
On the Automatic Generation of Case Libraries

by Chunking Chess Games

Stephen Flinter and Mark T. Keane

Trinity College Dublin

Abstract. As a research topic computer game playing has contributed

problems to AI that manifest exponential growth in the problem space.

For the most part, in games such as chess and checkers these problems

have been surmounted with enormous computing power on brute-force

search methods using massive databases. It remains to be seen whether

such techniques will extend to other games such as go and shogi. One

suggestion is that these games and even chess might bene�t from a

knowledge-based treatment but such approaches have met with limited

success. The problem, as ever from such approaches, is the characterisa-

tion of the knowledge to be used by the system. This paper deals with

the Tal system, which employs case-based reasoning techniques for chess

playing. In the paper, rather than focus on playing, we concentrate on

the automatic generation of suitable case knowledge using a chunking

technique on a corpus of grandmaster games.

1 Introduction

Many games like chess and checkers have been mastered by computational tech-
niques that use extensive search with massive computing power. The failure of
such techniques to deal with other games, like go and shogi, is perhaps an indica-
tion that this approach does not constitute a general solution to such problems.
One alternative is to use knowledge-based techniques, like case-based reason-
ing, to reduce the search overhead and speed-up solution generation. After all,
human chess players play quite well, with relatively little search, through the
use of extensive past experience. Several knowledge-based solutions have been
attempted but with limited success (e.g. [2] [10]). As always, the fundamental
problem with knowledge-based approaches is the isolation of the relevant knowl-
edge in a suitable form for use.

Case-based reasoning (CBR) seems to be a plausible technique to apply to
such games. However, again, with it we face the problem of de�ning a suitable

case library to support the technique. In this paper, we consider a chess playing
system, called Tal, that uses CBR. To date, the central problem we have focused
on in Tal is the development of a case library. There are two problems to be
faced in doing this. First, one has to develop a good case representation. It
is not obvious what form chess cases should take: for example, whether they
should contain parts of a game or a full game, whether they should represent
all the details of a game at the level of actual moves from play or whether some



abstracted representation should be developed. In Tal, cases are represented as
abstractions of actual board situations.

Second, one needs to automate the method of building cases. For an adequate
level of expertise, a considerable case library is likely to be needed. Given this
factor, and the availability of extensive databases of chess games, it makes sense
to have a method that will generate a case library automatically from records of
previous games. In Tal, we use a chunking method to do just this. The reader
should note that the notion of chunking to which we refer is inspired by de
Groot's ([6]) and Chase and Simon's ([3]) ideas and is quite di�erent to the
chunking method used by Laird, Newell and Rosenbloom in SOAR ([9]).

1.1 Architecture

The Tal system consists of two major components: the Library sub-system and
the Game-Playing sub-system. The Library component is responsible for con-
verting the set of example games into populated knowledge bases, as described in
Section 4. The Game Playing component is responsible for applying this knowl-
edge to novel game positions to produce candidate moves and to perform some
look-ahead.

Game
Library

Game
Graph

Chunk
Library

Case
Library

Case
Generator

Chunk
Generator

Game−graph
Generator

Fig. 1. Tal Library Sub-system

The Library component is shown in Figure 1. It has three main sub-components
to generate the three knowledge-bases (game graph, chunk library and case li-
brary) used by Tal: the game-graph generator, the chunk generator, and the

case generator. The Game-graph Generator takes a set of chess games and cre-
ates a game-graph based on those games. The Chunk Generator produces set

of candidate chunks from the game-graph. The Case Generator takes the set of
base chunks and recombines them into set of cases.

The Game-playing component is shown in Figure 2. It uses the knowledge-
bases created by the Libraries Component to analyse a given current chess posi-
tion, and to select a move to play from that position. Several interesting issues



Case
Library

Case
Retrieval

Move
Generator

Chunk
Analyser

Search
Engine

Chunk
Library

Candidate
Moves

Applicable
Cases

Target
Case

Game
Graph

Position
Chunks

Selected
Move

Fig. 2. Tal Game-Playing Component

arise in the design of this component, for instance, the generalisation and re-
specialisation of candidate moves. However, this paper will not be concerned
with the game-playing aspect of Tal, rather it focuses on the Library compo-
nent and the generation of case knowledge.

