matches

Keane et al. (1994) pointed out that these constraints
constitute a competence-type theory or computational-level
theory of analogy (see Marr, 1982; Palmer, 1989), that had
to be extended to include algorithmic-level or behavioural
constraints to characterise performance aspects of analogy
(e.g., errors and solution times).   They proposed two such
behavioural constraints: working memory limitations and
the effects of background knowledge.



Table 1: Examples of mapping problems used in Experiment 1
_________________________________________________________________________________

Attribute-Mapping Problems

            Singletons-Aligned      Singletons-Crossed

A          B A B

Steve is smart.*  Fido is hungry.* Bill is smart. Fido is hungry.*
Bill is tall. Blackie is friendly. Bill is tall. Blackie is friendly.

Bill is smart. Blackie is frisky. Tom is timid. Blackie is frisky.

Tom is tall. Rover is hungry. Tom is tall. Rover is hungry.

Tom is timid. Rover is friendly. Steve is smart.* Rover is friendly.

Relational-Mapping Problems

    Singletons-Aligned Singletons-Crossed

A B A B

Joe motivates Steven.*   Lisa hugs Jenny.* Mark is beside Ronan. Lisa hugs Jenny.*

Mark is beside Ronan. Laura employs Ruth. Mark motivates Ronan. Laura employs Ruth.

Mark motivates Ronan. Laura hugs Ruth. Conor is beside Paul. Laura hugs Ruth.

Conor is beside Paul. Mary sees Ali. Conor fears Paul. Mary sees Ali.

Conor fears Paul. Mary employs Ali. Joe motivates Steven.*  Mary employs Ali.

__________________________________________________________________________________
* indicates the singleton

All of the computational models in the literature capture
analogical competence by implementing the above
informational constraints.   Falkenhainer, Forbus & Gentner
(1989; Forbus & Oblinger, 1990) Structure Mapping
Engine (SME) implements the three informational
constraints in a serial fashion finding all possible legal
matches between two domains and combining these into
alternative mapping interpretations (or global mappings) of
the analogy.   Holyoak & Thagard's (1989) Analogical
Constraint Mapping Engine (ACME) uses parallel
constraint satisfaction in an interactive network to find a
single global mapping between two domains.    Keane's
(1990; Keane & Brayshaw, 1988; Keane, et al., 1994)
Incremental Analogy Machine (IAM) uses serial constraint-
satisfaction to form a single, optimal interpretation based on
a subset of the possible matches between the two domains.
IAM builds this global mapping incrementally by selecting
a part of the base domain for mapping, mapping it and then
moving on to map another part1.  IAM was designed to
include behavioural constraints, to capture people's
performance on analogy tasks.

The IAM model makes the novel prediction that the order
in which parts of a domain are processed could affect the ease
of the analogical mapping.   Keane et al. demonstrated such
order effects using the two versions of the attribute-mapping
problem shown in Table 1.  An important property of these
attribute-mapping problems is that each list has two
individuals (e.g., Bill and Tom) with two attributes (termed

1 Different forms of incrementality have been proposed in
analogy.   Burstein (1986) proposed that multiple base
domains could be combined incrementally over time when
learning by analogy, but this model does not apply to
complex analogies.   Falkenhainer (1987) proposed a
mechanism for the incremental revision of analogical
inferences after they had been tested by a simulation
method.   Neither model performs incremental mapping of a
single analogy.  IAM is the first general-purpose,
incremental analogical-mapping engine.

doubles) and a remaining individual (i.e., Steve) who has
just one attribute (a singleton).  Matching up the singletons
("Steve is smart" and "Fido is hungry") helps to achieve the
isomorphic mapping because the singletons disambiguate
the set of matches between the two lists (this argument also
applies to the single attribute in both lists).  Taking this
property of the problem into account, IAM predicted that if
the singletons were placed at the beginning of both lists (see
singletons-aligned problem) then the problem should easier
than when the singletons are ordered in a misaligned or
crossed fashion (see singletons-crossed problem).  Keane et
al. (1994) found that people were almost twice as fast at
mapping singletons-aligned problems than singletons-
crossed problems.

These order effects show that an incremental account of
analogy is psychologically plausible.   In part, as a response
these findings Forbus, Ferguson & Gentner (1994) produced
an incremental version of SME (I-SME).   I-SME can also
account for the order effects in attribute-mapping problems.
Forbus et al. have also demonstrated that incremental
analogising is important to model the successive learning by
analogy over time.