1.2 Outline of Paper

In the following sections, the workings of Tal's Library component are sketched
in detail. However, before doing this we consider some of the background to the
ideas used in this component, in the form of psychological evidence on the use of
chunks by chess players. While our idea of chunking is quite di�erent to that used
in the psychological work, and we do not make any claims for the psychological
plausibility of Tal, we have been inspired by this research.

2 Psychological Evidence

According to psychological evidence, human chess players of all strengths per-
form what Newell and Simon called chunking ([6] [11] [7]). A chunk here is some
portion of a board position represented by a meaningful grouping of pieces. Each
complex board position can be broken down into a small number of chunks, each
of which will contain a number of pieces. Consider the chess position shown in
Figure 3. This �gure is taken from [7], which itself is taken from [6]. The sets



of ringed pieces represent the chunks which de Groot suggests his chess master
subject used to represent the position.

0Z0s0ZkZ
o0ZqZ0Z0
0o0Z0ZpZ
Z0ZrSpZp
0Z0Z0O0O
O0Z0Z0OK
0Z0ZRZ0Z
Z0ZQZ0Z0

Fig. 3. Reference chunk position

As a chess player's expertise increases chunks change in two ways. First, the
size of the chunks increase | that is, the chunks a master uses to represent a
position will have more pieces than those of an intermediate level player, which
in turn will have more than a rank beginner. Secondly, the number of chunks
possessed by the player also increases with playing strength. So, not only will a
master represent chess positions using richer and more complex chunks, but will
also use more of them. It has been estimated that an intermediate club player
will have about 1,000 chunks, while a master will have of the order of 100,000
([6]).

Tal does not try to model this human chess playing skill | this has already
been attempted a number of times, with varying success ([13] [3]) | but it
does borrow ideas from this research. Speci�cally, the idea of breaking a complex
situation, such as a chess position, into a number of smaller, more manageable
pieces is a very useful technique for case-based reasoning; especially, if the cases
can be generated automatically, using heuristic methods applied to a large data
set. This process of automatically generating the required knowledge-bases is
analogous to the learning which takes place as a human player gains experience.

3 Theory of Chunking Applied to Tal

As it appears in Tal, the chunking hypothesis could be stated as the belief that
complex situations or episodes, such as chess positions, can be better understood
in terms of a number of simpler component structures. Speci�cally, given a set



of representative chunks (representative of the entire set of chess games, that
is), one can break a previously unseen chess position into a set of such chunks.
The composition, arrangement and relationships of the set of component chunks
can then be used to retrieve similar previously seen positions (reminding). The
hypothesis goes on further to postulate that a move made in a similar position to
the one under examination is worthy of consideration as a move for the current
position, once it has undergone the appropriate transformation or adaptation,
which will express it in terms of the current position. Such a move is called a
candidate move.

It is not necessary that every candidate move be relevant to the current
position | in fact, it is important that not every move be relevant: otherwise,
we return to the problem of exponential growth in our search which we are trying
to avoid with this method. Once this set of candidate moves has been generated,
it is then possible to search the game-tree, like any ordinary chess program, but
using the candidate moves to guide the search. In this manner, the hope is to
reduce the average number of moves to be searched at a given chess position
from 35 down to about three or four. However, there are certain problems which
must be resolved in implementing this chunking hypothesis. We should have:

{ a, preferably, automatic method for re�ning the initial set of example games
to a set of base chunks (achieved by our chunking heuristic).

{ a means of �ltering out unwanted and useless chunks from the set of candi-
date chunks, leaving only useful and meaningful base chunks.

{ a way of creating a set of base cases from the set of base chunks, where these
cases represent situations in which one or more chunks are present. Here a
base case, will be a position expressed in terms of chunks from the chunk
library rather than in terms of atomic pieces.

{ a method for characterising novel, unseen positions into a collection of chunks
from our chunk library.

{ a retrieval method to �nd a set of relevant similar positions from the game
graph to this characterisation of a target position

{ a set of methods for generalising and re-specialising moves made from similar
positions, to put them in terms of the new position. In the instances, where
this is impossible, the candidate move is simply discarded. Once we have a
set of candidate moves, we can then begin to search from them, and repeat
the above process for as long as necessary.

4 The Inner Workings of Tal's Library Component

In the next three sections we will explain in more detail the nature and compo-
sition of each of Tal's knowledge bases.