The Problem
However, these order effects might not generalise to
mapping problems involving relations.   Most analogies do
not hinge on mappings between one-place predicates [e.g.,
timid(x) , hungry(x)], but rather involve multi-place
predicates [e.g., hit(x, y), hurt(y, z)].  Keane et al. produced
singletons-aligned and singleton-crossed versions of a new
relational-mapping problem and noted that IAM predicted
similar order effects for these problems (see Table 1).
However, this prediction has never been substantiated
empirically.

This paper investigates order effects in relational-mapping
problems.   The paper also examines alternative measures of
IAM's performance that can be used to simulate subjects'



performance, with a view to identifying the most predictive
measure.   In each experiment, I first report a computational
experiment using IAM before testing these predictions with
subjects.

Experiment 1: Order and Problem Type
IAM predicts that the order effects found for attribute-

mapping problems should also hold for relational-mapping
problems.   So, singletons-aligned versions of both
problems should be easier than singletons-crossed versions
of both problems (see Table 1).   IAM should also predict
problem-type effects; that is, relational-mapping problems
should be harder than the attribute-mapping problems
because they involve more complex predicate structures
(taking two arguments).  However, the difficulty of an
analogy can be measured in several different ways in IAM.
In the simulation experiment, two such measures are
examined in assessing the predictions of IAM.

Experiment 1A: Simulating Order & Problem-
Type Effects in IAM
In the simulation experiment using IAM, the exact same
problems were presented to the model that were later given
to the human subjects (see Keane et al., 1994, for a full
description of IAM).  In previous studies, the measure used
was the number of alternative global-mappings generated
before the problem was solved; the re-maps measure.   This
is a good measure of problem difficulty because it is
common to IAM, SME, ACME and I-SME (see Keane et
al., 1994).   It also makes accurate predictions for the order
effects found in attribute-mapping problems.   However, it
is a very gross measure, because it does not take the
contents of these global mappings into account.   For
instance, it should be clear that a global mapping involving
three entities is less difficult than a global mapping
involving 300 entities.   Yet, the remaps measure would
never reveal this difference.   The remaps measure is
unlikely to manifest problem-type differences because they
hinge on the number of entities involved.  A finer-grained
measure is possible using the number of mappings involved
in each remap: the remaps-complexity measure.   This
measure tells us how many maps (predicate and object) were

constructed across all the global mappings generated before
the solution is reached.   We adopted these difficulty
measures in our following tests rather than direct tests of
error in the model because there are no strong guidelines for
making the model produce errors.   I could have stopped the
model after a certain length of time, before the correct
answer in reached;  this would give us numbers of incorrect
mappings but any proposals on how long the model should
run seem arbitrary (see Keane, 1995, for details and other
possible  measures).

Method
Materials & Design.  The materials presented to IAM
in the computational experiment were predicate calculus
representations of the problems shown in Table 1.  The
problems given to the program corresponded to the
individual problems given to subjects in the subsequent
psychological experiment (see Keane, 1995).  The materials
thus consisted of four sets problems, one for each condition;
the attribute-aligned (11 problems), attribute-crossed (13
problems), relational-aligned (12 problems), and relational-
crossed conditions (9 problems).

Procedure & Measures.  Each problem was run on IAM
(see Keane et al., 1994, Appendix A for settings used).
Two measures were used: (i) remaps , the number of
alternative global mappings generated; (ii) remaps-
complexity, the number of maps (both relational and object)
that were formed on successive remaps.

Results & Discussion
Figure 1 shows the mean number of remaps (Figure 1a) and
the mean remaps-complexity scores (Figure 1b) for the
different conditions in the experiment.  Both measures
predict that singletons-aligned problems should be easier
than the singletons-crossed problems, but only the
complexity measure predicts a difference between attribute-
and relational-mapping problems.

A 2 x 2 analysis of variance, with between-subject factors
for order (aligned or crossed) and problem-type (attribute or
relational), of the computational results reveals the number
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Figure 1: (a) the mean number of remaps and (b) mean remaps-complexity scores for the problems



 of  remaps measure only shows a reliable main effect of
order [F (1, 41) = 72.83, p  < .0001; MSe = 38.99].
However, the remaps-complexity measure shows reliable
main effects for both order [F(1, 41) = 55.79, p < .001;
MSe = 54.18] and problem type [F(1, 41) = 7.36, p < .01].
There were no reliable interactions for either measure.

The results of the computational experiment show that the
previously-used, remaps measure appears to be too blunt to
be useful.   It merely counts the number of different
interpretations produced for the analogy and says nothing
about the complexity of these interpretations.  The remaps-
complexity measure was, therefore, used to predict subjects'
performance.
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Figure 2: The mean proportion of incorrect-mappings
produced in Experiment 1B

Experiment 1B: Psychological Tests of Order and
Problem Type
We have seen the sorts of predictions produced by the
computational tests in Experiment 1A.  Here these
predictions are tested in a parallel psychological experiment.