4.1 Game-graph Generator and Game Graphs

The Game-graph Generator takes a set of chess games, in Portable Game Nota-
tion (PGN | a standard notation for chess games), and creates a game-graph



based on those games. The game graph is a cyclic-directed graph which stores
raw chess games. Each node in the graph represents a single, unique chess po-
sition and is stored in Forsythe-Edwards Notation (FEN | another standard
notation, this time for chess positions). Each arc from one node to another rep-
resents a legal move made from one chess position to another. The graph is
directed because the e�ects of a move are not (always) reversible, and cyclic
because positions can repeat. The graph is tree-like in that it has a single root
which is the initial chess position. Finally, both the nodes and the arcs have
counter tags, which specify the number of times a given node or arc appears
across the set of games submitted to the graph.

A complete chess game is represented as a path or thread through the graph,
linking the positions occurring in the game by the moves made from position to
position. Each unique position can be represented by one and only one node. If
two or more games share the same position (which is inevitable), they must share
the same node. The graph can have only one root | the initial chess position
| and will have one or more leaves; with each leaf representing the termination
of a game, corresponding to a win, draw or loss for white (or black).

4.2 Generating Chunks for the Chunk Library

The chunk library is a repository of base chunks. Each chunk is composed of a
salient piece and one or more other pieces. The salient piece of a chunk is the
most important piece: the one from which other pieces hang. For example, recall
the position shown in Figure 3. If we consider a white pawn chunk, with the
three pawns on f4, h4, and g3 (note that, this does not correspond exactly to
the master's chunks shown in the diagram, and is used simply for the sake of
argument). Together, these pawns make up a cohesive chess unit. The salient
piece in this chunk is the pawn on g3, as it is the piece which relates all three |
without this pawn the other two would just be single, separate, unrelated units.

The purpose of the Chunk Generator is to traverse the game-graph produced
by the Game-graph Generator and to produce a set of candidate chunks. A
candidate chunk is de�ned to be a chunk created according to some chunking
heuristic, which will be either discarded or added to the chunk library according
to some chunk selection criterion. So, there are two issues which the Chunk
Generator must tackle: �rstly, how should the chunks themselves be composed;
and secondly, once they are composed, how can the most relevant and useful
ones be selected, for inclusion in the chunk library.

In Tal candidate chunks are generated according to the principle of direct
interaction. Two pieces are said to directly interact in situations where one
defends the other (in the case where both pieces are of the same colour), or

where one attacks the other (in the case where the pieces are a di�erent colour).
Speci�cally, each candidate chunk consists of a salient piece, and the enumeration
of all direct interactions with that piece. The algorithm for the generation of the
set of candidate chunks follows.

For each piece in the position:

let the piece be the salient piece;



if the piece is black, normalise the position to white;

determine all the direct interaction between the salient piece and the remainder

of the pieces in the position;

enumerate each possible permutation of salient piece and directly interacting

piece(s), and store as a candidate chunk.

The second issue facing the Chunk Generator is that of selecting a set of base
chunks based on the set of candidate chunks. This task must yield a small set of
chunks (relative to the set of candidate chunks) which are representative of the
total set of chunks required to express each position. Obviously, there will be
a large amount of duplication across the set of candidate chunks, and it is this
factor which is used as the chunk selection criterion. Speci�cally, the frequency
of each chunk is determined (by frequency here we mean the number of times
it occurs across the entire game set), and a selection made on the basis of this
frequency. Refer to Section 5 for more details on the results to date.

4.3 Case Library

Just as the chunk library is a repository of chunks, so the case library is a
repository of cases. In the Tal system, a case is a representation of a board
position in terms of a number of base chunks found in the chunk library. Specif-
ically, a case consists of the set of base chunks which appear in the examined
position. Thus, when a novel position is encountered, it is decomposed into its
constituent chunks. Its similarity to other positions can then be measured by a
distance metric between the current position and the other positions encoded in
the case library.

5 Results

At the moment, the implementation of Tal's Library Component is complete,
and work on the Game-Playing component is under-way. We have conducted
experiments using a set of 350 games from the late grandmaster and ex-world-
champion, Mikhail Tal. This game set yields a total of 43,592 unique candidate
chunks. An analysis of this data reveals an L-shaped distribution. Those chunks
which have a low frequency tend to have a very large count. For example, there
are 16,352 di�erent chunks with a frequency of 1; that is, from the set of 43,592
chunks from, approximately 38% of those appear only once. Conversely, those
chunks which have a very high frequency have very low counts | typically only
one or two.

Since we are looking for a representative set of chunks from the entire set
of possible chunks, those points lying on the extremities of the distribution are

uninteresting. Those with a low frequency and high count are not useful because
they occur too infrequently to be of assistance in retrieving relevant positions.
That is, the cost of storing them exceeds the bene�t gained from greater coverage.
Equally, those chunks with a high frequency and low count are not useful because
they are not discriminating enough. Storing them would direct the system to



retrieve too many cases to handle. For the current system, we use a chunk library
approximately 10% the size of the complete set of possible chunks. From the
candidate chunk set, we have pruned those chunks with a frequency 10 or less,
and a frequency 500 or more. This selection criterion leaves a chunk library with
a population of 4,533 base chunks. A graph of the distribution of the remaining
chunks can be seen in Figure 4.

0

50

100

150

200

250

300

350

400

450

0 50 100 150 200 250 300 350 400 450 500

Number of
chunks

Frequency of chunk

Plot of number of chunks of a given frequency for selected chunks

individual chunk 3

3

3

33

3
3

3

3

3
3

3
3
333
3
3
3
3

33
3333
3
333333
33
3
333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333 333333333333333

Fig. 4. Plot of selected chunks

When we chunk the reference position found in Figure 3 using Tal we get
the automatically generated chunks shown in Figure 5. As can be seen, there is
some similarity between the two sets of chunks, without them being identical.
This is not a critical factor: we are not trying to reproduce the same chunks of
a human master player, but simply using these chunks as aids to retrieval.

6 Future Work

The work described in this paper mainly revolves around the generation of the
knowledge bases. In the next set of experiments we will focus on case retrieval,
and in particular, on generalisation and re-specialisation of retrieved candidate
moves. The primary issue here is to correctly map the move made from the
retrieved case into an appropriate move for the target case, and to recognise the
situations where no such meaningful maps exists.



0Z0s0ZkZ
o0ZqZ0Z0
0o0Z0ZpZ
Z0ZrSpZp
0Z0Z0O0O
O0Z0Z0OK
0Z0ZRZ0Z
Z0ZQZ0Z0

Fig. 5. Base chunks chosen by Tal

In this paper we have described Tal's current chunking heuristic and chunk
selection criterion. These are the two most important factors in determining the
quality of the system's chunk library, and hence ultimately its case library. In
future experiments, we intend to investigate di�erent chunking heuristics and
selection criteria.

In the long term, while much of Tal is closely tied to the game of chess,
we believe that the approach of automatically chunking complex situations and
building cases out of such chunks is generally applicable and useful. One of
the biggest problems with current CBR technology is the dependence on hand-
crafted case libraries. While Tal does not completely solve this problem | we
still had to encode the chunk representation and chunking and selection criteria
| it does go a long way towards alleviating the time-consuming and pain-staking
task of building the individual base cases.

7 Related Work

There is a large project underway in the Institute of Learning Sciences at North-
western University named Castle. This project takes a Model-Based Reason-

ing (MBR) approach to computer chess ([4] [5] [1]). The ILS approach is a
very knowledge intensive one, and involves planning, learning and high-level rea-

soning. Kerner has recently published work on a CBR approach to chess ([8]).
However, his work focuses on developing a case-base evaluation function for a
standard searching chess system, and so di�ers signi�cantly from Tal. Pell's
work on Metagame ([12]) deals primarily with forcing programs to learn, and
in particular, to create their own evaluation function.



8 Summary and Conclusions

In this paper, we have described the Tal CBR system, and in particular, its
Library Component. We have demonstrated a method for automatically gener-
ating a case library from expert data. The hypothesis advanced by this work
that positions composed of similar base chunks will tend to have a similar chess
`meaning', and that reasoning performed on one can usefully be applied to the
other has so far been supported. Further work is necessary to re�ne the genera-
tion of base chunks and cases, but experiments indicate that this approach is a
useful and fruitful one. Further, we propose that the approach to such problems,
that of \chunking" complex situations, is one which could be generally applicable
to case-based reasoning.

This article was processed using the LATEX macro package with LLNCS style