Method
Materials.  We used the four types of problem shown in
Table 1: two sets of attribute-mapping problems and two
sets of relational-mapping problems.  For each problem-type
there was a set of aligned problems (in which the singletons
were first in both lists) and a set of crossed problems (in
which the singleton in list A was last and the singleton in
list B was still in the first position).  The remaining
sentences in each list were randomised with the constraint of
keeping attributes (or relations) about the same individual
(or pair of individuals) together.

Procedure.  Subjects were instructed in writing that their
"task is to figure out what in the left set corresponds to what
in the right set of sentences".   A single column below
list A listed the names of the individuals and
attributes/relations in that list (in the order in which they
appeared in the list of sentences).  Next to each was a space
for subjects to write the corresponding name or
attribute/relation from list B.  Subjects were first shown the
instructions and problem and were asked to read them
carefully.  They were timed until they produced the correct
answer to the problem (the clock was stopped after 15
minutes).

Subjects & Design.  Forty-five undergraduates
attending Trinity College Dublin took part voluntarily in

the experiment.  One subject was excluded prior to data
analysis because he misunderstood the experimental
instructions (failed to produce even one correct mapping).
Data analysis was carried out on the remaining 44 subjects
who were assigned randomly to the four conditions; the
attribute-aligned (n = 11), attribute-crossed (n = 13),
relational-aligned (n = 12), and relational-crossed conditions
(n = 9).

Measures.  Keane et al. (1994) used solution-time as
the dependent measure in their experiments.   However,
solution time proved to be unsuitable here because many
subjects found the relational-mapping problems very
difficult; 75% of subjects failed to solve them (or gave up)
before the 15 minutes deadline.   The dependent measure
was, therefore, the proportion of incorrect-mappings
produced by subjects to a problem (the attribute mapping
problem has six correct mappings and the relational-
mapping problems has nine such mappings).

Results & Discussion
Figure 2 shows the mean number of incorrect-mappings
produced by subjects in the different conditions of
Experiment 1.   Order effects were demonstated in relational-
mapping problems as well as in attribute-mapping
problems.  The effect of problem type was also marked;
overall only 25% of subjects solved relational mapping
problems (i.e., got no incorrect mappings) whereas 67% of
subjects solved the attribute-mapping problems.  The results
corroborate the predictions of the IAM model based on the
remaps-complexity measure (compare Figures 1b and 2).

The 2 x 2 analysis of variance, with between-subject
factors for order (aligned or crossed) and problem-type
(attribute or relational), revealed reliable main effects of order
[F(1, 41) = 4.17, p < .05; MSe = .055] and problem-type
F (1, 41) = 9.25, p  < .01; MSe = .055]. There was no
significant interaction.   The results thus demonstrate that
the remaps measure is, in itself, insufficient to distinguish
problem-type differences in analogical mapping.   Rather,
we need a measure that takes into account the complexity of
these remaps.

Experiment 2: Order Effects in Doubles
All of the order effects found in the literature make use of
the singletons in the mapping problem.  However, IAM is
sensitive to the position of any sentence in lists A and B.
So, if we take a double in list A (e.g., the sentences "Mark
is beside Ronan" and "Mark motivates Ronan" ) and align it
with its corresponding double in list B (e.g., "Laura
employs Ruth" and "Laura hugs Ruth") then such a problem
should be easier to solve than one in which these doubles are
crossed (see Table 2).  So, aligned problems involving
doubles should be easier than crossed problems (see
simulations below).  The simple case where the sentences in
the doubles are aligned perfectly and can be read off was
excluded.   Also, Table 2 shows that these problems include
an implicit causal relation between the employs-pays
double.  The position of this double was also varied, but no
reliable differences were found.  In this presentation of the
experiment, I collapse across this variable, treating the two
conditions as being counterbalanced for this factor (see
Keane, 1995, for details).



Table 2:  Examples of the mapping problems used in Experiment 2*

___________________________________________________________________________________
          Doubles-Aligned         Doubles-Crossed
A B A B

Jim is beside Fred. Ruth motivates Ali. Mark employs Ronan. Ruth motivates Ali.

Jim employs Fred. Ruth sees Ali. Mark pays Ronan. Ruth sees Ali.

Joe pays Sam. Lisa hugs Jenny. Joe pays Sam. Lisa hugs Jenny.

Mark employs Ronan. Laura hugs Debra. Jim is beside Fred. Laura hugs Debra.

Mark pays Ronan. Laura motivates Debra. Jim employs Fred. Laura motivates Debra.

___________________________________________________________________________________
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Figure 3a: The mean remap complexity scores produced by
IAM in Expt. 2B

Experiment 2A: Computational Tests on Doubles
The materials presented to IAM in the computational
experiment were predicate calculus representations of the
problems shown in Table 2.  The materials corresponded to
the two types of  problem given to subjects in the subsequent
experiment.  Each of the problems were run on IAM.   After
running a problem the remap-complexity measure was noted
(as defined in Experiment 1A).

Results & Discussion
Figure 3a shows the predicted differences for these problems.
The group-complexity measure clearly shows an effect of
order.   A dependent t-test revealed a reliable difference between
the doubles-aligned (M = 18, SD = 3.10) and doubles-crossed
conditions [M = 34, SD = 7.23; t(15) = -15.49, p  < .0001].

Experiment 2B: Psychological Tests of Doubles
Materials & Procedure.  We used two versions of the
relation-mapping problem, examples of which are shown in
Table 2. In these problems, the singleton sentence was always
the third sentence in both lists, while the order of the doubles
was varied around them.   The procedures and instructions
were as in Experiment 1B except for two changes.  First, we
reduced the amount of time given to subjects to solve the
problem from 15 minutes to five minutes.    In Experiment
1B, we found that those people who solved the problem tended
to do so in under 5 minutes.   Finally, we also added the
following sentence to the instructions: "There is a one-to-one

correspondence between the relations and objects in list A and
list B".  This was designed to provide a little more guidance as
to the task demands.

Subjects, Design & Measures  Thirty-four students in
Department of Computer Science at Trinity College Dublin
took part voluntarily in the experiment.  Two subjects were
dropped from the experiment prior to data analysis because
they misunderstood the experimental instructions (failed to
produce even one correct mapping). The remaining 32 subjects
were assigned randomly to the two conditions: the doubles-
aligned (n=16), and doubles-crossed conditions (n=16).  As
before, The dependent measure was the proportion of incorrect
mappings generated by subjects to a problem.
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Figure 3b: The mean proportion of incorrect mappings
produced by subjects in Expt. 2B

Results & Discussion
Figure 3b shows the mean number of incorrect mappings
produced by subjects in the different conditions of Experiment
2B.   The results correspond well to the remap-complexity
measures found in IAM (compare Figures 3a and 3b).   A
dependent t-test carried out on the two conditions revealed that
that difference between the doubles-aligned (M=.09, SD = .17)
and doubles-crossed (M = .43, SD = .28) conditions was
statistically relaible  [t(15) = -3.9, p < .001]. The results thus
reveal that the positioning of doubles as well as the
positioning of singletons can lead to order effects in these
mapping problems.

Conclusions
Empirically, these experiments provide further support for
order effects in analogical mapping.  They show that the effect



previously demonstrated in attribute-mapping problems can be
replicated and extended to relational-mapping problems.  They
show that relational-mapping problems are considerably more
difficult than attribute-mapping problems. Finally, they show
that order effects are not just to be found for the positioning of
singletons, but are also sensitive to the position of doubles.
These experiments are among the first to predict specific error
rates in analogical mapping and to show systematic differences
in these rates over different types of analogy problems.

Keane et al. (1994) argued that analogy models have to
approximate subjects' performance, not just characterise the
sort of analogies they can or cannot do (i.e., their analogical
competence).   In this paper IAM has demonstrated a good
approximation to subjects' performance.  The previously-used
measure - the remaps measure -- has been shown here to be
insensitive to processing differences caused by the complexity
of the predicates involved in a mapping (i.e., whether there are
attributes or relations).  To approximate subjects' error
performance in these experiments a new measure was required
based on the complexity of the remaps being processed.  This
complexity measure provides a good account of both order and
problem-type effects.

However, these findings raise the issue of whether the other
models in the literature can be shown to make similar
predictions.  It is known already that ACME does not predict
any order effects; these effects run counter to the parallel spirit
of that model (see Keane et al., 1994).   I-SME can model
order effects using a remaps measure but its predictions for
these experiments are not known (awaiting results).  I-SME
constructs its remaps in a completely different way to IAM.
The number of remaps it produces to different problems differs
to the number generated by IAM.  I would assume, however,
that this remaps measure will not capture problem-type effects
and therefore some complexity measure might be required.
So, to the best of my knowledge, at present, IAM is unique in
its ability to approximate the human behaviour discovered
here.
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